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Refraction and reflection (wave
equation)

The incident beam 1s
characterized by its
wavelength A, its frequency v,
and 1ts velocity ¢, and
refracted beam is
characterized by its
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The speed of light in a medium 1s related to the electric and
magnetic properties of the medium, and the speed of light in
vacuum can be expressed as

] En = electric permittivity
C =
0 ‘o 1 L, =magnetic permeability
Y CoMp

The speed of light in a material to the material "constants" € and
the corresponding magnetic permeability p, of vacuum and p_of
the material 1s

1
C =
NI
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The index of refraction n of a non-magnetic material p_= 1 1s
linked to the dielectric constant €_via a simple relation, which is a
rather direct result of the Maxwell equations.

c, 1/ \Ju, e,

p— — ‘/gr = N

c 1/ \Ju,u,c&, ¢,

Plug back into dispersion relation,

Co — ﬂ“z](z —n
c A,
Since f; = f, )
n=—
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Maxwell Equations

Integral form in the absence of magnetic or polarized media:

I. Faraday's law of induction j{ E dli=— dz"”

I[I. Ampere's law 5’.-5 s = Ui+ %% E-dA

I1I. Gauss' law for magnetism 3{; B-dAi=0

IV. Gauss' law for electricity _}E BdA = ;i:}
E = Electric Field (V/m) p = charge density (c/m3) i = electric current (A)
B = Magnetic flux density(Web/m?, T) &, = permittivity J = current density(4/m?)
D = Electric flux density (c/m’) U, = permeability c = speed of light

or electric displacement field
H = Magnetic Field (A/m) @, = Magnetic flux (Web) P = Polarization

q = chgrgg 1.6x10""” coulombs, u,=1.26x10H/m, ¢, =8.85x10"° F/m



Electric flux

For instance, states that the flux of the electric field out of a closed surface is
proportional to the enclosed in the surface (regardless of how that charge is
distributed). The constant of proportionality is the reciprocal of the of free space.

Its integral form is:

j£ o5 - dA = Q4
A

The electric flux in an unclosed surface: ¢, = I E-dA

Sometimes electric flux appears in
terms of flux density D as: g = | D-dA=[¢E-dA
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The electric elasticity equation

(Displacement field) D= ¢FE

Where E = electric field
¢ = permittivity (dielectric constant)
In air ¢, = 8.85x10-2 F/m



Magnetic flux

We know from Gauss's law for magnetism that

in a close surface, :[ B-dA=0

Normally, the magnetic flux in an ¢B = j B-dA
unclosed surface

Where B = magnetic flux density
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But when the generated fields pass through magnetic materials which themselves
contribute internal magnetic fields, ambiguities can arise about what part of the field
comes from the external currents and what comes from the material itself. It has been
common practice to define another magnetic field quantity, usually called the "magnetic
field strength" designated by H. It can be defined by the relationship

B:/JH‘FM

M = magnetization. Normally, the M = 0 for nonmagnetic material
Ifin air, u, = 1.26x10°H/m
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Faraday’s Law of Induction

Integral Form

E_ d_>= s [
clt

Differential Form
VXEE=- E
at

This line integral 1s equal to the generated voltage or emf in the loop,
so Faraday's law 1s the basis for electric generators. It also forms the
basis for inductors and transformers.
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Ampere's Law

Integral form

dt

sz.s-:g” +——[E dA

Differential form

v_xﬁz4ﬂ l oE
¢’ > ot
ViB = J + l F}E
g, ot
1 l
- — =

In the case of static electric
field, the line integral of the
magnetic field around a
closed loop 1s proportional
to the electric current
flowing through the loop.
This 1s useful for the
calculation of magnetic field
for simple geometries.
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Gauss’s Law for Magnetism

The net magnetic flux out of any closed
surface 1s zero. This amounts to a statement

Integral Form about the sources of magnetic field. For a
magnetic dipole, any closed surface the
,£ ; 1 ;: M magnetic flux directed inward toward the
U - U

T south pole will equal the flux outward from

the north pole. The net flux will always be
zero for dipole sources. If there were a
magnetic monopole source, this would give a
v-B =0 non-zero area integral. The divergence of a
vector field 1s proportional to the point source
density, so the form of Gauss' law for
magnetic fields 1s then a statement that there
are no magnetic monopoles.

