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Week 12
• Course Website: 

http://courses.washington.edu/me557/sensors
• Reading Materials: 

- Week 12 reading materials can be found:
http://courses.washington.edu/me557/reading/
• Proposal meeting this Wednesday (1-6PM, Delta 319)
• Work on Lab 2 (arrange time to meet with TA)
• HW 3 due today  (If you need more time, let me know)
• Proposal due Next week (please follow the instruction on our 

website)
• Final presentation is on 12/23,, final report due 1/7/20 
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Week 8
• Course Website: 

http://courses.washington.edu/me557/sensors
• Reading Materials: 

- Week 7-10 reading materials can be found:
http://courses.washington.edu/me557/reading/

• Homework:  Assignment 2 (due week 10)
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This Week

• Waveguide structures and materials
• Waveguide modes
• Field equations
• Waveguide modes, neff, dispersion equation
• Guided modes in symmetric and asymmetric slab 

waveguides
• General formalisms for step-index planar waveguides
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Light rays and light 
waves

Light rays and wavefrontsWave from the bubble

w. wang
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Typical light rays in (a) propagation, (b) reflection, and (c) refraction

Geometric construct of a light 
ray we can illustrate propagation, 
reflection, and refraction of light 

w. wang
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Physical Mechanic: Total Internal Reflection
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Refraction of light at a dielectric interface is governed by
Snell's law: n1 sini = n2 sinr .
When n1 > n2, light bends away from the normal (r > i).
At a critical angle i = c, r becomes 90o (parallel to interface).
Total internal reflection occurs when i > c.

Hyperphysics

r



History of Total Internal Reflection

• First demonstration of light remained confined to a falling 
stream of water (TIR) in 1841 by Daniel Colladon in 
Geneva.

• Demonstrated internal reflection to follow a specific path 
to John Tyndall (1870 experiment in London).
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Geometrical-Optics Explanation

• Ray picture valid only within geometrical-optics approximation.
• Useful for a physical understanding of waveguiding mechanism.
• It can be used to show that light remains conned to a waveguide 

for only a few specific incident angles if one takes into account 
the Goos-Hanchen shift (extra phase shift at the interface).

• The angles corresponds to waveguide modes in wave optics.
• For thin waveguides, only a single mode exists.
• One must resort to wave-optics description for thin waveguides

(thickness d ~ ).
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Waveguide Structure

• Metallic waveguide (hallow metal 
waveguide, coaxial cable, micro strip)

• Dielectric waveguide (optical fiber, 
integrated waveguide)
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Differences Between Metallic and 
Dielectric Waveguides

• At millimeter wave frequencies and above, metal is not a good 
conductor, so metal waveguides can have increasing 
attenuation. At these wavelengths dielectric waveguides can 
have lower losses than metal waveguides. Optical fiber is a form 
of dielectric waveguide used at optical wavelengths.

• One difference between dielectric and metal waveguides is that at 
a metal surface the electromagnetic waves are tightly 
confined; at high frequencies the electric and magnetic fields 
penetrate a very short distance into the metal (smaller the 
skin depth). In contrast, the surface of the dielectric waveguide 
is an interface between two dielectrics, so the fields of the 
wave penetrate outside the dielectric in the form of an 
evanescent (non-propagating) wave.
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Skin effect in conductor

We can derive a practical formula for skin depth : 
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𝛿 ൌ
2𝜌

ሺ2𝜋𝑓ሻሺ𝜇௢𝜇௥ሻ

Where
the skin depth in meters

   𝜇௥= the relative permeability of the medium
 = the resistivity of the medium in Ωꞏm, also equal to the 

 reciprocal of its conductivity:𝜌 ൌ 1/𝜎
 (for copper, ρ = 1.68×10−8 Ωꞏm)

f = the frequency of the current in Hz



Skin effect
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Distribution of current flow in a 
cylindrical conductor, shown in 
cross section. For alternatin
current, most (63%) of the 
electric current flows between the 
surface and the skin depth, δ, 
which depends on the frequency 
of the current and the electrical 
and magnetic properties of the 
conductor

Skin effect is the tendency of an alternating electric 
current (AC) to become distributed within a conductor 
such that the current density is largest near the surface of 
the conductor, and decreases with greater depths in the 
conductor. The electric current flows mainly at the "skin" 
of the conductor, between the outer surface and a level 
called the skin depth. The skin effect causes the effective 
resistance of the conductor to increase at higher 
frequencies where the skin depth is smaller, thus reducing 
the effective cross-section of the conductor. The skin 
effect is due to opposing eddy currents induced by the 
changing magnetic field resulting from the alternating 
current. At 60 Hz in copper, the skin depth is about 8.5 
mm. At high frequencies the skin depth becomes much 
smaller. Increased AC resistance due to the skin effect can 
be mitigated by using specially woven litz wire. Because 
the interior of a large conductor carries so little of the 
current, tubular conductors such as pipe can be used to 
save weight and cost.



Penetration Depth
(dielectric and slight conductive)

According to Beer-Lambert lawType equation here., the intensity of an 
electromagnetic wave inside a material falls off exponentially from the 
surface as

If p denotes the penetration we have p= 1/"Penetration depth" is one term that 
describes the decay of electromagnetic waves inside of a material. The above 
definition refers to the depth δp at which the intensity or power of the field decays 
to 1/e of its surface value. In many contexts one is concentrating on the field 
quantities themselves: the electric and magnetic fields in the case of 
electromagnetic waves. Since the power of a wave in a particular medium is 
proportional to the square of a field quantity, one may speak of a penetration depth 
at which the magnitude of the electric (or magnetic) field has decayed to 1/e of its 
surface value, and at which point the power of the wave has thereby decreased to 
1/e or about 13% of its surface value:
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𝐼ሺ𝑧ሻ ൌ 𝐼௢𝑒ିఈ௭

Note that δ is identical to the skin depth, the latter term usually applying to metals in 
reference to the decay of electrical currents or we only use penetration depth to descrie
the media

p = 1/  ሺ ଶ
ఠఓఙ

ሻ = 
(highly 
conductive)

(slightly 
conductive)



Highly Conducting Media
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For highly conducting medium, the  k constant can be 
simplify to 

                      k~𝜔 𝜇𝜀(-𝑗 ఙ
ఠఌ

)1/2= 𝜔𝜇ሺఙ
ଶ

ሻሺ1 െ 𝑗ሻ

The penetration depth p = 1/  ሺ ଶ
ఠఓఙ

ሻ = (skin depth) only for 

highly conductive media.

𝜔𝜇𝜎



For Slightly Conducting Media
For slightly conducting media, where the constant 
k can be approximated by

Penetration depth p = 1/ఙ
ଶ

ఓ
ఌ

(here we don’t have 

skin depth, skin depth only refers to metal)
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Evanescent wave

use for sensing and 
wave coupling

1z

cosk1xx at different z



Typical Metal and Dielectric Waveguides
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RF metallic waveguide
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Field confinement
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TEM mode
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Dielectric Waveguide
• The basic structure of a dielectric waveguide consists of a 
longitudinally extended high-index optical medium, called the 
core, which is transversely surrounded by low-index media, called 
the cladding. A guided optical wave propagates in the waveguide 
along its longitudinal direction.

• The characteristics of a waveguide are determined by the 
transverse profile of its dielectric constant ε(x, y)/εo, which is 
independent of the longitudinal (z) direction.

