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Week 12

* Course Website:
http://courses.washington.edu/meS557/sensors

* Reading Materials:

- Week 12 reading materials can be found:
http://courses.washington.edu/me557/reading/
* Proposal meeting this Wednesday (1-6PM, Delta 319)
* Work on Lab 2 (arrange time to meet with TA)
* HW 3 due today (If you need more time, let me know)

* Proposal due Next week (please follow the instruction on our
website)

* Final presentation 1s on 12/23,, final report due 1/7/20
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This Week

Waveguide structures and materials
Waveguide modes

Field equations

Waveguide modes, n g dispersion equation

Guided modes 1n symmetric and asymmetric slab
waveguides

General formalisms for step-index planar waveguides
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Light rays and light
waves

Wave front

Wave from the bubble Light rays and wavefronts
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Geometric construct of a light
ray we can 1llustrate propagation,
reflection, and refraction of light

Typical light rays in (a) propagation, (b) reflection, and (c) refraction
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Physical Mechanic: Total Internal Reflection
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Hyperphysics

Refraction of light at a dielectric interface 1s governed by
Snell's law: n, sin6i = n, sinOr.

When n, > n,, light bends away from the normal (6r > 6i).

At a critical angle 0i = O¢, Or becomes 90° (parallel to interface).
Total internal reflection occurs when 0i > Oc.
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History of Total Internal Reflection
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Jean-Daniel Colladon
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* First demonstration of light remained confined to a falling
stream of water (TIR) in 1841 by Daniel Colladon in
Geneva.

* Demonstrated internal reflection to follow a specific path
to John Tyndall (1870 experiment in London).
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Geometrical-Optics Explanation

Ray picture valid only within geometrical-optics approximation.

Useful for a physical understanding of waveguiding mechanism.

It can be used to show that light remains conned to a waveguide
for only a few specific incident angles if one takes into account
the Goos-Hanchen shift (extra phase shift at the interface).

The angles corresponds to waveguide modes in wave optics.

For thin waveguides, only a single mode exists.

One must resort to wave-optics description for thin waveguides
(thickness d ~ A).
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Waveguide Structure

* Metallic waveguide (hallow metal
waveguide, coaxial cable, micro strip)

» Dielectric waveguide (optical fiber,
integrated waveguide)
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Differen¢es Between Metallic and

Q%‘ S

=>Dielectric Waveguides

. Aixm&l*ﬁr&neter wave frequencies and above, metal is not a good
%&&@Mnductor so metal waveguides can have increasing
”Zoe\\%\ attenuation. At these wavelengths dielectric waveguides can
have lower losses than metal waveguides. Optical fiber is a form
of dielectric waveguide used at optical wavelengths.

* One difference between dielectric and metal waveguides 1s that at
a metal surface the electromagnetic waves are tightly
confined; at high frequencies the electric and magnetic fields
penetrate a very short distance into the metal (smaller the
skin depth). In contrast, the surface of the dielectric waveguide
is an interface between two dielectrics, so the fields of the
wave penetrate outside the dielectric in the form of an
evanescent (non-propagating) wave.
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Skin effect in conductor

We can derive a practical formula for skin depth : 100 -
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reciprocal of its conductivity:p = 1/0 0001 N
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Skin eftect

Skin effect is the tendency of an alternating electric
current (AC) to become distributed within a conductor
such that the current density is largest near the surface of
the conductor, and decreases with greater depths in the
conductor. The electric current flows mainly at the "skin"
of the conductor, between the outer surface and a level
called the skin depth. The skin effect causes the effective
resistance of the conductor to increase at higher
frequencies where the skin depth is smaller, thus reducing
the effective cross-section of the conductor. The skin
effect is due to opposing eddy currents induced by the
changing magnetic field resulting from the alternating
current. At 60 Hz in copper, the skin depth is about 8.5
mm. At high frequencies the skin depth becomes much
smaller. Increased AC resistance due to the skin effect can
be mitigated by using specially woven litz wire. Because
the interior of a large conductor carries so little of the
current, tubular conductors such as pipe can be used to
save weight and cost.

w wang

Distribution of current flow in a
cylindrical conductor, shown in
cross section. For alternatin
current, most (63%) of the
electric current flows between the
surface and the skin depth, 9,
which depends on the frequency
of the current and the electrical
and magnetic properties of the
conductor
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Penetration Depth
(dielectric and slight conductive)

