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The incident beam is 
characterized by its 
wavelength λi, its frequency νi
and its velocity c0 and 
refracted beam is 
characterized by its 
wavelength λr, its frequency 
νr and its velocity c , the 
simple dispersion relation for 
vacuum.

Refraction and reflection (wave 
equation)

Co = fi λi

C = fr λr

no,,εο µoλi, fι, Co
n,,εr µr,λr, fr, C 
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The speed of light in a medium is related to the electric and 
magnetic properties of the medium, and the speed of light in 
vacuum can be expressed as 

The speed of light in a material to the material "constants" εr and 
the corresponding magnetic permeability µ0 of vacuum and µr of 
the material is

oror
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The index of refraction n of a non-magnetic material µr = 1 is 
linked to the dielectric constant εr via a simple relation, which is a 
rather direct result of the Maxwell equations. 

Plug back into dispersion relation,
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Maxwell Equations
Integral form in the absence of magnetic or polarized media:

I.  Faraday's law of induction

II. Ampere's law

III. Gauss' law for magnetism

IV. Gauss' law for electricity

E = Electric Field (V/m) ρ = charge density (c/m3) i = electric current (A)

B = Magnetic flux density(Web/m2, T) ε0 = permittivity J = current density(A/m2)
D = Electric flux density (c/m2)

or electric displacement field µ0 = permeability c = speed of light

H = Magnetic Field (A/m) ΦB = Magnetic flux (Web) P = Polarization

q = charge  1.6x10-19 coulombs,        µo = 1.26x10-6H/m,      εo = 8.85x10-12 F/m

dl
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Electric flux

∫ ⋅= dAEEφ

For instance, Gauss's law states that the flux of the electric field out of a closed surface is 
proportional to the electric charge enclosed in the surface (regardless of how that charge is 
distributed). The constant of proportionality is the reciprocal of the permittivity of free space.
Its integral form is:

The electric flux in an unclosed surface: 

Sometimes electric flux appears in 
terms of flux density D as: ∫∫ ⋅=⋅= dAEdADE εφ
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The electric elasticity equation 

(Displacement field) D= ε E

Where  E = electric field
ε = permittivity (dielectric constant)

in air εo = 8.85x10-12 F/m
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Magnetic flux

∫ ⋅= dABBφ

Where B = magnetic flux density  

Normally, the magnetic flux in an 
unclosed surface

We know from Gauss's law for magnetism that 
in a close surface, 
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But when the generated fields pass through magnetic materials which themselves 
contribute internal magnetic fields, ambiguities can arise about what part of the field 
comes from the external currents and what comes from the material itself. It has been 
common practice to define another magnetic field quantity, usually called the "magnetic 
field strength" designated by H. It can be defined by the relationship

Β = µ H + M

M = magnetization. Normally, the M = 0 for nonmagnetic material
If in air, µo = 1.26x10-6H/m
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This line integral is equal to the generated voltage or emf in the loop, 
so Faraday's law is the basis for electric generators. It also forms the 
basis for inductors and transformers. 

Faraday’s Law of Induction

dl
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Ampere's Law

In the case of static electric 
field, the line integral of the 
magnetic field around a 
closed loop is proportional 
to the electric current
flowing through the loop. 
This is useful for the 
calculation of magnetic field 
for simple geometries. 
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Gauss’s Law for Magnetism

The net magnetic flux out of any closed 
surface is zero. This amounts to a statement 
about the sources of magnetic field. For a 
magnetic dipole, any closed surface the 
magnetic flux directed inward toward the 
south pole will equal the flux outward from 
the north pole. The net flux will always be 
zero for dipole sources. If there were a 
magnetic monopole source, this would give a 
non-zero area integral. The divergence of a 
vector field is proportional to the point source 
density, so the form of Gauss' law for 
magnetic fields is then a statement that there 
are no magnetic monopoles. 
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Gauss’s Law for Electricity
The electric flux out of any closed 
surface is proportional to the total charge
enclosed within the surface. 
The integral form of Gauss' Law finds 
application in calculating electric fields
around charged objects. 
In applying Gauss' law to the electric 
field of a point charge, one can show 
that it is consistent with Coulomb's law. 
While the area integral of the electric 
field gives a measure of the net charge 
enclosed, the divergence of the electric 
field gives a measure of the density of 
sources. It also has implications for the 
conservation of charge. 
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Maxwell Equations