• For a waveguide made of optically isotropic media, we can 
characterize the waveguide with a single spatially dependent 
transverse profile of the index of refraction n(x, y).

W. Wang 23



Dielectric Waveguide
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There are two basic types of waveguides:
• In a nonplanar waveguide of two-dimensional transverse

optical confinement, the core is surrounded by cladding in all
transverse directions, and n(x, y) is a function of both x and y
coordinates (e.g. channel waveguides and the optical fiber)

• In a planar waveguide that has optical confinement in only one
transverse direction, the core is sandwiched between cladding
layers in only one direction, say the x direction, with an index
profile n(x). The core of a planar waveguide is also called the
film, while the upper and lower cladding layers are called the
cover and the substrate.



Dielectric Waveguide

Optical waveguides are the basic elements for confinement and
transmission of light over various distances, ranging from tens or 
hundreds of m in integrated photonics to hundreds or 
thousands of km in long-distance fiber-optic transmission. 
Optical waveguides also form key structures in semiconductor 
lasers, and act as passive and active devices such as waveguide 
couplers and modulators.
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Light can be guided by planar or rectangular wave 
guides, or by optical fibers.

w. wang
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Optical waveguides are used as components in 
sensors, integrated optical circuits or as the 
transmission medium in local and long haul optical 
communication systems.



Optical Fiber

Optical fiber is typically a circular 
cross-section dielectric waveguide 
consisting of a dielectric material 
surrounded by another dielectric 
material with a lower refractive index. 
Optical fibers are most commonly made 
from silica glass, however other glass 
materials are used for certain 
applications and plastic optical fiber can 
be used for short-distance applications.

W. Wang 27D fiber and Rectangular fiber



Rectangular Waveguide

W. Wang 28
Microns scale structure



Strip Waveguide
• Rectangular waveguide
• Use in integrated optical circuits and in 

laser diodes
• Mach-Zehnder interferometers and 

wavelength division multiplexers
• Produced by a variety of means, usually by 

a planar process
• The field distribution in a rectangular 

waveguide cannot be solved analytically, 
however approximate solution methods, 
such as Marcatili's method,[3] Extended 
Marcatili's method and Kumar's method, 
are known.

• Field distribution can be solved numerical 
using various FEM, FTDT or BPM 
method.

W. Wang
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SOI-strip-waveguide and SOI-slot-waveguide

PHOTOPTICS, At Berlin, Volume: 3



Rib Waveguide

• Consists of a the slab with a strip (or several 
strips) superimposed onto it.

W. Wang 30

W . Wang, Journal of the Optical Society of America B, Vol. 26, Issue 6, pp. 1256-1262 (2009)



Segmented waveguides and 
photonic crystal waveguides

• have periodic changes in their cross-
section while still allowing lossless 
transmission of light via so-called 
Bloch modes.

• segmented waveguides (with a 1D 
patterning along the direction of 
propagation) or as photonic crystal 
waveguides (with a 2D or 3D 
patterning).

• silicon-on-insulator waveguide 
designs for simultaneously achieving 
both low-loss optical confinement and 
electrical contacts

W. Wang
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Modal patterns of the Bloch mode

L. Gunn, Vol. 22, No. 7/July 2005/J. Opt. Soc. Am. B

Segmented waveguide

Vol. 16, No. 22 / OPTICS EXPRESS 17972

hollow-core photonic 
crystal fiber



Waveguide Materials
• Semiconductor waveguides: GasAs, InP, et.
• Electro-optic Waveguides: LiNbO3, EO polymer
• Glass Waveguides: Silica (SiO2), SiON

- silica-on silicon technology
- Laser-written waveguides

• Silicon-on-Insulator (SOI) Technology
• Polymer waveguides: Su8, PMMA, PDMS, PU, etc.

W. Wang 32

My research



Semiconductor Waveguides
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Ternary and Quaternary 
Compounds
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Metalorganic vapor phase epitaxy

Metalorganic vapor phase epitaxy (MOVPE), also known as organometallic vapor phase epitaxy 
(OMVPE) or metalorganic chemical vapor deposition (MOCVD), is a chemical vapor deposition method 

used to produce single or polycrystalline thin films. It is a highly 
complex process for growing crystalline layers to create complex semiconductor multilayer structures. In 
contrast to molecular beam epitaxy (MBE) the growth of crystals is by chemical reaction and not 
physical deposition. This takes place not in a vacuum, but from the gas phase at moderate pressures 
(10 to 760 Torr). As such, this technique is preferred for the formation of devices incorporating 
thermodynamically metastable alloys, and it has become a major process in the manufacture of 
optoelectronics
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MOCVD

In the metal organic chemical vapor deposition (MOCVD) technique, reactant gases are 
combined at elevated temperatures in the reactor to cause a chemical 
interaction, resulting in the deposition of materials on the substrate.

A reactor is a chamber made of a material that does not react with the chemicals being used. It must also 
withstand high temperatures. This chamber is composed by reactor walls, liner, a susceptor, gas injection 
units, and temperature control units. Usually, the reactor walls are made from stainless steel or quartz. 
Ceramic or special glasses, such as quartz, are often used as the liner in the reactor chamber between the 
reactor wall and the susceptor. To prevent overheating, cooling water must be flowing through the 
channels within the reactor walls. A substrate sits on a susceptor which is at a controlled temperature. The 
susceptor is made from a material resistant to the metalorganic compounds used; graphite is sometimes 
used. For growing nitrides and related materials, a special coating on the graphite susceptor is necessary 
to prevent corrosion by ammonia (NH3) gas.
W. Wang 37



Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a chemical process used to produce high 
quality, high-performance, solid materials. The process is often used in the 
semiconductor industry to produce thin films. In typical CVD, the wafer 
(substrate) is exposed to one or more volatile precursors, which react and/or 
decompose on the substrate surface to produce the desired deposit. Frequently, 
volatile by-products are also produced, which are removed by gas flow through 
the reaction chamber

W. Wang 38

Thermal CVD PECVD



PECVD

Plasma-Enhanced CVD (PECVD) – CVD that utilizes plasma to enhance 
chemical reaction rates of the precursors. PECVD processing allows deposition 
at lower temperatures, which is often critical in the manufacture of 
semiconductors. The lower temperatures also allow for the deposition of organic 
coatings, such as plasma polymers, that have been used for nanoparticle surface 
functionalization
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(basic light emitting diode)
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Flame Hydrolysis

The Flame Hydrolysis Deposition tool (FHD) is a state-of-the-art system for the growth of silica to form 
waveguide structures for integrated photonic circuits. The system allows the precise doping of 
germanium, phosphorous and boron within the silica films and is particularly optimised for the growth of 
films with high photosensitivity for direct UV laser writing of advanced photonic circuits. The tool can 
grow films ranging from 2 to 50 microns in thickness. The system is designed to deposit onto 150mm 
silicon wafers (other substrates can also be used) and has a high throughput of up to 30 wafers per day.

