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Surface forces are due to direct contact of surfaces, and are proportional to the surface area.
For example, consider one surface ’sliding‘ over another, which for a fluid would produce a shear
force due to the viscosity of the fluid (see Figure 1). But it would also produce a pressure force
applied normal to the same surface.
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Figure 1: Forces of the fluid in the upper layer on the fluid in the lower layer.

To get the total contribution to the forces on a differential control volume we need to sum the
forces on all six surfaces of the control volume. On each surface there can be 3 force components (see
Figure 2). To mathematically describe these forces we need a 9 component stress matrix (tensor):

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 .
The components of this matrix are called (surface) stresses.

dx

y

dy

z

dz x
σxx

τzz

τyy

Figure 2: Example of surface stresses needed to define surface forces.

Important properties of these stresses are the following.

1. Subscript notation: τxydydz is a force in the y-direction on a surface of area dydz whose
normal is in the x-direction. (Be careful in this notation when reading other books and papers;
sometimes the indices are reversed.) Similar notation is used for the other components of the
matrix σ.

2. Definitions: σxx, σyy, and σzz, the diagonal components, are called the normal stresses. The
off-diagonal components, τxy, etc., are called the shear stresses.
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3. Sign convention: a components of σ (e.g., τxy, etc.) is positive if the force vector component
and the area normal are either both positive or both negative. This is needed for consistency
with Newton’s third law (see Figure 3, which examines the normal force of volume 1 on
volume 2, and vice-versa).
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Figure 3: Example of the application of the sign convention.

Note that since pressure is always directed inwards (compression), opposite to the direction of the
outward normal, then from the sign convention it is always a negative normal stress, and written
as −p.
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Figure 4: Normal stresses for forces in the s-direction on surfaces in the x-direction.

Consider the force on the cube in Figure 4 in the x-direction. Contributions with come from
all 6 surfaces. The force on the left face is:

−σxx
∣∣
x
dydz .

Note that the (-) sign is needed since if σxx is positive, the force must be in the −x-direction
(i.e., it must be negative) since the surface normal is in the −x-direction, consistent with the sign
convention. The force on the right face is, using a Taylor series expansion:

σxx
∣∣
x+dx

dydz =

(
σxx +

∂σxx
∂x

∣∣
x
dx

)
dydz .

Therefore the total contribution of the surface force in the x-direction, due to surfaces with their
normals in the x (or -x) direction, is:

∂σxx
∂x

dxdydz .
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Therefore, for example, if
∂σxx
∂x

= 0, i.e., σxx is locally uniform, there is no net force on the cube

in the x-direction due to the left and right faces, as the forces balance. On the other hand, if, for

example, σxx > 0 and
∂σxx
∂x

> 0, there would be a net force in the +x direction (see Figure 5).

Fx

 ∂  σxx>0

x x+dx

Fx+dx

σxx<0

 ∂x
Fx+Fx+dx>0

Figure 5: Net normal force is in the positive x-direction if σxx > 0 and ∂σxx/∂x > 0.

In a similar manner, if we compute the contributions to the forces in the x-direction due to the
surfaces with normals in the y-direction (see Figure 6), we would obtain:

∂τyx
∂y

dxdydz ,

and force surfaces wit normals in the z-direction:

∂τzx
∂z

dxdydz .
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Figure 6: Net normal force is in the positive x-direction if τyx > 0 and ∂τyx/∂x > 0.
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Therefore, for the x-component of the momentum equation we obtain, dividing out dxdydz:

ρ
Du

Dt︸ ︷︷ ︸
rate-of-change
following fluid

= ρgx︸︷︷︸
body force

+

(
∂

∂x
σxx +

∂

∂y
τyx +

∂

∂z
τzx

)
︸ ︷︷ ︸

surface forces

(per unit volume) ,

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
is the substantial, or material, derivative. Similar arguments

for the y- and z-components of the momentum equation lead to:

ρ
Dv

Dt
= ρgy +

(
∂

∂x
τxy +

∂

∂y
σyy +

∂

∂z
τzy

)
, and

ρ
Dw

Dt
= ρgz +

(
∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
σzz

)
.

So far we have the following equations:

• conservation of mass: 1 equation

• momentum balance: 3 equations

• conservation of energy: 1 equation (discussed later)

We can also add the angular momentum balance, which can be shown to lead to the fact that σ
is a symmetric matrix, reducing the number of its components from 9 to 6; this will be considered
later. So we have at most 8 equations. But we have at least 13 unknowns:

ρ , u , v , w , σxx , τxy , . . .