t
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0=•∇ B

ρ=•∇ D

Faraday’s Law

Ampere’s Law

Gauss’s Law for
Magnetism
Gauss’s Law for
Electricity

E = Electric Field (V/m) ρ = charge density (c/m3) i = electric current (A)

B = Magnetic flux density(Web/m2, T) ε0 = permittivity J = current density(A/m2)

D = Electric flux density (c/m2) µ0 = permeability c = speed of light

H = Magnetic Field (A/m) ΦB = Magnetic flux (Web) P = Polarization
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Wave equation
Maxwell's Equations contain the wave equation for electromagnetic 
waves. One approach to obtaining the wave equation:
1. Take the curl of Faraday's law:

2. Substitute Ampere's law for a charge and current-free 
region:

This is the three-dimensional wave equation in vector 
form. It looks more familiar when reduced a plane 
wave with field in the x-direction only:
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The curl of a vector function is the vector product
of the del operator with a vector function:

where i,j,k are unit vectors in the x, y, z directions. 
It can also be expressed in determinant form: 

Curl
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The curl in cylindrical polar coordinates, expressed in determinant
form is:

Curl in Cylindrical Polar Coordinates
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The curl in spherical polar coordinates, expressed in determinant form 
is:

Curl in Spherical Polar Coordinates
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Use EEE 2)()( ∇−•∇∇=×∇×∇ Wave equation

becomes 022 =+∇ EE ooεµω

We consider the simple solution where E field is parallel 
to the x axis and its function of z coordinate only, the
wave equation then becomes,

A solution to the above differential equation is

02
2

2
=+

∂
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E εµω

jkz
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Substitute above equation into wave equation yields,

0)( 22 =+− Ek µεω µεω22 =k (dispersion relation)
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Let’s transform the solution for the wave equation into real
space and time, (assume time harmonic field)

)cos(ˆ}Re{),( kztExEetzE o
tj −== ωω

k = 2π/λ, where k = wave number
Image we riding along with the wave, we asked what 
Velocity shall we move in order to keep up with the wave,
The answer is phase of the wave to be constant

ωt - kz = a constant

The velocity of propagation is therefore given by,

ook
v

dt
dz

εµ
ω 1

=== (phase velocity)

E

kx

z
H
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Poynting’s Theorem
For a time –harmonic electromagnetic wave, the power density
Per unit area associate with the wave is defined in complex
Representation by vector S,

S= E x H* (W/m2)

Time average pontying vector <s> is defined as average of the
Time domain Poynting vector S over a period T=2π/ω.

∫ ×>=<
π

ω
π
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hyperphysics
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Boundary Conditions

At an interface between two media, the file quantities must satisfy
Certain conditions. Consider an interface between two dielectric media
With dielectric constants ε1 and ε2, in the z component Ampere’s Law, 
we have,
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Now let area shrink to a point where w goes to zero before l does.
So Jz =Js ~ Jvw, then 

zJHH =− 12

The tangential electric field E is continuous across the boundary 
surface.The discontinuity in the tangential component of H is equal 
to the surface current density Js.