Differential Form
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Gauss’s Law for Electricity

|ntegral Form

$EdA=9
j L

Differential
P
v-E =
Ay

w wang

The electric flux out of any closed
surface 1s proportional to the total charge
enclosed within the surface.

The integral form of Gauss' Law finds
application in calculating electric fields
around charged objects.

In applying Gauss' law to the electric
field of a point charge, one can show
that 1t 1s consistent with Coulomb's law.
While the area integral of the electric
field gives a measure of the net charge
enclosed, the divergence of the electric
field gives a measure of the density of
sources. It also has implications for the
conservation of charge.
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Maxwell Equations

— 0B
Faraday’s Law VxE =
ot
oD
Ampere’s Law VxH=J+—
ot
auss’s Law for
Gusss. w fo VeB=0
Magnetism
Gauss’s Law for
Electricity VeD=p
E = Electric Field (V/m) p = charge density (c¢/m?) i = electric current (4)
B = Magnetic flux density(Web/m?, T) &, = permittivity J = current density(4/m?)
D = Electric flux density (c/m?) U, = permeability c = speed of light

H = Magwetic Field (A/m) @, = Magnetic flux (Web) P = Polarization 14



Wave equation

Maxwell's Equations contain the wave equation for electromagnetic
waves. One approach to obtaining the wave equation:
1. Take the curl of Faraday's law:

Vix (VxE) = - oAV % B)
at
2. Substitute Ampere's law for a charge and current-free
region: . a0C
Vi (WxE) = -—L 2=
c2 32

This 1s the three-dimensional wave equation 1n vector
form. It looks more familiar when reduced a plane
wave with field in the x-direction only:

9%, , 3%, 9%, _ 1 3°F
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Curl

The curl of a vector function is the vector product
of the del operator with a vector function:

VxE =

IE. _E}Eg)i +(E}EH _E}Ez)j +(BEH _aEH)H
ay oz a7z  ox an o

where 1,J,k are unit vectors in the X, y, z directions.
It can also be expressed in determinant form:

py

dx v gz

=
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Curl 1in Cylindrical Polar Coordinates

The curl 1n cylindrical polar coordinates, expressed in determinant
form 1s:

Ir k

& le r
N T
e - a0 Jz
E, rEg E.
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Curl in Spherical Polar Coordinates

The curl in spherical polar coordinates, expressed in determinant form
1S:

Ir lg 11’

vwE=| 2 9 9

: ar a6 o
Er rEg rsinOk,
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Use Vx(VxE)=V(VeE)-V’E Wave equation

becomes VE+o’u,e,E=0

We consider the simple solution where E field 1s parallel
to the x axis and its function of z coordinate only, the
wave equation then becomes,

O°E

X

2 +o’u s E =0

A solution to the above differential equation 1s

E=3XE e /*
Substitute above equation into wave equation yields,

Wwang—k >+ w° us)E =0 ‘ (dispersion rellgation)



Let’s transform the solution for the wave equation 1nto real
space and time, (assume time harmonic field)

. E
E(z,t) =Re{Ee’™} = XE cos(wt —kz) | I )
H

k = 2n/A, where k = wave number > Z

Image we riding along with the wave, we asked what
Velocity shall we move 1n order to keep up with the wave,
The answer 1s phase of the wave to be constant

at - kz = a constant

The velocity of propagation is therefore given by,

dz 0,
— =V = —
dt k

1
— (phase velocity)
W wang lLl o gO 20




Poynting’s Theorem

For a time —harmonic electromagnetic wave, the power density
Per unit area associate with the wave 1s defined in complex

p y > Electromagnetic waves transport /
energy through empty space, stared
in the propagating electric and
magnetic fiekds. p]
_,f" LITET
— %k 2 - i
== X m - IH
Elactic
A4 4 P P s R - W
o 4 4, Neld variation P
L T % ATIF
Maanetic field Al e, AT
ariat an in ST A PR N
TR T C I T I O I R i i Y
perpendicular s L [ el Tl T~ T T ] lagr
e elactrie fiald. Lo N I S o Y Sl I I I IR B
1 [ e LARREER
| I I g Yille
| T I Tev
| (e
'
| A single-f-equency electromagneic
/ wave exhibits a snusoide! variation
of electnc and magnetic felds in

\

Space. hyperphysics

Time average pontying vector <s> 1s defined as average of the
Time domain Poynting vector S over a period T=2m/m.