According to Beer-Lambert lawType equation here., the intensity of an
electromagnetic wave inside a material falls off exponentially from the

surface as
‘ I(Z) = Ioe_“z

If 3, denotes the penetratiomrwe have ,=1/o"Penetration depth" is one term that
describes the decay of electromagnetic waves inside of a material. The above
definition refers to the depth o, at which the intensity or power of the field decays
to 1/e of its surface value. In many contexts one is concentrating on the field
quantities themselves: the electric and magnetic fields in the case of
electromagnetic waves. Since the power of a wave in a particular medium is
proportional to the square of a field quantity, one may speak of a penetration depth
at which the magnitude of the electric (or magnetic) field has decayed to 1/e of its
surface value, and at which point the power of the wave has thereby decreased to

1/e or about 13% of its surface value:

1 _ 2 lightl (highly
§, = — = — — 24,/ (slightly = | (2= |
a2 « v conductive) 0, = la= (w ua) 0 conductive)

Note that ¢ 1s identical to the skin depth, the [atter term usually applying to metals in
reference to the decay of electrical currents or we only use penetration depth to descrie

the media
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Highly Conducting Media

For highly conducting medium, c/we >>1, the k constant can be

simplify to
ke~ EEC )= on(@)( - )
)\
“at\g

The penetration depth 0, = / (w_ua) 8“ ig@(déﬁtﬁ) only for

highly conductive m|edia. e “eq“ ‘
\\'\%\‘e o

o = wUa/2
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For Slightly Conducting Media

For slightly conducting media, where 6/me <<1, the constant
k can be approximated by

k=k—ja=wJEE(lj )"~ ey =)

20E

Penetration depth|o, = 1/a. = % % (here we don’t have

skin depth, skin depth only refers to metal)

Independent of wavelength
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Reflectivity (%)
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Typical Metal and Dielectric Waveguides
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Figure 1.1: Examples of closed waveguides.
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Figure 1.2: Examples of open waveguides.
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metallic waveguide
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Field contfinement
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Dielectric Waveguide

 The basic structure of a dielectric waveguide consists of a
longitudinally extended high-index optical medium, called the
core, wh1ch 1S transversely surrounded by low- 1ndex media, called

* The characteristics of a Wavegulde are determméd by the -
transverse profile of its dielectric constant g(x, /v)/a,,, whtch*is
Independent of the longitudinal (z) direction. i

F ,:" S,
. &7 [q*
RIS SRy

» For a waveguide made of optically isotropic media, we can
characterize the waveguide with a single spatla‘llv dependent
transverse profile of the index of refraction n(x, V).
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Dielectric Waveguide

There are two basic types of waveguides:

 In a nonplanar waveguide of two-dimensional transverse
optical confinement, the core 1s surrounded by cladding n all
transverse directions, and n(x, y) is a function of both x and y
coordinates (e.g. channel waveguides ‘%/the optical fiber)

 In a planar waveguide that has optical confinement in only one

transverse direction, the core is s iched between cladding

layers 1n only one/ direction, say the x direction, with an index

profile n(x). The /core of a planar/'waveguide is also called the

n
waveguides for
W. Wang planar rectangular optical s {e.g. laser chips) 24

waveguide waveguide fiber




Dielectric Waveguide

X
y n
~ *.%.2) ! . 6.7)
(n; > ny, n3) (n; >ny)

Planar (slab) waveguides for Cvlindrical optical fibers
inteorated photonics (e.o_laser chips

Optical waveguides are the basic elements for confinement and

transmission of light over various distances, ranging from tens or
hundreds of um in integrated photonics to hundreds or
thousands of km in long-distance fiber-optic transmission.
Optical waveguides also form key structures in semiconductor
lasers, and act as passive and active devices such as waveguide
couplers and modulators.
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Light can be guided by planar or rectangular wave
guides, or by optical fibers.

planar rectangular  optical
waveguide wavegulde fiber

Optical waveguides are used as components in
sensors, integrated optical circuits or as the
transmission medium in local and long haul optical

communication systems.

W. Wang 26
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Optical Fiber

Optical fiber 1s typically a circular
cross-section dielectric waveguide
consisting of a dielectric material
surrounded by another dielectric
material with a lower refractive index.
Optical fibers are most commonly made
from silica glass, however other glass
materials are used for certain
applications and plastic optical fiber can
be used for short-distance applications.

W. Wang D fiber and Rectangular fiber
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Rectangular Waveguide

Microns scale structure
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Strip Waveguide

* Rectangular waveguide

« Use 1n integrated optical circuits and in
laser diodes

e Mach-Zehnder interferometers and
wavelength division multiplexers

* Produced by a variety of means, usually by
a planar process

» The field distribution in a rectangular
waveguide cannot be solved analytically,
however approximate solution methods,
such as Marcatili's method,[3] Extended
Marcatili's method and Kumar's method,
are known.