Or in general,

sJHHn =−× )(ˆ 12

Applying the same above argument to Faraday’s Law and we 
get,

0)(ˆ 21 =−× EEn
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The normal component of B is continuous across the boundary 
surface.The discontinuity in the normal component of D is equal to 
the surface charge density ρ

Apply the divergence theory                     and             for 
The pillbox volume shown

0=•∇ B ρ=•∇ D

As w -> 0, we get 0ˆ)( 21 =•− nBB

ρ=•− nDD ˆ)( 21
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Boundary Condition for Perfect Conductor

On the surface of a perfect conductor, E2 = 0 and H2= 0

w
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Reflection and Transmission (TE, S wave)

θr

θi

θt

µ2, ε2, n2µ1, ε1, n1
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TE = transverse electric, perpendicularly polarized (E perpendicular to plan of incident)

Rl=reflection coefficient
Tl=transmission coefficient



w wang 27

If neither two are perfect conductors, Js=0, then boundary 
conditions requires both the tangential electric-filed and 
magnetic-field components be continuous at z =0 thus,

xtxjk
l

xrxjk
l

xxjk eTeRe −−− =+ (E component)
xtxjk

l
tzxrxjk

l
rzxxjkz eTkeRkek −−− −

=+
−

211 ωµωµωµ
(B component)

For the above equations to hold at all x, all components
must be the same, thus we get the phase matching condition:

tttxrrrxix kkkkkk θθθ sinsinsin =====

From this we obtain law of reflection:

And Snell’s Law:
ri θθ = Since k =kr because  111
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Substitute solution for Ei, Er, Et, into wave equation

022
22 =+∇ tt EE εµω

011
22 =+∇ rr EE εµω

011
22 =+∇ ii EE εµω

We find,
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Using Phase matching condition, we get,
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θr

θi

θt

µ2, ε2, n2
µ1, ε1, n1
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TM = transverse magnetic, parallel polarized (E parallel to plan of incident)

Rll= reflection coefficient
Tll= transmission coefficient

Reflection and Transmission (TM, P wave)
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Substitute solution for Ei, Er, Et, into wave equation

We get,
llll TR =+1
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Critical Angle
In case of n1 > n2, when incident angle is greater than critical 
angle θc, kx is larger than the magnitude of k2

022
2

2 <−= xtz kkk αjktz −=2

zjxtxjk
ol

t eETyE α−−= ˆ )cos(ˆ xkteETyE x
zj

ol
t −= − ωα

Because it decays away from interface and because the wave 
propagating along the interface, the wave is also called surface wave.
Critical angle is defined as

1
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For a case where µ1 = µ2 and parallel polarization, there is
always a angle θb such that wave is totally transmitted and 
the reflection coefficient is zero Rll =0, 211121 coscos θεµωθεµω =

Phase matching conduction gives 221111 sinsin θεµωθεµω =

1

21tan
ε
εθ −=b (Brewster Angle)

1

21tan
n
n

b
−=θ
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Reflection of Unpolarized Light from Dielectrics

Polarizing unpolarized wave
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Brewster windows are used in laser cavities to ensure that the laser light after
bouncing back and forth between the cavity mirrors emerges as linearly 
polarized light. 

Brewster windows in a laser cavity 

Unpolarized light passing through 
both faces at a Brewster angle 
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graph of the reflectance R for s- and p-polarized 
light as a function of n1, n2, and θ1

Excel file: reflectance

n1 = 1.16 n2 = 1.98
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Imagine a "magic" rope that you can whip up and down at one end, thereby sending a 
transverse "whipped pulse" (vibration) out along the rope. 

Polarized wave Unpolarized wave

Picky fence = polarizer

Input put = Unpolarized wave
Output wave = polarized

Polarization
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Polarization
A fixed point in space, E vector of a time-harmonic electromagnetic  wave 
varies sinusoidally with time. The polarization of the wave is described by 
the locus of the tip of the E vector as time progress. when the locus is a 
straight line, the wave is said to be linearly polarized. If the locus is a circle 
then the wave is said to be circularly polarized and if locus is elliptical then 
the wave is elliptically polarized.
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E
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Ey E
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ykztbxkztatzE ba ˆ)cos(ˆ)cos(),( φωφω +−++−=

Let’s assume the real time-space E vector has x and y components:

linearly polarized:  πφφ orab ..0=−

2
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circularly polarized:  

Elliptically polarized:  