<§>= 2L f()z” d(o)E(x,y,z,t)xH(x,y,z,t)
(or) ’
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Boundary Conditions

) [
At an interface between two media, the file quantities must satisfy
Certain conditions. Consider an interface between two dielectric media

With dielectric constants €, and ¢,, in the z component Ampere’s Law,

we have
’ oH
v _OH, =J, + jwD,
OxX oy
or

ooy =My _yy b

W wang / w 22




Now let area shrink to a point where w goes to zero before / does.
So J, =], ~J w, then
H,-H =J,

Or 1n general,

nx(H,—H)=J,

Applying the same above argument to Faraday’s Law and we
get,

nx(E,—-E,)=0

The tangential electric field £ 1s continuous across the boundary
surface.The discontinuity in the tangential component of A 1s equal
to the surface current density J..

W wang 23



Apply the divergence theory Ve B =0 and Ve D = p for
The pillbox volume shown

n
€1 [ w
tttt ttt+t —

€, [
Asw >0, we get (Bj—B,)en=0

(D,~Dy)eii=p

The normal component of B is continuous across the boundary
surface.The discontinuity in the normal component of D 1s equal to
the surface charge density p

W wang 24



Boundary Condition for Perfect Conductor

On the surface of a perfect conductor, £, = 0 and H,= 0

n
€1 [ w
tttt ttt+t —r

w wang
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Reflection and Transmission (TE, S wave)
Hi &1 Iy Ha, &2, Iy
— (.Xk 4+ Zer) R E —]erx+JerZ X

Ly
t_ o — Jkpex—jktzz
E —yTlEOe

0, /@\/\' 0,

E" = j}RlEoe—]'erx’ijrzZ

Ei — )’}E e_jkxx_jkyy

o

H' = (—)?;k 4+ Zktx) TE e‘]ktxx Jktzz

WL

HY = (=%k_ + %k E, ° jkox-jhyz R/=reflection coefficient

_ ( X z +Z x) e T_ .. )
WU, =transmission coefficient

TE = transverse electric, perpendicularly polarized (E perpendicular to plan of 1%g1dent)
W wang



If neither two are perfect conductors, J =0, then boundary
conditions requires both the tangential electric-filed and
magnetic-field components be continuous at z =0 thus,

— jk — jk — jk
e "+ Re /' =Tem (E component)
k. k » k.
Lo Mty Tr2 Rt — T T/t (B component)
o o oL,

For the above equations to hold at all x, all components
must be the same, thus we get the phase matching condition:

k.=ksnb =k, =k smf =k, =k sing,

From this we obtain law of reflection:

0. =0, Since k =k, because i =kr2 = a)z,ulg1 =k

And Snell’s Law: ¢

n, sing, =n, sinb,

m=Cy phE =—k,
W wang — — ¢ k 27
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Substitute solution for E!, Er, Ef, into wave equation
VE' + 0’ e E' =0
V°E. +o’ 1,6 E, =0
V?E'+ o’ 11,6,E' =0
We find,
k2 +k2=ki=k> +k.
k2 +k.=k;

Using Phase matching condition, we get, R Uk, — 1k,
I —

1+R =T, pok, + pnk,
—
I_Rl _ lulktz ]1[ ]vl _ 2,u2kz
/u2kz /u2kz T lulktz
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Reflection and Transmission (TM, P wave)

Hl’ 819 nl Hz, 82, Il2

R, H " "
Er — (—)/(\/‘k —2]( )Me_] rxXtJKyzZ
rz rx
we,

X

- — Jkpex—jk
H :yTllE[oe JRtxX— IRtz 2
H' = PR, H e frtih=?

Lo

0.