* Field distribution can be solved numerical
using various FEM, FTDT or BPM
method.

W. Wang
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SOI-strip-waveguide and SOI-slot-waveguide

PHOTOPTICS, At Berlin, Volume: 3
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Rib Waveguide

* Consists of a the slab with a strip (or several
strips) superimposed onto it.

W . Wang, Journal of the Optical Society of America B, Vol. 26, Issue 6, pp. 1256-1262 (2009)

W. Wang 30



Segmented waveguides and
photonic crystal waveguides

have periodic changes in their cross-
section while still allowing lossless
transmission of light via so-called

Segmented waveguide

Bloch modes. ﬁm#
segmented waveguides (with a 1D e A
patterning along the directionof > LN T
propagation) or as photonic crystal e
T ]

waveguides (with a 2D or 3D

patterning). h Modal patterns of the Bloch mode
L. Gunn, Vol. 22, No. 7/July 2005/J. Opt. Soc. Am. B

silicon-on-insulator waveguide
designs for simultaneously achieving
both low-loss optical confinement and
electrical contacts

hollow-core photonic
crystal fiber

20 pm

Vol. 16, No. 22 / OPTICS EXPRESS 17972 31
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Waveguide

Materials

Semiconductor waveguides: GasAs, InP, et.

Electro-optic Waveguides: LiNbO;, EO polymer
Glass Waveguides: Silica (S10,), SION

- silica-on silicon techno

- Laser-written waveguid

(0324
CS

Silicon-on-Insulator (SO!

) Technology

Polymer waveguides: Su8, PMMA, PDMS, PU, etc.

My research

W. Wang
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Semiconductor Waveguides

Useful for semiconductor lasers, modulators, and photodetectors.

=

»
»

W. Wang

¢ Semiconductors allow fabrication
of electrically active devices.

¢ Semiconductors belonging to llI-

V Group often used.

e [wo semiconductors with differ-
ent refractive indices needed.

e They must have different
bandgaps but same lattice
constant.

e Nature does not provide such
semiconductors.

Lattee conitant (L)

aa

i®
L]

=
=]

i
k=]

-
=

& ]
i

0%

Baragap wavelengt™ (ur)
100 08 07 08
L L L L

as

0%

Bandgas energy lev)

20

33



=)

Ternary and Quaternary
Compounds

e A fraction of the lattice sites in a binary semiconductor (GaAs, InP,
etc.) is replaced by other elements.

e lernary compound Al,Ga;_,As is made by replacing a fraction x of
Ga atoms by Al atoms.

o Bandgap varies with x as

E,(x)=1424+1247x (0 <x < 0.45).
¢ Quaternary compound In;_,Ga,As,P_, useful in the wavelength
range 1.1 to 1.6 um.
e For matching lattice constant to InP substrate, x/v = 0.45.

e Bandgap varies with v as E,(v) = 1.35 = 0.72y+0.12)?.

W. Wang
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Fabrication Techniques

Epitaxial growth of multiple layers on a base substrate (GaAs or InP).

Three primary techniques:
e Liquid-phase epitaxy (LPE)
B . Vapor-phase epitaxy (VPE)
e Molecular-beam epitaxy (MBE)

VPE is also called chemical-vapor

deposition (CVD).

p=InGaAsP
(CONTACT LAYER) ™\

p~ InP{CLACDING)

\

n-InP

p-InP
(BLOCKING LAYER)(

n=InP
{BUFFER)

n=InP
(SUBSTRATE)

ACTIVE ( InGoAsP)

Metal-organic chemical-vapor deposition (MOCVD) is often used in

practice.

W. Wang
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Metalorganic vapor phase epitaxy

CH )Le W:R actor

%@@@@%@@@@@@@
el ooty

Metalorganic vapor phase epitaxy (MOVPE), also known as organometallic vapor phase epitaxy
(OMVPE) or metalorganic chemical vapor deposition (MOCVD), is a chemical vapor deposition method

used to produce single or polycrystalline thin films. 1t is a hignly

complex process for growing crystalline layers to create complex semiconductor multilayer structures. In
contrast to molecular beam epitaxy (MBE) the growth of crystals is by chemical reaction and not
physical deposition. This takes place not in a vacuum, but from the gas phase at moderate pressures
(10 to 760 Torr). As such, this technique is preferred for the formation of devices incorporating
thermodynamically metastable alloys, and it has become a major process in the manufacture of
optoelectronics

W. Wang 36



MOCVD

Run/Vent

Sussem by Reaction Chamber

Hydride

a1

Alkyl
Source

In the metal organic chemical vapor deposition (MOCVD) technique, reactant gases are
combined at elevated temperatures in the reactor to cause a chemical
interaction, resulting in the deposition of materials on the substrate.