W. Wang 48

control the flame 
temperature you can control 
the proportion of dopant 
deposited



Vapor axial deposition

• Refractive indices can be carefully controlled using VAD
• VAD is a very important process and accounts for a large proportion of 

world fibre production. It was originally intended to be a continuous 
process which would have a lot lower cost than the batch processes. 
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Silicon-on-Insulator
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Laser Written Waveguides
• CW or pulsed light from a laser used for writing waveguides in silica 

and other glasses
• Photosensitivity of Ge. Doped silica exploited to enhanced refractive 

index in the region exposed to a UV laser (245nm)
• Absorption of 244nm light from KrF laser changes refractive index by  

10-4 only in the region exposed to UV light
• Index changes > 10-3 can be realized with a 193nm ArF laser
• A planar waveguide formed first through CVD, but core layer is doped 

with Ge.
• An UV beam focused to 1 micron scanned slowly to enhanced n 

selectively. UV written sample then annelid at 80oC.
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Laser Written Waveguides

W. Wang 56

(800nm)



Polymer Waveguides

• Polymers such as halogenated acrylate, fuorinated polyimide, 
and deuterated polymethylmethacrylate (PMMA) have been 
used.

• Polymer films can be fabricated on top of Si, glass, quartz,or
plastic through spin coating.

• Photoresist layer on top used for reactive ion etching of the core
layer through a photomask.
W. Wang 57

SU8 2002

AZ 1512

PDMS

hPDMS
grating

w. wang



Additional Lecture on Polymer 
Optics Fabrication

• We will discuss fabrication of polymer 
optics later in the quarter mainly on latest 
development in using novel approach in 
polymer optics.
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Week 13
• Course Website: 

http://courses.washington.edu/me557/sensors
• Reading Materials: 

- Week 13 reading materials can be found:
http://courses.washington.edu/me557/reading/
• Proposals due today
• Work on Lab 2 (arrange time to meet with TA, please finish it 

this week)
• HW 3 due today 
• HW 4 assigned due week 16 if need more time send the HW  

electronically to abong@uw.edu after week 16 
• Final presentation is on 12/23, final report due 1/7/20 
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Outline
• Waveguide structures and materials
• Field equations
• Wave equations in Waveguides
• Waveguide modes, neff, dispersion equation
• Guided modes in symmetric and asymmetric slab 

waveguides
• General formalisms for step-index planar waveguides
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Waveguide Theory

• Ray approach
• Wave approach
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Wave Equation in free space and 
waveguide
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electric elasticity equation 

Speed of light

 H + M
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above

Recall wave equation
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E

kx

z
H

(in phasor form because of 
time harmonic function)

𝑘௢
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If looking at wave propagating in a slab waveguide, the wave equation 
from free space propagating in z direction:
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is modified for wave propagating in the slab  with confinement in x 
direction and plane wave propagating in z direction                              or   

, the wave equation becomes: 

If only focusing on x  variation: 
 is propagation constant
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Week 10
• Course Website: 

http://courses.washington.edu/me557/sensors
• Reading Materials: 

- Week 7-10 reading materials can be found:
http://courses.washington.edu/me557/reading/

• Homework:  Assignment 2 (due today)
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(wave equations)



Outline
• Waveguide structures and materials
• Field equations
• Waveguide modes, neff, dispersion equation
• Guided modes in symmetric and asymmetric slab 

waveguides
• General formalisms for step-index planar waveguides

W. Wang 71



W. Wang 72

Waveguide modes
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(wave equations)



Things covered in this section

• k vector in propagating and confined 
direction (x, z)

• Mode field in confined direction (x)
• neff

• Dispersion equation in confine direction (x)
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Waveguide modes
• Waveguide modes exist that are characteristic of a 

particular  waveguide structure.
• A waveguide mode is a transverse field pattern whose 

amplitude and polarization profiles remain constant along 
the longitudinal z coordinate.

• Therefore, the electric and magnetic fields of a mode can 
be written as follows

W. Wang 75

where  is the mode index, E(x, y) and H(x, y) are the
mode field profiles, and  is the propagation constant of the 
mode

-

-



Mechanical Vibration Analogy 
Fix-Fix Boundary Mode Shape

W. Wang 76

Fix-fix resonant mode in 2 D structure 
Fix-fix resonant mode in 1 D structure



Index Profiles

A waveguide in which the index profile has 
1. abrupt changes between the core and the cladding is called a 
step-index waveguide, 
2. index profile varies gradually is called a graded-index 
waveguide.
We will focus only the step-index waveguide in the class.

W. Wang 77



Ray Optics Approach to Optical Waveguide Theory

W. Wang 78

n1

n2

n3

c2

𝜆 𝑛ଶൗ

wavefronts

d

x

z

There are two critical angles associated with the internal
reflections at the lower and upper interfaces:

                        𝜃௖ଷൌ 𝑠𝑖𝑛ିଵ(𝑛ଷ/𝑛ଶሻ                𝜃௖ଶൌ 𝑠𝑖𝑛ିଵ(𝑛ଵ/𝑛ଶሻ

 c3 > c2 because n3 > n1

If > c3 > c2, the wave inside the core is totally reflected at both interfaces 
and is trapped by the core, resulting in guided modes.

c3



w. wang
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This shows how  needs to be to be able (in terms of refractive indices of each layer)  to form 
either radiation or guided modes.

-
Only n2 sine 2 > n3sin 
90o, greater  than both 
sides are confined 
because c3 > c2
because n3 > n1

 c3 > c2 because n3 > n1

m
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Waveguide modes
• Consider the qualitative behavior of an optical wave in an 

asymmetric planar step-index waveguide, where n2>n3>n1.
• For an optical wave of angular frequency ω and free-space 

wavelength λ, the media in the three different regions of 
the waveguide define the following propagation constants:

where k2 > k3 > k1

• We can obtain useful intuitive picture from considering the 
path of an optical ray, or a plane optical wave, in the 
waveguide.
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k-vector triangle

• The orthogonal components of the propagation constant, β 
and kx, are related by the “k-vector triangle.”

W. Wang 82

Transverse component kx = ko n2cos= (n2/c) cos
Longitudinal component  = ko n2sin= (n2/c) sin
“k-vector triangle” 2+kx

2 = (n2/c)2

k2

kz =

kx

z

x
Core n2 

Remember only wave is propagating in Z direction



kx and β components

W. Wang 83

• We can consider the “zig-zag” wave in the waveguide as two 
orthogonal components traveling in the longitudinal (z) and 
transverse (x) directions.

• The transverse component of the plane wave is reflected back 
and forth in the x direction, interfering with itself.

k2



Things covered in this section

• k vector in propagating and confined 
direction (x, z)

• Mode field in confined direction (x)
• neff

• Dispersion equation in confine direction (x)

W. Wang 84



Guided modes
• As the wave is reflected back and forth between the two 

interfaces, it interferes with itself.
• A guided mode can exist only when a transverse 

resonance (x direction) condition is satisfied (e.g. the 
repeatedly reflected wave has constructive interference 
with itself).

• In the core region, the x component of the wave vector is 
kx =k2 cos θ for a ray with an angle of incidence θ, while 
the z component is β = k2 sin θ.

• The phase shift in the optical field due to a round-trip 
transverse passage in the core of thickness = 2k2dcos θ.
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86

Everything can be expanded or explained in a series of sin function 
either a summation, multiplication or convolution. Many of our 
optical theory and sensor concept exploit this concept to allow us to 
study small physical changes using resolution of optical wavelength 
but observed at relatively lower frequency or longer wavelength or 
simplify the way we calculate them.  e.g. interference or beats

Power of sin(a)+sin(b)

sinA+sinB = 2sin(A+B)/2 *cos(A-B)/2

Let A = k1x+1t+ 1        k1 = n1

B =  k2x+1t+ 2        k2 = n2

w wang Light phenomena is just a superposition of waves with 
different  wave lengths, phase, etc. (ambient light)

Most important summaryMost important summary



Transverse Resonance Condition

W. Wang 87

• There are phase shifts 2 and 3 associated with the internal
reflections in the lower and upper interfaces.