N O

— Jkpex—jkyz z

T,H
L _ (% a "o
E = ('thz _Zktx) e €
Ei — ()/(\jk — 2]( )ie_jkxx_jkzz 2
z X . .
e, R,= reflection coefficient
Hi = PH e—jkxx—jkyy T,,= transmission coelfficient
o

TM = ¥@aasverse magnetic, parallel polarized (E parallel to plan of incident) 2°



Substitute solution for E', Er, Ef, into wave equation

R, = ngZ B glktz
We get, I+ Ry =1 ! &k +éek,
k
I—Rll — gl 1z ]ﬂ” ::> 252kz

T, =
E [l
2
z ngZ T glktz

w wang
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Critical Angle

In case of n; > n,, when incident angle 1s greater than critical
angle O, k, 1s larger than the magnitude of k,

K2 =k2 k2 <0 —  ki=—ja
E' = yT,E e /f¥-i= —) E'=3JTE e’* cos(wt — k. x)

Because 1t decays away from interface and because the wave
propagating along the interface, the wave is also called surface wave.

Critical angle 1s defined as @ Tor
4i
=
.k 3
0. =0, =sin" —= z
kl E 4D Internal __|
= .I Reflection
. s -1 nz 0 ,,fl
0.=0,=sin —= D___;_f_,;
W wang nl a i 3 R o4 B &SF W B Sk 31
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Incident ray

(Circularly polarized) Reflected ray

(Linearly polarized)

Air

Glass Y
g F'Ilzza‘r:n':ha;\}'15 §

ray

For a case where i, = 1, and parallel polarization, there 1s
always a angle 0, such that wave is totally transmitted and
the reflection coefficient is zero R, =0, @,/ t4&, cos6, = @,/ 4& cosb,

Phase matching conduction gives @,/ 4& sSIng, = w,/ 14, sSinb,

g
0, =tan" |-
£, (Brewster Angle)
L |n
0, =tan" |2

32
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Reflection of Unpolarized Light from Dielectrics

I

o .
Ao External i
z Reflection ;'"7
& a0 7
: . s/ |
g S
e In] .r"’j r
T
) e = S J——

a i 0 B2 & & &F T BF Sb
Angle of Incidence [°)

w wang Polarizing unpolarized wave



Brewster windows 1n a laser cavity

Window normal HeMe gas tube Mirrar

/_l |_\ parllally_r reflecting
[z T [
55?’ i I { /-I

Mirror
100% reflecting
“E

- 7 ) Vertically
Brewster window Typical ray Brewster window Ejslgr”i;gm

Brewster windows are used in laser cavities to ensure that the laser light after
bouncing back and forth between the cavity mirrors emerges as linearly
polarized light.

Narmal

f Expanded
fReflected side view of
f lig it Brewster window
. rejected
Brewster's "\ (feectel) l
angle B

Unpolarized light passing through
both faces at a Brewster angle

Incident
light

Transmitted light
along s of [aser 34
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:Z_// /
/
I 4./

———
T

Reflectance

PPPPPPP PP
PP PP P -

-10 10 30 50 70 90
Angle 0; (deg)

1.98

My 2
wt
Ay D
.

graph of the reflectance R for s- and p-polarized
light as a function of nl, n2, and 01

w wang
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Polarization

i,

Rope

Vertical rope L:{I‘
vibration i
i W L
- J.-q'..'""
“Whipped JU™~~
pulse
Observer

Polarized wave

Unpola

Observer

rized wave

Imagine a "magic" rope that you can whip up and down at one end, thereby sending a

transverse "whipped pulse" (vibration) out along the rope.

Input put = Unpolarized wave

Picky fence = polarizer

Observer

Output wave = polarized

w wang
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Polarization

A fixed point in space, E vector of a time-harmonic electromagnetic wave
varies sinusoidally with time. The polarization of the wave is described by
the locus of the tip of the E vector as time progress. when the locus is a
straight line, the wave is said to be linearly polarized. If the locus is a circle
then the wave 1s said to be circularly polarized and if locus is elliptical then
the wave is elliptically polarized.

E, / 4

v

[T

Ry
o
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Let’s assume the real time-space E vector has x and y components:

E(z,t)=acos(wt—kz+ @ )x+bcos(wt—kz+¢,)y

E /E, =Ael® ,
linearly polarized: ¢, —¢, =0..0orxw E, =%(—)E,
a

circularly polarized: ¢, —¢, = i% Y-

Elliptically polarized: ¢, — ¢, = anything..except..0, ﬂ,i%
E, b

— = — = gnything
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End view

f S SRV v/

A

Circularly polarized Linearly polarized

Linearly polarized light
hyperphysics
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Plane, Spherical and Cylindrical Wave