A reactor is a chamber made of a material that does not react with the chemicals being used. It must also
withstand high temperatures. This chamber is composed by reactor walls, liner, a susceptor, gas injection
units, and temperature control units. Usually, the reactor walls are made from stainless steel or quartz.
Ceramic or special glasses, such as quartz, are often used as the liner in the reactor chamber between the
reactor wall and the susceptor. To prevent overheating, cooling water must be flowing through the
channels within the reactor walls. A substrate sits on a susceptor which is at a controlled temperature. The
susceptor 1s made from a material resistant to the metalorganic compounds used; graphite is sometimes
used. For growing nitrides and related materials, a special coating on the graphite susceptor is necessary

to prevent corrosion by ammonia (NH3) gas.
W.pWang Y ( e 37




Chemical Vapor Deposition

= I~

_— (a) © substrate

b): Substrat ~ —
(b): Substrates (e): electrodes (b)- plasma g
| | ~ (d): to pump

PECVD ] “. @,

Chemical vapor deposition (CVD) is a chemical process used to produce high
quality, high-performance, solid materials. The process is often used in the
semiconductor industry to produce thin films. In typical CVD, the wafer
(substrate) is exposed to one or more volatile precursors, which react and/or
decompose on the substrate surface to produce the desired deposit. Frequently,
volatile by-products are also produced, which are removed by gas flow through
the reaction chamber

W. Wang 38



PECVD
| /|:| @): substrate

(e) : electrodes (b): plasma
—

T~ (d}: to pump

T (e) : source gas

+ carrier gas

Plasma-Enhanced CVD (PECVD) — CVD that utilizes plasma to enhance
chemical reaction rates of the precursors. PECVD processing allows deposition
at lower temperatures, which is often critical in the manufacture of
semiconductors. The lower temperatures also allow for the deposition of organic

coatings, such as plasma polymers, that have been used for nanoparticle surface
functionalization

W. Wang 39



Quantum-Well Technology

e Thickness of the core layer plays a central role.

e If it is small enough, electrons and holes act as if they are confined
to a quantum well.

e Confinement leads to quantization of energy bands into subbands.

e Joint density of states acquires a staircase-like structure.

e Useful for making modern quantum-well, quantum wire, and
quantum-dot lasers.

e in MQW lasers, multiple core layers (thickness 5-10 nm) are
separated by transparent barrier layers.

e Use of intentional but controlled strain improves performance
in strained quantum wells.

W. Wang 40



Doped Semiconductor Waveguides

e To build a laser, one needs to inject current into the core layer.

e This is accomplished through a p—n junction formed by
making cladding layers p- and n-types.

e n-type material requires a dopant with an extra electron.
e p-type material requires a dopant with one less electron.
e Doping creates free electrons or holes within a semiconductor.

e Fermi level lies in the middle of bandgap for undoped
(intrinsic) semiconductors.

e In a heavily doped semiconductor, Fermi level lies inside
the conduction or valence band.

W. Wang
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p—n junctions (basic light emitting diode)

e Fermi level continuous across the
p—n junction in thermal equilib-
rum.

e A built-in electric field separates
electrons and holes.

e Forward biasing reduces the built-
in electric field.

e An electric current begins to flow:
I = Llexp(qV /kgT) — 1]. FITEI e e e x

E.‘v
(b) p-type Active n-type

e Recombination of electrons and
holes generates light.

W. Wang 42



Electro-Optic Waveguides

e Use Pockels effect to change refractive index of the core layer with
an external voltage.

e Common electro-optic materials: LiNbO3, LiTaO3, BaTiOs.

e LiINbO3 used commonly for making optical modulators.

e For any anisotropic material D; = 8023321 &iiE;. }

e Matrix &; can be diagonalized by rotating the coordinate system
along the principal axes.

e Impermeability tensor 1;; = 1/¢&;; describes changes induced by an
external field as n;;(E?) = 1n;;(0) + X riji Ef.

e Tensor rjj is responsible for the electro-optic effect.

W. Wang 43



Lithium Niobate Waveguides

e LiNbO3 waveguides do not require an epitaxial growth.

e A popular technique employs diffusion of metals into a LINbO3 sub-
strate, resulting in a low-loss waveguide.

e [he most commonly used element: Titanium (Ti).

e Diffusion of Ti atoms within LINbO3 crystal increases refractive
index and forms the core region.

e Qut-diffusion of Li atoms from substrate should be avoided.

e Surface flatness critical to ensure a uniform waveguide.