• These phase shifts can be obtained from the phase angle of rs
(reflection coeff) for a TE wave (s wave) and that of rp for a TM 
wave (p wave) for a given > c3, c2. r is reflection coefficient.

• Because 2 and 3 are functions of , the transverse 
resonance condition for constructive interference in a 
roundtrip transverse passage is

where m is an integer = 0, 1, 2, …

Because m can assume only integral values, only certain
discrete values of  can satisfy the transverse resonance
condition.

2
k2



kx

z

x
Core n2 

We will talk 
about it soon



TEM Mode
Transverse electromagnetic (TEM) waves. In this case both Ez and Hz are zero. 
An example of this is a plane electromagnetic wave which has both electric and 
magnetic field perpendicular to the propagation direction. There is no cutoff 
frequency for supporting TEM mode. It can be shown that at least two separate 
conductors are needed for TEM waves. Examples of waveguides that allow TEM 
modes include A coaxial cable, parallel waveguide, strip line and microstrip. 
Rectangular, circular, elliptical or any hallow waveguides cannot support 
TEM mode.
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Transverse Electric Polarization
(TE mode)

W. Wang 89

• For slab waveguides, we define the x-z plane as the plane of incidence.
• An electric field pointing in the y direction corresponds to the
perpendicular, or s, polarization.
• Waves with this polarization are labeled transverse electric (TE) fields
because the electric field vector lies entirely in the x y plane (i.e. Ez = 0)
that is transverse to the direction of net travel (the z direction).

2

Ray explanation

Wave explanation



Transverse Magnetic Polarization
(TM mode)

W. Wang 90

• For the parallel, or p, polarization, the electric field is no longer
purely transverse. It has a component along the z direction.
• However, the magnetic field points in the y direction for this
polarization is entirely transverse (i.e. Hz = 0).
The p polarization is labeled transverse magnetic (TM) in the slab.

2

Ray explanation

Wave explanation
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If neither two are perfect conductors, Js=0, then boundary 
conditions requires both the tangential electric-filed and 
magnetic-field components be continuous at z =0 thus,

xtxjk
l

xrxjk
l

xxjk eTeRe   (E component)
xtxjk

l
tzxrxjk

l
rzxxjkz eTkeRkek  




211 
(B component)

For the above equations to hold at all x, all components
must be the same, thus we get the phase matching condition:

tttxrrrxix kkkkkk  sinsinsin 

From this we obtain law of reflection:

And Snell’s Law:
ri   Since k =kr because  111

222 kkk r  

1111 kccn


 

2222 kccn


 
2211 sinsin  nn 



Reflection Coefficient

W. Wang 92

TE mode TM mode

222
1

22
rzrxzx kkkkk 

2
2

22 kkk tztx 

R is Complex (because n is and Function of 

tzz

tzz
l kk

kkR
12

12









tzz

z
l kk

kT
12

22







tzz

tzz
ll kk

kkR
12

12









tzz

z
ll kk

kT
12

22






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rs= rTE

rp= rTM

Recall



Discrete Guided Modes

W. Wang 94

• The transverse resonance condition results in discrete values of the 
propagation constant m for guided modes identified by the mode 
number m.

• Although the critical angles, c2 and c3, do not depend on the 
polarization of the wave, the phase shifts, 2() and 3(), caused 
by the internal reflection at a given angle  depend on the 
polarization.

• Therefore, TE and TM waves have different solutions for the 
transverse resonance condition, resulting in different m and 
different mode characteristics for a given mode number m.

• For a given polarization, solution of the transverse resonance 
condition yields a smaller value of and a correspondingly smaller 
value of for a larger value of m. Therefore, 0 > 1 > 2 > …

• The guided mode with m = 0 is called the fundamental mode and 
those with m ≠ 0 are higher-order modes.

Mode and 

incident angle

k2



kx

z

x
Core n2 

Transverse component kx = (n2/c) cos
Longitudinal component  = (n2/c) sin
“k-vector triangle” 2+kx

2 = (n2/c)2

m=0,  kind of true but still 
depending on  and 

kx goes up with increasing m and   goes down because k1d are fix so 
when m increases, cos  has to increase because 2m is increasing
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kx

kx
2

kx

kx

m



Qualitative Picture of A Waveguide Mode

W. Wang 96

• The stable field distribution in the transverse direction with only a periodic 
longitudinal dependence is known as a waveguide mode.

n2

/n2sinm

Look at how 
wave is 
propating inside 
waveguide in x 
and z direction 
over time

k2

m

kx

z

x
Core n2 m

m=0, 
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Trigonometric Functions in 
Terms of Exponential Functions

Exponential Function vs. 
Trigonometric and 
Hyperbolic Functions

Hyperbolic Functions in Terms of 
Exponential Functions



Discrete Waveguide Mode

W. Wang 98

z

x

Cladding
(n1)

Cladding
(n3)

Cladding
(n1)

Cladding
(n3)

Cladding
(n1)

Cladding
(n3)



Mechanical Vibration Analogy 
Fix-Fix Boundary Mode Shape

W. Wang 99

Fix-fix resonant mode in 2 D structure 
Fix-fix resonant mode in 1 D structure



Plane Wave Propagating in a Planar Waveguide
(TM mode)

W. Wang 100

n1

n2

n3

𝜆 𝑛ଶൗ

wavefronts

d

x

z




k2


k2x=h

k1


k1x

-Upper field 

Down field 

zjxjh
o

rjk
ou eEeEE u  

zjxjh
o

rjk
od eEeEE d  

Where zxhkzxhkzzxxr du ˆˆ,ˆˆ,ˆˆ  



Plane Wave Representation
(TM mode)

W. Wang 101

zj
o

rjk
odut ehxEeEEEE d   )cos(

)cos()cos(2),( tzhxEeEEEtrE o
rjk

odut
d   

Cladding n1

Cladding n3

Core n2

In core region
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Trigonometric Functions in 
Terms of Exponential Functions

Exponential Function vs. 
Trigonometric and 
Hyperbolic Functions

Hyperbolic Functions in Terms of 
Exponential Functions
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Everything can be expanded or explained in a series of sin function 
either a summation, multiplication or convolution. Many of our 
optical theory and sensor concept exploit this concept to allow us to 
study small physical changes using resolution of optical wavelength 
but observed at relatively lower frequency or longer wavelength or 
simplify the way we calculate them.  e.g. interference or beats

Power of sin(a)+sin(b)

sinA+sinB = 2sin(A+B)/2 *cos(A-B)/2

Let A = k1x+1t+ 1        k1 = n1

B =  k2x+1t+ 2        k2 = n2

w wang Light phenomena is just a superposition of waves with 
different  wave lengths, phase, etc. (ambient light)

Most important summaryMost important summary



Surface waves and the reflective phase shift
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zjxjk
o

rjk
o eeEeEE x   11

111

xc k122 , 

 jk xc  122

zjxj
o

rjk
o eeEeEE    111

1



Phase-matching at an interface

W. Wang 105

As the spatial rate of change of phase at the boundary (or the projection 
of the wavefront propagation) on the n2 side must match with that on the 
n3 side, we have  This condition is known as phase matching 
condition which allows coupling of oscillating field between the two 
media.