N

. A
f f P11 oy fi{r, t) = — cos{kr = wit).
i = thgcosiwt — k-r + @), NG

P(rt) = ﬂ{:ﬂﬁ{mﬁt — kr + ¢).
r
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Diffraction

Diffraction refers to the spread of waves and appearance
of fringes that occur when a wave front 1s constricted by
an aperture 1n a a screen that 1s otherwise opaque. The

light pattern changes as you move away from the aperture,
being characterized by three regions

Plane waves

W

Intensity profiles

i

s

/
Aperture

W wang

[ntensity

Shadow |-‘$E'—

resnel
[Dnffraction

p!

g

Fraunhofer e
Diffraction 41



The intensity pattern behind a narrow single slit under
uniform monochromatic illumination looks something

like this:

! =
@, _— i S
= — T T
=T =]
|
/"-._ . I
shadow %
near-field (Fresnel) far-field
diffraction: ( Fraunhofer)
complicated! diffraction
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Derive an quantities expression for the diffraction can be done using
* Kirchhoff Fresnel— Derivation of diffraction from wave equation

* Fourier Optics (slit = square wave TF, Lens = sin TF ,etc.)

W wang 43
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Single Slit Ripple Tank Experiment

http://www.phy.davidson.edu/introlabs/labs220-230/html/lab10diffract.htm

44



Huygens-Fresnel principle

Huygens-Fresnel principle, states
that every unobstructed point of a
wavefront, at a given instant in - P
time, serves as a source of spherical -
secondary wavelets, with the same
frequency as that of the primary e
wave. The amplitude of the optical
field at any point beyond is the
superposition of all these wavelets,
taking into consideration their
amplitudes and relative phases.

w wang

wave front at time t



Using Kirchoff-Fresnel Diffraction Integral, we can derive an quantitative
expression for the irradiating field of a finite aperture.

straightforward than in region 2.

P.
Z axis

< z %
Ap-ehure O bservation

Incident plane
waves

Consider plane wave incident on an aperture, the incident filed is described as

E[NC(ZJZ) :EO ej(kZ-C()l)

At z=0 => Ep(zt) =E, & A typical element of the wave fron of
the area d4 " and at position »” (x’, y’, 0) then act as a source of Huygens
wavelets. Assume we are interested in detecting light at point P, the distance
frormeglement dA’ to P is givenby 7 =|R—7r" 46



The field at P due to the element dA4’ is then equal to

—jot kr
dE(P) = {EZJ dA} x {81}

r

= (Source strength) x (Huygens spherical wave)
(point source)

The field at P due to the entire aperture is then a superposition of the
wavelets from all elements areas,

EP)= || {EOZW dA} « {ef}

aperture area

Since the detector measures the light intensity at P, E field is covert to
intensity using the time averaged Polynting vector

Exé _ ‘E‘z 2 [(P) — ‘E‘z where zo=airimpedance
2pu, 27, : 27 = pe

o

S =

Usually Fraunhofer condtion applied when z>> a%/ A. The parallel rays is adequately
Ya8dlitne at a ditance of z ~ 10 a2/ A 47



Single Slit Diffraction Intensity

Under the Fraunhofer conditions, the wave arrives at the single slit as a plane
wave. Divided into segments, each of which can be regarded as a point source,
the amplitudes of the segments will have a constant phase displacement from
cach other, and will form segments of a circular arc when added as vectors. The
resulting relative intensity will depend upon the total phase displacement
according to the relationship:

5.8 |
I=71 L(2) Where total phase angle S = 2masin@
(g)2 Relate to derivation of 0 A
. o masing L may
Intensity as a o7 Sin 2 Intensity as a sin? (=22
function of O o i sin 9)2 function of y I=1, p—
A ( D

W wang 48



Fraunhofer diffraction

Single slit
y

e AW
Ll ey =

D ,|
tunﬂesinﬂzggﬁ '
mamm=t ..--"'.':':_Ei'ii_
¢=6 e T
.l_-:'_ e _H__,_,_--" , ¥
P _—|
ﬂl :ﬂl D &“‘—_\H\
. "5 Condition for minimum (1
asin@ = mA
All phases
From each _ |
- ~ mAD/a |
Wavelet 1s 4