Therefore we have more unknowns than equations so that we don’t have a well-posed mathe-
matical problem yet; we still need more information. The equations at this point are valid for
any continuum, e.g., a solid, a fluid, a visco-elastic material, etc. We next have to bring in the
properties of the medium that are particular to a fluid, i.e.,

1. Constitutive equations, giving the mechanical properties of the medium. For example, for a
linearly elastic solid, this is Hooke’s law that the stress is a linear function of the strain.

2. Gas laws, i.e. the thermodynamic properties of the medium, e.g., p = ρRT . Note that these
are not needed for an incompressible fluid.

The subject of the constitutive equations for a fluid is complex, and can be made the topic of
a graduate course. Here the results will be given, along with some motivation, but without any
derivation. More complex discussions are given in ME503, the graduate course on continuum
mechanics, and ME507, the graduate course on fluid mechanics.

Recall that, by definition, a fluid is a material which cannot support a shear stress without
continuously deforming. So if a shear stress is applied to it, it will continue to deform. If it is not
deforming, there are no shear stresses. Therefore, when a fluid is static, it can only support normal
stresses. When the fluid is static, this normal stress is: (i) compressive, i.e., the force is opposite
to the outward normal of the surface (the stress is negative); (ii) at a given point, the same force
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is applied over the same area in any given direction; and (iii) this normal stress is the usual static
pressure. (It is the thermodynamic pressure for a compressible fluid.) Therefore, when the fluid is
static,

σxx = σyy = σzz = −p , τxy = τxz = . . . = 0 ,

that is, all of the shear stresses are 0.

This same pressure is assumed to exist for moving fluids, and is separated from the rest of the
stresses, i.e.,

σ =

−p+ τxx τxy τxz
τyx −p+ τyy τyz
τzx τzy −p+ τzz


Here the matrix τ , composed of τxx, τxy, etc., represents the remainder of the surface stresses after
the pressure has been removed, and is due to the viscosity of the fluid.

For a solid, the stresses are functions of the strain, i.e., of the relative displacements, e.g.,
in Hooke’s law where stress ∝ strain. For a fluid, to be consistent with the definition of a fluid
discussed above, the stresses are functions of the rate-of-strain, i.e., the rate-of-change of the relative
displacements. Relative motion is needed to have viscous stresses. For example, in a simple shear

flow (see Figure 7), the rate-of-strain is related to
∂u

∂y
, the spatial derivative of u in the y direction.
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Figure 7: Strain-rate due to a shearing flow.

For most fluids of interest, e.g., air, water, etc., the stresses are linear functions of the rate-of-
strains, which is the basic assumption for a Newtonian fluid. For an incompressible flow, this leads
to the following relationships between τ and V = (u, v, w):

τxx = 2µ
∂u

∂x
, τyy = 2µ

∂v

∂y
, τzz = 2µ

∂w

∂z
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
, τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
.
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The constant of proportionality, µ, is the fluid viscosity.

Note the following facts about the viscous stresses τ :

• The shear stress matrix τ is a symmetric matrix, e.g., τxy = τyx. This is due to the angular
momentum balance, assuming that there are no internal moments in the fluid, e.g., due to
magnetic effects.

• The equations can be derived from the kinetic theory of gases for simple fluids, e.g., hydrogen.

• For more general fluids, including liquids, these relations are postulated, based upon physical
reasoning and mathematical constraints.

• Comparisons between predictions using these relationships and experiments are generally very
good, lending confidence in them.

When these equations are plugged into the momentum equation there results, for an incom-
pressible fluid (check this):

ρ
Du

Dt
= ρgx −

∂p

∂x
+ µ∇2u ,

where ∇ · (∇u) = ∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
, and ∇2u is called the LaPlacian of u. Similarly, the y

and z components of the momentum equation are:

ρ
Dv

Dt
= ρgy −

∂p

∂y
+ µ∇2v ,

ρ
Dw

Dt
= ρgz −

∂p

∂z
+ µ∇2w .

Together with the continuity equation,
∇ ·V = 0 ,

with ρ and µ known, this gives 4 equations for the 4 unknowns u, v, w, and p. These 4 equations
taken together are called the incompressible form of the Navier-Stokes equations, and hold at each
point in the flow. For incompressible flows, it is these equations that are solved numerically by
codes such as Fluent, STAR CCM+, and COMSOL.

What remains is to discuss initial conditions and boundary conditions.
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