Ey/Ex =Aejφ
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hyperphysics
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Plane, Spherical and Cylindrical Wave
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Diffraction
Diffraction refers to the spread of waves and appearance 
of fringes that occur when a wave front is constricted by 
an aperture in a a screen that is otherwise opaque. The 
light pattern changes as you move away from the aperture, 
being characterized by three regions
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shadow
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Derive an quantities expression for the diffraction can be done using

*  Kirchhoff Fresnel– Derivation of diffraction from wave equation

*  Fourier Optics (slit = square wave TF, Lens = sin TF ,etc.)
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Single Slit Ripple Tank Experiment

http://www.phy.davidson.edu/introlabs/labs220-230/html/lab10diffract.htm
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Huygens-Fresnel principle, states 
that every unobstructed point of a 
wavefront, at a given instant in 
time, serves as a source of spherical 
secondary wavelets, with the same 
frequency as that of the primary 
wave. The amplitude of the optical 
field at any point beyond is the 
superposition of all these wavelets, 
taking into consideration their 
amplitudes and relative phases.

Huygens-Fresnel principle
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Using Kirchoff-Fresnel Diffraction Integral, we can derive an quantitative 
expression for the irradiating field of a finite aperture.

Consider plane wave incident on an aperture, the incident filed is described as

EINC(z,t) =Eo ej(kz-ωt)

At  z = 0    =>   EINC(z,t) =Eo ej(-ωt). A typical  element of the wave fron of 
the area dA’ and at position r’ (x’, y’, 0) then act as a source of Huygens 
wavelets. Assume we are interested in detecting light at point P, the distance 
from element dA’ to P is given by 'rRr rr

−=
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The field at P due to the element dA’ is then equal to
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The field at P due to the entire aperture is then a superposition of the 
wavelets from all elements areas,
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Since the detector measures the light intensity at P, E field is covert to 
intensity using the time averaged Polynting vector
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Usually Fraunhofer condtion applied when z>> a2/ λ. The parallel rays is adequately 
assume at a ditance of z ∼ 10 a2/ λ



w wang 48

Single Slit Diffraction Intensity
Under the Fraunhofer conditions, the wave arrives at the single slit as a plane 
wave. Divided into segments, each of which can be regarded as a point source, 
the amplitudes of the segments will have a constant phase displacement from 
each other, and will form segments of a circular arc when added as vectors. The 
resulting relative intensity will depend upon the total phase displacement   
according to the relationship:
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The diffraction pattern at the right is taken with a helium-neon 
laser and a narrow single slit.To obtain the expression for the 
displacement y above, the small angle approximation was used. 

Fraunhofer diffraction
Single slit

asinθ = mλ

y ~mλD/a

hyperphysics

All phases
From each
Wavelet is
Complimentary to the other side of the slit
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The diffraction patterns were taken with a helium-neon laser and a narrow single 
slit. The slit widths used were on the order of 100 micrometers, so their widths 
were 100 times the laser wavelength or more. A slit width equal to the 
wavelength of the laser light would spread the first minimum out to 90° so that no 
minima would be observed. The relationships between slit width and the minima 
and maxima of diffraction can be explored in the single slit calculation. 

Fraunhofer diffraction

y ~mλD/a
hyperphysics
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Multiple Slits

Under the Fraunhofer conditions, the light curve of a multiple slit arrangement 
will be the interference pattern multiplied by the single slit diffraction envelope. 
This assumes that all the slits are identical. In this case a <<< d. 
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Line of point sources (pinholes), all in phase with same amplitude

d=distance between sources

θ

r2

r1

rN

Note that:

( ) θθ
θθ

sin1sin3
sin2sin

114

1312

dNrrdrr
drrdrr

N −=−=−
=−=−

If the spatial extent of the oscillator array is small compared to the wavelength of the 
radiation, then the amplitudes of the separate waves arriving at some observation point P
will be essentially equal,
,
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The sum of the interfering spherical wavelets yields a composite electric 
field at P that is the real part of