112212 sinsin  nn 

k2



k2x

k1


k1x
x

z

(Snell’s law)



Evanescent field in total internal reflection
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• Phase matching at TIR 2>c (i.e. sin2>n1/n2)

2 = kn2sin2= 1 > kn1

• k vector triangle in n1
5.02

22
2

11 ))sin()(( knknk 
5.02

1
2

221 ))()sin(( knknjk  

 jknknj  5.02
1

2
22 ))()sin((

• Evanescent field in the transverse direction

tzjx eeE  

k2



k2x

k1


k1x
x

z

d/2

-d/2

n2

n1

n1

κ

z

 is  like before
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x

z

1 = sin21
’  +cos21

’

k1
2=k1

2sin21
’+k1

2cos21
’

>1      <0
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Evanescent wave

use for sensing and 
wave coupling

1z

cosk1xx at different z



Evanescent fields in the waveguide cladding
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Evanescent wave outside the waveguide core decay exponentially
With an attenuation factor given by

In the upper layer (x > d/2)

In the lower layer (x < -d/2)

5.02
1

2
22 ))()sin(( knkn  

tzjdx eeEE   )2/(
1

tzjdx eeEE   )2/(
1

Where E1 peak value of te electric field at lower (x=-d/2) 
and upper (x=d/2) boundaries.

d/2

-d/2

n2

n1

n1

κ

z

 is  like in 
hand derivatipon
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Waveguide Mode observed at the end of a Slab Waveguide
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Examples of Optical fiber modes



Things covered in this section

• k vector in propagating and confined 
direction (x, z)

• Mode field in confined direction (x)
• neff

• Dispersion equation in confine direction (x)

W. Wang 113
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E

kx

z
H

(in phasor form because of 
time harmonic function)

𝑘௢
ଶ𝑛ଶ ൌ 𝜔ଶ/𝑐ଶ

Dispersion equation



Waveguide effective index
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𝒏𝒆𝒇𝒇 ൌ 𝒏𝟐sin

k2



kx

z

x
Core n2 

Based on Dispersion 
equation, only Z 
direction is 
propagating so 
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For wave guiding at n2-n1 interface, we see that n1<neff <n2 (n1=n3 or 
n1>n3)

At =90o, neff = n2 => a ray traveling parallel to the slab (core)
has a effective index that depends on the guiding medium alone.

At = c, = neff = n1 => the effective index for critical angle 
rays depends only on the outer material n1

The effective refractive index changes with the wavelength
(i.e. dispersion) in a way related to that the bulk refractive index does.

The wavelength as measured in the waveguide is
waveguide = /neff

n1

n2

n3

c2

𝜆 𝑛ଶൗ

wavefronts

d

x

z

112212 sinsin  nn  = neffSince



Things covered in this section

• k vector in propagating and confined 
direction (x, z)

• Mode field in confined direction (x)
• neff

• Dispersion equation in confine direction (x)

W. Wang 117



Dispersion Equation in Waveguide

W. Wang 118



Dispersion Equation in Waveguide

• Looking at Phase term to figure out guided 
modes

W. Wang 119



Things covered in this section

• Derive dispersion equation with TE TM 
reflection coefficient 

• Dimensionless parameters: normalized 
frequency, normalized guided index, 
asymmetry, dispersion equation with above 
parameters, mode number, effective film 
thickness

W. Wang 120



Reflection coefficient at BC

Looking at :
• How phase shifts 2 and 3 associated with the 

internal reflections in the lower and upper interfaces.
• How these phase shifts can be obtained from the 

phase angle of rs (reflection coefficient) for a TE wave 
(s wave) and that of rp for a TM wave (p wave) for a 
given > c3, c2 and m.

W. Wang 121
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rs= rTE

rp= rTM

Recall
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= =



w. wang
W. Wang 124



W. Wang 125

Phaseshift due 
to reflection

Derivation for 
rTE and rTM
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-

1

Remember 𝜃ଵ ൌ 𝜃௖, 𝜃ଶ ൌ 90 𝑎𝑛𝑑 𝑠𝑖𝑛𝜃ଵ=௡మ௦௜௡ఏమ
௡భ

= ௡మ
௡భ

Total internal reflection

and (phase matching condition)

Look at next 
page and see 
why cos is 
imaginary
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x

z

1 = sin21
’  +cos21

’

k1
2=k1

2sin21
’+k1

2cos21
’

>1      <0
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c or sTE=

c or s TM=
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The phase shift can be representing the zig-
zag ray at a certain depth into the confining 
layers 1 ad 3 before it is reflected (goos-
Hanchen shifts- lateral shift)
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knfhcos

solution

solution

Above critical angle

knfhcos 0

(will show again in VB curve)

TE

TM

Find  with different h and m Plotting left and right side of
knfhcoscs
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Any  will work TEM

m
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m
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2knfhcos-2c-2s ൌ 2𝑚𝜋
2+kx

2 = (n2/c)2

m =

m =
m =

See how relates to frequency
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2knfhcos-2c-2s ൌ 2𝑚𝜋
2+kx

2 = (n2/c)2
h2(kxh)

(kxh) (kxh)2

See how m relates to frequency
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Week 11
• Course Website: 

http://courses.washington.edu/me557/sensors
• Reading Materials: 

- Week 7-10 reading materials can be found:
http://courses.washington.edu/me557/reading/

• Homework:  Assignment 3 (due week 13)
• Final Project (the end of Dec. or first week of Jan.)
• Proposal due Week  14

137W. Wang



Outline
• Waveguide structures and materials
• Field equations
• Waveguide modes, neff

• Wave equations in Waveguides
• Guided modes in symmetric and asymmetric slab 

waveguides
• General formalisms for step-index planar waveguides

W. Wang 138
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Another common way to do this is to introduce the normalized 
parameters so that you don’t have to worry about the dimension

(substrate radiation mode, m>=0)            (guide mode, m=0)
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α

α

(dimensionless)

(dimensionless)

b=(2-k2
2)/(k1

2-k2
2)

The propagation constant β can be 
represented by the normalized
guide index:



The normalized frequency, also 
known as the V number, of a 
step-index planar waveguide is 
defined as
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(Lowest order mode m=0)
We know

(radiation mode)
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+
m = 0

m = 1 

m = 2 

m =0, 
b=0 and 
a=0
N~ns,
~inf

Curve shows b never reaches 1 
Unless really high frequency

b=1,N~nf
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= =
recall
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recall
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Deriving cos , s
and c

cos  = (nf
2 –N2)0.5/nf

Using Snell’s law and 1= cos2+sin2



w. wang
W. Wang 146

+
m = 0

m = 1 

m = 2 

m =0, 
b=0 and 
a=0
N~ns,
~inf

Curve shows b never reaches 1 
Unless really high frequency

b=1,N~nf
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(dispersion eq)

s

remember



Normalized guide index vs. V number

• When the V number is very small (e.g. h/λ << 1) and the guided ray 
travels close to the critical angle (b << 1), the effective index is close
to that of the cladding layer n1 or ns.
=>The wave penetrates deeply into the cladding layers, because the rays
are near the critical angle. The evanescent decay is slow.

• As the V number increases, the ray travels more nearly parallel to the
waveguide axis, and the effective refractive index lies between n2 and n1.
• For a very large V number (e.g. h/λ >> 1) and the effective index is near
that of the core index n2 or nf, the wave in the cladding layer decays very
rapidly for evanescent waves traveling at angles far above the critical
angle.