Complimentary to the other side of the slit

hyperphysics

The diffraction pattern at the right 1s taken with a helium-neon
laser and a narrow single slit. To obtain the expression for the
displaeement y above, the small angle approximation was used. 49



Fraunhofer diffraction

Narrow slit |

t\ =
~

;Ilﬂwcf slit
P -

hyperphysics

The diffraction patterns were taken with a helium-neon laser and a narrow single
slit. The slit widths used were on the order of 100 micrometers, so their widths
were 100 times the laser wavelength or more. A slit width equal to the
wavelength of the laser light would spread the first minimum out to 90° so that no
minima would be observed. The relationships between slit width and the minima
and maxima of diffraction can be explored in the single slit calculation.
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Multiple Slits

Five 51it Interference

51
Thiz will be modified by g
the single slit diffraction [
envelope. El
| iy
L —=
EI
[ —
3
| iy

(=8

Mote: Scale 2x that when diffraction include

Under the Fraunhofer conditions, the light curve of a multiple slit arrangement
will be the interference pattern multiplied by the single slit diffraction envelope.

This assumes that all the slits are identical. In this case a <<< d.
W wang 51




Line of point sources (pinholes), all in phase with same amplitude

If the spatial extent of the oscillator array is small compared to the wavelength of the
radiation, then the amplitudes of the separate waves arriving at some observation point P
will be essentially equal,

By(n)=Ey(ry)= Bylrs) == Bylrg) = Bor) —— |

5)
S &
*r
S &
S &
S &
S &
S &
W I.N
y ¥ 0
d=distance between sources
Note that: r,—rn =dsing r,—1 =2dsind
v, —1 =3dsind rN—rl:(N—l)dsiné’
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The sum of the interfering spherical wavelets yields a composite electric
field at P that is the real part of

=2 =5, I:.?“::I-E'ﬂ:"?' —=) + =, Ii.i'“::l-a=,'i':";:“i —=2) +-- -5 I:.?“:]Ei':"?”_ﬂ'::'

Rearrange to get
B = B, (rie =g [1 4 gt T +.§-"R{"3""3'+---+.=3“{"”"‘3']

The phase difference between adjacent sources is obtained from the
expression &=#k,4  where the maximum optical-path length
difference is &4 = #d sin & in a medium with an index of refraction n.
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But, since d is the distance between two adjacent oscillators, it can be
easily seen that d siné=r, - r,. Thus, the field at P becomes

(o) e e )

—i j Em—l
= Ey(r)e G F 1

_ gt ik gth I:'Eim}ﬂ _E-ﬂ@ﬁ)

_Eu[r}z 2 giﬁﬁ(gﬁﬁ_g-ﬁﬁ)

F= EDI:F:IQ—:E-I ik

_ F, [rjg—imgi.bigi[ﬁ—ljwﬁ sin | V5 2)

B sin [ 5/2)

= B, (r)et Em.l V3f2)

211 [E ‘,"2}
where & = +4+(¥-Udsin # is the distance from the center of the hne of
oscillators to the point P.



w wang

Double slits Ripple Tank Experiment

http://www.phy.davidson.edu/introlabs/labs220-230/html/lab10diffract.htm

d>>a
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Double Slits Interference

Assumption of infinite
source distance gives
plane wave at slit so
that all amplitude
elements are in phase.

¥

v

tanf = —
D

For distant screen
assumption

tanf = sinf = Er':ﬁl
- D

........ e y
"_._,_..--""-#H--r.‘:_r__,.-"'-r
d |§ "'.-F‘--.‘- D
5 Eﬁ; a‘[[::p:::;;cﬂﬁes Condition for maximum
a right angle dsin = mA
and §' = @ ~ mAD
a = slit width y= d
hyperphysics
dsin@ = mA _ L
. ( Nkd . j
_ sin sin &
v~ mAD/d =1, 2
sin (kdsin gj Where N =2
L 2 -
W wang d >> g
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Incident :

w wang

Double Slit Diffraction

ffﬁ
<

single slit

envelope
AR _—
................................................................................. _._I.E—
——

Slit separation ~ slit width

57



w wang

Five 51it Diffraction

aingle slit
envelape

.
P ——
ER
-
-
-

d << a
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Use Fraunhofer to model a transmission grating of N-slits
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Grating Intensity