Rearrange to get

The phase difference between adjacent sources is obtained from the 
expression                where the maximum optical-path length 
difference is in a medium with an index of refraction n. 
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But, since d is the distance between two adjacent oscillators, it can be 
easily seen that d sinθ = r2 - r1. Thus, the field at P becomes

where                             is the distance from the center of the line of 
oscillators to the point P. 
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Double slits Ripple Tank Experiment

http://www.phy.davidson.edu/introlabs/labs220-230/html/lab10diffract.htm

d >> a
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Double Slits Interference

hyperphysics

dsinθ = mλ

y ~mλD/d
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d << a
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Use Fraunhofer to model a transmission grating of N-slits
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Grating Intensity
The intensity is given by the interference intensity expression

Modulated by the single slit diffraction envelope for the slits which 
make up the grating:

The given total intensity expression,
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Reflective Grating

Grating can be made into reflective type and diffractive
Grating theory still hold.

+                   -
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The geometrical path difference between light from adjacent grooves
is seen to be dsinα + dsinβ. The principle of interference dictates that
only when this difference equals the wavelength λ of the light, or
some integral multiple thereof, will the light from adjacent grooves
be in phase (lead to constructive interference)

α βm

βα dsinα
dsinβ

d

Grating normal

Incident wave
Reflected wave
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For a ray arriving with an angle of incidence α, the angle β under which it 
will be diffracted by a grating of N lines per millimetre depends on the 
wavelength λ by the grating equation:

sinα + sinβm = Ν mλ

dsinα + dsinβm = mλ

Path length difference creates constructive interference:

Where m = diffraction order

Frequency of the grating structure is defined N
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Order zero represents about 40% of the total energy.The rest of the energy is 
distributed amongst the various orders. Generally, the higher the order, the 
lower the brightness of its spectrum. The highest orders carry almost no energy. 
In practice, only the first and second orders are usable.

Surface Analytical 
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Diffraction Grating
A diffraction grating is an optical component that serves to
periodically modulate the phase or the amplitude of the incident
wave. It can be made of a transparent plate with periodically varying 
thickness or periodically graded refractive index
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d(sinα + sin θp) = pλ where p = 0, +1, +2 ……

d

The light is incident on the grating along the grating normal (α = 0), the grating equation, 

Diffraction Grating
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Diffractive Grating

)sin( mdm βλ =
If incident angle is not normal, the 
grating equation 
The conditions of diffraction are
described by two equations:

]sin)[sin( ααβλ −+= mdm
]sin)[sin( ααβλ +−= mdm

m = +
m = -
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The condition for maximum intensity is the same as that for the double slit or 
multiple slits, but with a large number of slits the intensity maximum is very
sharp and narrow, providing the high resolution for spectroscopic applications. 
The peak intensities are also much higher for the grating than for the double slit. 

When light of a single wavelength , like the 632.8nm red light from a helium-neon 
laser at left, strikes a diffraction grating it is diffracted to each side in multiple 
orders. Orders 1 and 2 are shown to each side of the direct beam. Different 
wavelengths are diffracted at different angles, according to the grating 
relationship. 
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Diffraction Grating and Helium-Neon Laser

While directing the 632.8 nm red beam of a helium-neon laser
through a 600 lines/mm diffraction grating, a cloud was formed 
using liquid nitrogen. You can see the direct beam plus the first 
and second orders of the diffraction. 

m=0
βm=0

m=1
m =-1

α
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Diffraction from Crossed Slits
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Angular Dispersion

A diffraction grating is the tool of choice for separating the colors in incident light. This is 
dispersion effect similar to prism. The angular dispersion is the amount of change of 
diffraction angle per unit change of the wavelength. It is a measure of the angular 
separation between beams of adjacent wavelengths. An expression for the angular 
dispersion can be derived from earlier equation by differentiating, keeping the angle 
fixed. 