W. Wang 148

b=1,N~nf

Intersections showing what 
mode that dimension and 
wavelengths can excite
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b=1 and m=0 as N-> nf



Cutoff Conditions
• Cutoff occurs when the propagation angle for a given mode (different mode has 

different critical angle) just equals the critical angle θc --- a guided mode transits 
to an unguided radiation mode.

• This corresponds to the condition that β2 = k2 (b = 0,N=ns) and k1x = 0=> 1=90o.
• The fields extend to infinity for k1x = 0 (i.e. the fields become unguided!).

This defines the cutoff condition for guided modes.

The size of waveguide determines its operating frequency, is determined by the 
dimension of the waveguide (~/2N) and at cutoff frequency and below, the 
waveguide energy will attenuate rapidly.  

W. Wang 150

k2



k2x

k1


k1x x

z

2 is layer 2 or film layer not m sorry!!!
Intersections points 
between curves and 
x axis
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+
m = 0

m = 1 

m = 2 

m =0, 
b=0 and 
a=0
N~ns,
~inf

Curve shows b never reaches 1 
Unless really high frequency

b=1,N~nf

generated
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Obtain N from b

b=0 and m=0 as N-> ns

m= 0 when h is 0 or nf=n

Normalized Cut off frequency
@ m=0 and b =0, when wave 
Becomes radiation mode

Cutoff b=0
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Any o will satisfy  
cutoff condition

ns=nc

look 

Look at the b v curve

Different modes will have different cutoff frequencies. In the
Example is for m=0 and a=0



Wave path in metal waveguide
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Opposite of dielectric waveguide
Because index is lower in core!!!
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Another common way to do this is to introduce the normalized 
parameters so that you don’t have to worry about the dimension

(substrate radiation mode, m>=0)            (guide mode, m=0)
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+
m = 0

m = 1 

m = 2 

m =0, 
b=0 and 
a=0
N~ns,
~inf

Curve shows b never reaches 1 
Unless really high frequency

b=1,N~nf

Cutoff for different modes along 
intersection between curves and x axis 
(V)

generated
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Another way to find V:

recall

Remember h=knf cos  and d =h
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Symmetric weakly guided 
waveguide

• Consider a weakly guiding waveguide n2 – n1 << n2

• Here we choose n2 = 3.6 and n1 = 3.55. These values are characteristic 
of an AlGaAs double heterojunction light-emitting diode or laser diode.

• The critical angle for this structure is c = sin-1(n1/n2) ~ 80o

• The range of angles for trapped rays is then 80o ≤ ≤ 90o.

• The range of waveguide effective refractive index is 3.55 ≤ neff ≤ 3.6

W. Wang 159
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n2 ,n1= (assumed)
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b=0 N~ns

b=1,N~nf

Know V find b and From b you can find N and from N your incident angle and modes

(assumed)



Examples
• For example, consider V = 15 on the mode chart, the TE5/TM5 modes could 

not propagate because V was not large enough to intersect with the b vs. V 
curves.
=> The TE5/TM5 modes, and all higher-ordered modes, are cut off.

W. Wang 162



Example: Symmetric strongly 
guiding slab waveguides

W. Wang 163

• Consider a strongly guiding waveguide n2 – n1 >> 0

• Here we choose n2 = 3.5 and n1 = 1.45. These values are
characteristic of an silicon-on-insulator (SOI) waveguide.

• The critical angle for this structure is θc = sin-1(n1/n2) ~ 24.5o

• The range of angles for trapped rays is then 24.5o ≤ θ ≤ 90o.

• The range of waveguide effective refractive index is 1.45 ≤ 
n ≤ 3.5
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n2 ,n1= (assumed)
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b=0 N~ns

b=1,N~nf

Know V find b and From b you can find N and from N your incident angle and modes

(assumed)



Asymmetric Slab waveguide mode chart
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Thicker core more modes

Find  h:

Find  N:
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N

Thicker the waveguide less affected by wavelengths
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The phase shift can be representing the zig-
zag ray at a certain depth into the confining 
layers 1 ad 3 before it is reflected (goos-
Hanchen shifts- lateral shift)

recall



=
w. wang
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The phase shift can be 
representing the zig-
zag ray at a certain 
depth into the 
confining layers 1 ad 3 
before it is reflected
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This is basically the 
evanescent wave or 
leaky wave part 
which extended 
beyond the confined 
core into cladding 
using ray optic way 
to explain it.
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= =
recall
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recall
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Evanescent 
wave
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Multilayer Structure (wave equation)
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Things covered in this section

• Multilayer structure
• Analytical approach to various rectangular 

waveguide
• Examples
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



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From Maxell equation

We derived in last section



w. wang
W. Wang 182

Normalized power 
distribution
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
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


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Phase matching condition

Tangential and normal fields are cont.

Solutions for each layer
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Dispersion relation
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Wave propating in multilayer structure
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Imaginary
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Rewrite this as
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Derive wave 
equation 
going in 
transverse 
direction

From Maxwell eq.

From wave equation
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(1)
(2)
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Arbitrary Shape Waveguide

W. Wang 205



w. wang
W. Wang 206



w. wang
W. Wang 207



w. wang
208

-

-
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Another example



Effective index for 
rectangular  waveguide

w. wang

--

210
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Break down to these two
equations
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Channel waveguides
� Most waveguides used in device applications are nonplanar waveguides.
� For a nonplanar waveguide, the index profile n(x, y) is a function of both transverse 
coordinates x and y.
� There are many different types of nonplanar waveguides that are differentiated by the 
distinctive features of their index profiles.
� One very unique group is the circular optical fibers (to be discussed in Lecture 5).
� Another important group of nonplanar waveguides is the channel waveguides, which 
include

– The buried channel waveguides
– The strip-loaded waveguides
– The ridge waveguides
– The rib waveguides
– The diffused waveguides.
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Representative channel waveguides
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Numerical Analysis
• Except for those few exhibiting special geometric structures, 
such as circular optical fibers, non-planar dielectric 
waveguides generally do not have analytical solutions for 
their guided mode characteristics.
• Numerical methods, such as the beam propagation method, 
are typically used for analyzing such waveguides (e.g. 
silicon-on-insulator waveguides modes, TE and TM mode 
electric field distributions)
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Take away
• Total Internal Reflection
• Metal (low frequency, well confine beam) versus dielectric (high frequency low loss, leaky wave)

(skin depth for dielectric) p = 1/ఙ
ଶ

ఓ
ఌ

(skin depth for conductor) p = 1/  ሺ ଶ
ఠఓఙ

ሻ = 

• Propagating modes are discrete and function of incident angle
relating particle and wave theory.. We need to know both

• Modes are determined by transverse resonating condition 

• Wave equation determined by Maxwell’s equations and B.C.  (see next page)
• Operating frequency, mode numbers, effective index, waveguide dimension,  can be determined by

dispersion equation  

• Later a dimensionless dispersion equation 

W. Wang
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where m is an integer = 0, 1, 2, …

n2

/n2sinm



Take away
• Using slab waveguide to figure out other waveguide configuration

226

Three two 
layers slabs

Two 
orthogonal 
three layers 
slabs



Evanescent fields in the waveguide cladding
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Evanescent wave outside the waveguide core decay exponentially
With an attenuation factor given by

In the upper layer (x > d/2)

In the lower layer (x < -d/2)