The intensity 1s given by the interference intensity expression

- -2
sin (Nl;d sin (9)
I =1, 7
sin (2sin «9)

Modulated by the single slit diffraction envelope for the slits which
make up the grating: sin( ka j ’

2sin@
[=1,

kasiné?
2

The given total intensity expression,

“2r -2
sin(kza sin 9) sin(N;‘d sin 9) 1
]:[O ka . (kd . g dsin@=mx
—siné sin| —sin &
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Reflective Grating

_I_
IMCADENT BEAM

NFFRACTED BEAM

Grating can be made into reflective type and diffractive
Grating theory still hold.
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Grating normal

, Reflected wave
Incident wave

\ o S

dsinfs

« dB dsina

The geometrical path difference between light from adjacent grooves
1s seen to be dsina + dsinf. The principle of interference dictates that
only when this difference equals the wavelength A of the light, or
some 1ntegral multiple thereof, will the light from adjacent grooves
be 1n phase (lead to constructive interference)
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Path length difference creates constructive interference:

dsina +dsinp,, =mA Where m = diffraction order

For a ray arriving with an angle of incidence «, the angle under which it
will be diffracted by a grating of N lines per millimetre depends on the
wavelength A by the grating equation:

sina +sinf3, = NmA

Frequency of the grating structure 1s defined N
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Grating formula

. Incident
Zerg order ray
\ Normal

:*.:r

Order zero represents about 40% of the total energy.The rest of the energy is
distributed amongst the various orders. Generally, the higher the order, the
lower the brightness of its spectrum. The highest orders carry almost no energy.
In practice, only the first and second orders are usable.
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Diffraction Grating

A diffraction grating 1s an optical component that serves to
periodically modulate the phase or the amplitude of the incident
wave. It can be made of a transparent plate with periodically varying
thickness or periodically graded refractive index

incigent
plana

wave ————ﬁ m=2
m=2 |
Grating m=2
m=1
m=1 m =1
n m=0 —
m=1 " m=1
. m=1
m=2
m=2
Equal mixture el |
of red and biue ) =2
W wang | 65



Diffraction Grating

2nd Ouder
{p=-2)
15t Order
p=-1
Zeroth Cudar
o = 0)

Incident
light

158 Drder
=1

2nd Order
=7

Seresn

The light 1s incident on the grating along the grating normal (o % 0), the grating equation,

d(sino +sin 0)) =pA where p =0, +1,+2 ......
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Diffractive Grating

{s) 9""*_‘;29 nemal Jf incident angle is not normal, the
| — : . :
neidentight | grating equation mA =d sm( ,Bm)

| The conditions of diffraction are
\T"l described by two equations:
|

mA =d[sin(f, +a)—sina]
mA

_|_

m
m

[sin(,b’m —a)+sina]

! # 0 diffr acled light

+ -
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The condition for maximum intensity is the same as that for the double slit or
multiple slits, but with a large number of slits the intensity maximum is very
sharp and narrow, providing the high resolution for spectroscopic applications.
The peak intensities are also much higher for the grating than for the double slit.

When light of a single wavelength , like the 632.8nm red light from a helium-neon
laser at left, strikes a diffraction grating it is diffracted to each side in multiple
orders. Orders 1 and 2 are shown to each side of the direct beam. Different
wavelengths are diffracted at different angles, according to the grating

relatienship. 68



Diffraction Grating and Helium-Neon Laser

While directing the 632.8 nm red beam of a helium-neon laser
through a 600 lines/mm diffraction grating, a cloud was formed
using liquid nitrogen. You can see the direct beam plus the first
and second orders of the diffraction.
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Diffraction from Crossed Slits

Sppearance af
el Chiect.

w wang
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Angular Dispersion

Incident

plang |
wWave I m=2

m=2
Grating m=?
..f"f.’ -f--ff---.-.-E m:1
L m=1
i1 ! m=0 _
LS —) =0
r'1::l.:_"‘ m=1
e, m=1
- - m=2
m=2
Equal mixture e .
of red and blue " m=? hperphysics