hperphysics

D is measure of the angular separation produced between two incident monochromatic 
waves whose wavelengths differ by a small wavelength interval

D =



w wang 72

To distinguish light waves whose wavelengths are close together, the maxima of these 
wavelengths formed by the grating should be as narrow as possible. Express 
otherwise, resolvance or "chromatic resolving power" for a device used to separate the 
wavelengths of light is defined as 

R= λ/∆λ  = mΝ
where ∆λ = smallest resolvable wavelength difference

m = order number
N = grating frequency

Using the limit of resolution is determined by the Raleigh criterion as applied to the 
diffraction maxima, i.e., two wavelengths are just resolved when the maximum of one 
lies at the first minimum of the other, the above R = mN can be derived. 

The resolvance of such a grating depends upon how many slits are actually covered by 
the incident light source; i.e., if you can cover more slits, you get a higher resolution in 
the projected spectrum

Resolvance and wavelength resolution
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Examples of Resolvance
A standard benchmark for the resolvance of a grating or other 
spectroscopic instrument is the resolution of the sodium doublet. The two 
sodium "D-lines" are at 589.00 nm and 589.59 nm. Resolving them 
corresponds to resolvance

R=λ/∆λ = 0.589/.59 = 1000

Use R and assume  a M you want to use and find out what N is needed to 
resolve these two wavelengths

R = NM = 1000 
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Surface Analytical 

Blazed versus Sinusoidal
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Sinusoidal gratings 
- Holographically manufactured
- Gratings of standard type have a sinusoidal groove profile. 
- The efficiency curve is rather smooth and flatter than for ruled  

gratings. The efficiency is optimized for specific spectral regions 
by varying the groove depth, and it may still be high, especially for 
gratings with high frequency. 

- When the groove spacing is less than about 1.25 times the 
wavelength, only the -1 and 0 orders exist, and if the grating has an 
appropriate groove depth, most of the diffracted light goes into the 
-1 order. In this region, holographically recorded gratings give well 
over 50 % absolute efficiency. 
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Efficiency curves for the most 
common holographic grating 
types. Each grating is denoted P 
XXXX YY, where P stands for 
Plane holographic grating, XXXX 
is the groove frequency, and YY is 
the spectral range where the 
efficiency is highest.

The absolute efficiency is defined as 
the amount of the incident flux that is 
diffracted into a given diffraction order. 
The relative efficiency is related to the 
reflectance of a mirror, coated with the 
same material as the grating, and it 
should be noted that the relative 
efficiency is always higher than the 
absolute efficiency. 

Efficiency Curve
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Blazed grating groove profiles are calculated for the Littrow condition 
where the incident and diffracted rays are in auto collimation (i.e., α = 
β). The input and output rays, therefore, propagate along the same 
axis. In this case at the "blaze" wavelength λB.

For example, the blaze angle (ω) for a 1200 g/mm grating blazed at 
250 nm is 8.63° in first order (m = 1).

Littrow Condition

sin α + sin β = mNλΒ

ω = α = β , ω = blazed angle

2sin ω = mNλB
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Blaze: The concentration of a limited region of the spectrum into any order 
other than the zero order. Blazed gratings are manufactured to produce 
maximum efficiency at designated wavelengths. A grating may, therefore, be 
described as "blazed at 250 nm" or "blazed at 1 micron" etc. by appropriate 
selection of groove geometry.

A blazed grating is one in which the grooves of the diffraction grating are 
controlled to form right triangles with a "blaze angle, ω," as shown in Fig. 4. 
However, apex angles up to 110° may be present especially in blazed 
holographic gratings. The selection of the peak angle of the triangular groove 
offers opportunity to optimize the overall efficiency profile of the grating.

Blazed grating usually formed by dry etching (Reactive ion etching) with a 
tilted bottom electrode.
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Beam spot size

2
o

o

o

s

W
R

W
W

π
λ

=

Where Ws = beam spot size at focus,  Wo = beam spot size, 
L = operating wavelength, Ro = radius of curvature