5.02
1

2
22 ))()sin(( knkn  

tzjdx eeEE   )2/(
1

tzjdx eeEE   )2/(
1

Where E1 peak value of te electric field at lower (x=-d/2) 
and upper (x=d/2) boundaries.

d/2

-d/2

n2

n1

n1

κ

z



Waveguide effective index
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𝒏𝒆𝒇𝒇 ൌ 𝒏𝟐sin

k2



kx

z

x
Core n2 
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The phase shift can be representing the zig-
zag ray at a certain depth into the confining 
layers 1 ad 3 before it is reflected (goos-
Hanchen shifts- lateral shift)
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+
m = 0

m = 1 

m = 2 
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Effective index for 
rectangular  waveguide
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Another example
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Rectangular Waveguide
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Optical Analysis 
• Find Modes

• Find Maximum Coupling 
Efficiency

• Total Power Out

W. Wang 243

R. Panergo,  W. Wang, “Resonant Polymeric Waveguide Cantilever 
Integrated for Optical Scanning,” Journal of Lightwave Technology  ( 
Volume: 25, Issue: 3, March 2007 ) 



SU-8 optical scanner 

cantilever waveguide
tapered waveguideU groove
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R. Panergo,  W. Wang, “Resonant Polymeric Waveguide Cantilever 
Integrated for Optical Scanning,” Journal of Lightwave Technology  ( 
Volume: 25, Issue: 3, March 2007 ) 



Mode Coupling (MC)
• Divided into 3 sections

– Fiber input to facet of the waveguide
– Taper section
– Interface between taper to the beam

Fiber Input
Taper

Beam

Y

Z

W. Wang 245



Optical Parameters
• Index of Refraction

– nsu8 = 1.596, nSiOx = 1.46, nair = 1
• Input Source/tapered Fiber (Dcore=62.5m)

– Single Mode, 633nm wavelength
• Film Thickness

– Thickness         100 micron
– Initial Width       100 micron
– Final Width          50 micron
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MC – Fiber to Waveguide
• Initial Assumptions

– Input is a single mode Gaussian beam (end butt coupled)
– Ignore loss due to scattering and absorption

• SU-8 Waveguide with 85x230m cross section
• 633nm light source through a 62.5m core fiber 

Air

SiO2

SU-8

X

Air

SU-8

Y
Air

Cross Section Top View
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Fiber to Waveguide 
continued …

• Coupling efficiency determined by overlap 
integral:

• A(x,y): Amplitude distribution of input source
• Bm(x,y): Amplitude distribution of the mth 

mode

2
*

2 2

( , ) ( , )

( , ) ( , )

m

m
m

A x y B x y dxdy

A x y dxdy B x y dxdy
   

   
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Fiber to Waveguide 
continued …

• The first 100 
combinations of modes 
were examined

• TE0,0, TE0,2, and TE0,4
couple 98% of the light

• All 100 combinations 
couple 99% of the light

• Assume that 100% 
coupling

Mode Coupling Eff. (%)

TE0,0 61.44

TE0,2 29.66

TE0,4 6.92
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Fiber to Waveguide 
continued …

• Consider mis-alignment effect

W. Wang 250



MC – Taper Section
• Photolithography process produced step-like 

features
• Mask for process was printed with a high resolution 

printer
– Resolution: 2450 dpi horizontal, 300 dpi vertical
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Taper Section continued …
∆Y

Y

Z

A

B

I II III

m

2
*

n

taper 2 2
n m

A (y)B (y)dy
η

A (y) dy B (y) dy
 
 
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Taper Section continued …

wi
wf

Z

Y

Nstep

∆Y

ηtaper

stepN
ttaper taper 

2
i f

step

w w
N

y




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Taper Section continued …

SU-8 Δy= 6.5m
ttaper = 96%
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MC - Taper to Beam
• Index change from 

taper section to beam

• Y direction remains 
unchanged

• loss is <<1% and 
assumed to be 
negligible

Air

SiO2

SU-8

X

Air

SU-8

X Air

Output from Taper Input to Beam

Air

SiO2

SU-8

X Air

SU-8

Z Air

Output from Taper Input to Beam

2
*

2 2

( ) ( )

( ) ( )
n m

beam
n m

A x B x dx

A x dx B x dx
  

 
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MC – Total Coupling

Fiber Input Taper Beam

Y

Z

  ittaperbeam

i ttaper beam
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Rib Waveguide
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Rib Waveguide Design
The rib waveguide is based on the single mode 
conditions proposed by Soref  as following:

2 2 1f sn n
H


 

0.5 1hr
H

  

2

2

41 0.3 1
44

4 4 1
4

q b
q rba W q b

b H b q b
q rb




 


 
        

   
  

q is defined as: 2 2 2 2
c s

f c f s

q
n n n n

 
 

 

Where                  for TE mode and              and               defines for TM mode 1c s  
2

2
c

c
f

n
n

 
2

2
s

s
f

n
n

 

Based on 2 2
f sn n

H 




800nm: H>1.24 µm
900nm: H>1.4 µm

Based on 2 2
f sn n

H 


Based on 2 2
f sn n

H 




800nm: H>1.24 µm
900nm: H>1.4 µm
1300nm: H>2.02µm

Based on 2 2
f sn n

H 




W=2aλ

H=2bλ
h=2brλ

Air, nc=1

SU-8, nf=1.587

SiO2, ns=1.45

C. S. Huang, Y. B. Pun, 
W. C. Wang, “Fabrication 
of a flexible rib 
waveguide with Bragg 
grating filter,” Journal of 
Optical Society of 
America B, 26(6), 1256-
1262, 2009. [OSA]



Result

C. S. Huang, Y. B. Pun, W. C. 
Wang, “Fabrication of a flexible 
rib waveguide with Bragg grating 
filter,” Journal of Optical Society 
of America B, 26(6), 1256-1262, 
2009. [OSA]



Optical Fiber
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Wave Analysis:

Cylindrical dielectric waveguide
(step fiber)

assume all fields proportional to ej(t-z)

E = (Er, E, Ez )
H  = (Hr, H,Hz )

Ei and Hi are function of (r, )

2 E     = *
H H

But now need to use cylindrical coordinates:

d2Ez/dr2 + 1/r dEz/dr + 1/r2 d2Ez/d2 + (n1
2k2 – 2)Ez =0

w. wang
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Assume  Ez proportional to E(r) h()    separation of variables

Since h(2p + ) = h()  =>try  h() =  sin l 
cos(l ) 
ejl

where l= integers
Substitute back into 

d2Ez/dr2 + 1/r dEz/dr + [(n1
2k2 – 2)-l2/r2]Ez =0  => Bessel function

Solutions closer to match physical situation.

w. wang
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For guided solutions:

In core, solutions must be finite
In cladding, solutions must approach 0 as r --> 

For r < a:  E(r)  Jl (UR)      “ Bessel function of 1st kind”

For r > a:  E(r)  Kl (WR)    “ modified Bessel function of 2nd kind”

UR = (n1
2k2 –2)0.5 r = a(n1

2k2 –2) 0.5 r/a
U               R

WR= (2 - n1
2k2)0.5 a 

Let V2 = U2 + W2 = a2 [n1
2k2 –2 + 2 –n2

2k2] = a2k2[n1
2-n2

2]

 V = a ꞏ (2/[n1
2-n2

2] 0.5 (Normalized frequency)
= a ꞏ (2/ꞏ 

w. wang
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Solution procedure for step-index fiber modes:

1.
Ez 

= A Jl (UR) ejlej(t-z)           r < a
Hz 

= B Kl (WR) ejlej(t-z)           r > a

2. Match Ez and Hz at r = a

3. Use Maxwell’s curl equations to find E and H Ez and 
Hz and E and H must match for r = +a and –a. Solve all 
four equations simultaneously to yield eigenvalues

w. wang
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A major simplification in math results if (n1-n2)/n1 <<1
(weakly-guiding approximation << 1)

The eigenequations reduces to 

Jl+1 (U) / Jl (U) = + (W/U) (Kl+1 (W) / Kl (W)  (+ only for l =0)

There are m possible solutions for each value of l

 Ulm are solutions

From definition of U, knowing Ulm permits calculation of 

lm = (n1
2k2 – Ulm )0.5

w. wang
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The resulting system of equations can only be solved graphically. The 
graphical solutions represent the mode cutoffs for the different modes that 
can propagate in the fiber for any given V, where V is a convenient 
parameter determined by the properties of the fiber and wavelength of 
incident light.