A diffraction grating is the tool of choice for separating the colors in incident light. This is
dispersion effect similar to prism. The angular dispersion is the amount of change of
diffraction angle per unit change of the wavelength. It 1s a measure of the angular
separation between beams of adjacent wavelengths. An expression for the angular
dispersion can be derived from earlier equation by differentiating, keeping the angle

fixed. dB,, -m
D=—0 = @)
di d cosp,,
D is measure of the angular separation produced between two incident monochrom7atlc
W wan

waves whose wavelengths differ by a small wavelength interval



Resolvance and wavelength resolution

To distinguish light waves whose wavelengths are close together, the maxima of these
wavelengths formed by the grating should be as narrow as possible. Express
otherwise, resolvance or "chromatic resolving power" for a device used to separate the
wavelengths of light is defined as

R=A/AL =mN

where A\ = smallest resolvable wavelength difference
m = order number
N = grating frequency

Using the limit of resolution is determined by the Raleigh criterion as applied to the
diffraction maxima, i.e., two wavelengths are just resolved when the maximum of one
lies at the first minimum of the other, the above R = mN can be derived.

The resolvance of such a grating depends upon how many slits are actually covered by
the incident light source; i.e., if you can cover more slits, you get a higher resolution in

thvev ggg&ected spectrum 7



Examples of Resolvance

A standard benchmark for the resolvance of a grating or other
spectroscopic instrument 1s the resolution of the sodium doublet. The two
sodium "D-lines" are at 589.00 nm and 589.59 nm. Resolving them
corresponds to resolvance

R=A/AL =0.589/.59 = 1000

Use R and assume a M you want to use and find out what N is needed to
resolve these two wavelengths

R =NM = 1000
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Blazed versus Sinusoidal

Types ol gratings

JHelegraphic blazed

Heolagraphic grating 5
,: ﬂ Ell§ﬁnnle ’ .

JHelographic

200 0 403 Soo Go0 PR

Same after ion etching

w wang
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Sinusoidal gratings

- Holographically manufactured

- Gratings of standard type have a sinusoidal groove profile.

- The efficiency curve is rather smooth and flatter than for ruled
gratings. The efficiency 1s optimized for specific spectral regions
by varying the groove depth, and it may still be high, especially for
gratings with high frequency.

- When the groove spacing 1s less than about 1.25 times the
wavelength, only the -1 and 0 orders exist, and if the grating has an
appropriate groove depth, most of the diffracted light goes into the
-1 order. In this region, holographically recorded gratings give well
over 50 % absolute efficiency.
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Efficiency Curve
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http://www.spectrogon.com/gratpropert.html
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The absolute efficiency is defined as
the amount of the incident flux that is
diffracted into a given diffraction order.
The relative efficiency is related to the
reflectance of a mirror, coated with the
same material as the grating, and it
should be noted that the relative
efficiency is always higher than the
absolute efficiency.

Efficiency curves for the most
common holographic grating
types. Each grating is denoted P
XXXX YY, where P stands for
Plane holographic grating, XXXX
is the groove frequency, and YY is
the spectral range where the

efficiency is highest. e



Littrow Condition

Blazed grating groove profiles are calculated for the Littrow condition
where the incident and diffracted rays are in auto collimation (i.e., a =
B). The input and output rays, therefore, propagate along the same
axis. In this case at the "blaze" wavelength ;.

il
sin a + sin f=mNA, + ==\\5

w=a=/L,w=>blazed angle 9
_Aﬁl,/ \\

2sin @ = mNA, |
Figure 4 - Littrow Condition for a
Single Groove of a Blazed Grating

For example, the blaze angle (w) for a 1200 g/mm grating blazed at
250 nm is 8.63° in first order (m = 1).
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Blaze: The concentration of a limited region of the spectrum into any order
other than the zero order. Blazed gratings are manufactured to produce
maximum efficiency at designated wavelengths. A grating may, therefore, be
described as "blazed at 250 nm" or "blazed at 1 micron" etc. by appropriate
selection of groove geometry.

A blazed grating is one in which the grooves of the diffraction grating are
controlled to form right triangles with a "blaze angle, ," as shown in Fig. 4.
However, apex angles up to 110° may be present especially in blazed
holographic gratings. The selection of the peak angle of the triangular groove
offers opportunity to optimize the overall efficiency profile of the grating.

Blazed grating usually formed by dry etching (Reactive ion etching) with a
tilted bottom electrode.
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Beam spot size

Where Ws = beam spot size at focus, Wo = beam spot size,
L = operating wavelength, Ro = radius of curvature

w wang
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