V = 2*/*a*NA

The intersections represent 
the V numbers at which 
these two modes turn on in 
the fiber.

w. wang
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The normalized wave number, or V-number of a fiber is defined as V = kf a 
NA. Here kf, is the free space wave number, 20, a is the radius of the core, and 
NA is the numerical aperture of the fiber, NA = (ncore

2 - ncladding
2)1/2  ncore(2)1/2, 

with = (ncore-ncladding)/ncore. Many fiber parameters can be expressed in terms of 
V. The TE and TM modes have non-vanishing cut-off frequencies. The cutoff 
frequency is found from V = a(2)½/c = 2.405. Only the lowest HE mode, HE11, 
has no cutoff frequency. For 0 < V < 2.405 it is the only mode that propagates in 
the fiber. w. wang
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In the weakly-guiding approximation (<< 1), the modes propagating in the fiber are linearly 
polarized (LP) modes characterized by two subscripts, m and n. (The longitudinal 
components of the fields are small when << 1.) The LP modes are combinations of the 
modes found from the exact theory of the wave guide. The HE11 mode becomes the LP01
mode in the weakly-guiding approximation.

w. wang
W. Wang 271



The following table presents the first ten cutoff frequencies in a step-index fiber, as 
well as their fundamental modes.
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Single mode (SM) fiber is designed such that all the higher order 
waveguide modes are cut-off by a proper choice of the 
waveguide parameters as given below.

where,  is the wavelength, a is the core radius, and n1 and n2 are 
the core and cladding refractive indices, respectively. When V 
2.405 single mode condition is ensured. SM fiber is an essential 
requirement for interferometric sensors. Due to the small core size 
(~4  m) alignment becomes a critical factor.

Single mode fiber

w. wang
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Electric and magnetic fields for eight fundamental modes. 
w. wang
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When the V number is less than 2.405 only the LP01
mode propagates. When the V number is greater than 
2.405 the next linearly-polarized mode can be 
supported by the fiber, so that both the LP01 and LP11, 
modes will propagate.

LP01 LP11

w. wang
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The SM fiber mentioned above is not truly single mode in that two 
modes with degenerate polarization states can propagate in the fiber. 
This can lead to signal interference and noise in the measurement. 
The degeneracy can be removed and a single mode polarization 
preserving fiber can be obtained by the use of an elliptical core fiber 
of very small size or with built in stress. In either case light launched 
along the major axis of the fiber is preserved in its state of 
polarization. It is also possible to make a polarizing fiber in which 
only one state of polarization is propagated. Polarimetric sensors 
make use of polarization preserving fibers. Thus, multimode fiber, 
single mode fiber and polarization preserving fiber are the three 
classes of fibers which are used in the intensity type, the 
interferometric type and the polarimetric type of sensors, 
respectively.

w. wang
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While discussing step-index fibers, we considered light propagation inside the fiber as a 
set of many rays bouncing back and forth at the core-cladding interface. There the angle 
could take a continuum of values lying between 0 and cos–1(n2/n1), i.e.,

Scientific and Technological Education 
in Photonics

0 <  < cos–1 (n2/n1)

For n2 = 1.5 and   = 0.01, we would get n2/n 1 
~ and cos –1 = 8.1°, so

0 < < 8.1°

w. wang
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Now, when the core radius (or the quantity ) becomes very small, ray optics does not remain 
valid and one has to use the more accurate wave theory based on Maxwell's equations.

In wave theory, one introduces the parameter

where  has been defined earlier and n1
~ n2 . The quantity V is often referred to as the "V-number" 

or the "waveguide parameter" of the fiber. It can be shown that, if

V < 2.4045

only one guided mode (as if there is only one discrete value of ) is possible and the fiber is known 
as a single-mode fiber. Further, for a step-index single-mode fiber, the corresponding (discrete) 
value of  is approximately given by the following empirical formula

We may mention here that because of practical considerations the value  of ranges from about 
0.002 to about 0.008

w. wang
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Consider a step-index fiber (operating at 1300 nm) with n2 = 1.447,  = 0.003, and a = 4.2 m. Thus,

Thus the fiber will be single moded and the corresponding value of —will be about  = 3.1º. It may be 
mentioned that for the given fiber we may write

Thus, for  0 > 2.958/2.4045 = 1.23 m

which guarantees that V < 2.4045, the fiber will be single moded. The wavelength for which V = 2.4045 is 
known as the cutoff wavelength and is denoted by c. In this example, c = 1.23 m and the fiber will be single 
moded for 0 > 1.23 m.

Assignment

w. wang
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Assignment
For reasons that will be discussed later, the fibers used in current optical communication systems 
(operating at 1.55 m) have a small value of core radius and a large value of . A typical fiber 
(operating at 0  1.55 m) has n2 = 1.444,  = 0.0075, and a = 2.3 m. Thus, at 0 = 1.55 m, 
the V-number is,

The fiber will be single moded (at 1.55 m) with  = 5.9°. Further, for the given fiber we may write

and therefore the cutoff wavelength will be c = 2.556/2.4045 = 1.06 m.

w. wang
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•The Numerical Aperture (NA) of a fiber is the measure of the 
maximum angle (NA) of the light entering the end that will 
propagate within the core of the fiber 
•Acceptance Cone = 20NA 
•Light rays entering the fiber that exceed the angle NA will enter the 
cladding and be lost 
•For the best performance the NA of the transmitter should match the 
NA of the fiber 

n0




w. wang
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NA derivation

We know and

Since

Assume the NA is the half angle of the acceptance cone, 

we get

sinNA=(n1
2-n2

2)1/2 = n1sqrt(2)
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We define a parameter through the following equations.

When  << 1 (as is indeed true for silica fibers where n1 is very nearly equal to 
n2) we may write

w. wang
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Single mode fiber critical angle <20o

Multimode fiber critical angle  <60 o

w. wang
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In a short length of an optical fiber, if all rays between i = 0 and im are launched, the 
light coming out of the fiber will also appear as a cone of half-angle im emanating from 
the fiber end. If we now allow this beam to fall normally on a white paper and measure 
its diameter, we can easily calculate the NA of the fiber.

For a typical step-index (multimode) fiber with n1  1.45 and   0.01, we get

so that im  12°. Thus, all light entering the fiber must be within a cone of 
half-angle 12°.

Example

w. wang
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