W. Wang 44



LiNbO; Waveguides

e A proton-exchange technique is also used for LINbO3 waveguides.

e A low-temperature process (~ 200°C) in which Li 1ons are replaced
with protons when the substrate is placed in an acid bath.

e Proton exchange increases the extraordinary part of refractive index
but leaves the ordinary part unchanged.

e Such a waveguide supports only TM modes and is useful for some
applications because of its polarization selectivity.

e High-temperature annealing used to stabilizes the index difference.

e Accelerated aging tests predict a lifetime of over 25 years at a tem-
perature as high as 95°C.

W. Wang 45



LiNbO; Waveguides

Channel waveguide
\ Contacts LiNbO3

/
/

e Electrodes fabricated directly on the surface of wafer (or on
an/5ptically transparent buffer layer.

e An adhesion layer (typically Ti) first deposited to ensure that
metal sticks to LiINbOs;.

e Photolithography used to define the electrode pattern.

W. Wang 46



Silica Glass Waveguides

e Silica layers deposited on top of a Si substrate.

e Employs the technology developed for integrated circuits.

e Fabricated using flame hydrolysis with reactive ion etching.

e Two silica layers are first deposited using flame hydrolysis.

e Top layer converted to core by doping it with germania.

e Both layers solidified by heating at 1300°C (consolidation process).
e Photolithography used to etch patterns on the core layer.

e Entire structure covered with a cladding formed using flame hydrol-
ysis. A thermo-optic phase shifter often formed on top.

W. Wang 47



Flame Hydrolysis
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The Flame Hydrolysis Deposition tool (FHD) is a state-of-the-art system for the growth of silica to form
waveguide structures for integrated photonic circuits. The system allows the precise doping of
germanium, phosphorous and boron within the silica films and is particularly optimised for the growth of
films with high photosensitivity for direct UV laser writing of advanced photonic circuits. The tool can
grow films ranging from 2 to 50 microns in thickness. The system is designed to deposit onto 150mm
silicon wafers (other substrates can also be used) and has a high throughput of up to 30 wafers per day.

W. Wang 48



Vapor axial deposition

VAD preform
T rotated and raised

S S, _‘,,:;;:,“ :: FHD bumer
Outerclad | === ransiated radially Turnfable

Burner f Y, rotated
1 - H

Innerclad \k -' - -
Bumer I ' .,-" -

e

Core Bumer

Figure 2.1, a) Schematic of Vapour Axial Deposition process,
b) Schematic of typical Flame Hydrolysis Deposition process

« Refractive indices can be carefully controlled using VAD

 VAD is a very important process and accounts for a large proportion of
world fibre production. It was originally intended to be a continuous

process which would have a lot lower cost than the batch processes.
W. Wang 49



Silica-on-Silicon Technique

% FHD o
4 Corg

S5i02-Ge0 2 glass parlicies

SOy glass partcles

- SiQ, glass partickes
naarc .

g Owerdadding
RIE  Reactive ion etching Thermo-optic phase shifter
m— ¥ S
non

Steps used to form silica waveguides on top of a Si Substrate

W. Wang



Silica Waveguide properties
e Silica-on-silicon technology produces uniform waveguides.

mm) * Losses depend on the core-cladding index difference
A= (ny—ny)/ny.

e Losses are low for small values of A (about 0.017 dB/cm
for A=0.45%).

e Higher values of A often used for reducing device length.
e Propagation losses ~0.1 dB/cm for A = 2%.

e Planar lightwave circuits: Multiple waveguides and optical
components integrated over the same silicon substrate.

e Useful for making compact WDM devices (~ 5 x 5 cm?).

e Large insertion losses when a PLC is connected to optical fibers.

W. Wang 51



Packaged PLCs

Outpul fibers

Input fibers

e Package design for minimizing insertion losses.
e Fibers inserted into V-shaped grooves formed on a glass substrate.
e Glass substrate connected to the PLC chip using an adhesive.

e A glass plate placed on top of V grooves is bonded to the PLC chip

W. Wang 52



Silicon Oxynitride Waveguides

e Employ Si substrate but use SION for the core layer.

e SION alloy is made by combining SiO, with SisN4, two dielectrics
with refractive indices of 1.45 and 2.01.

e Refractive index of SION layer can vary from 1.45-2.01.

e SION film deposited using plasma-enhanced chemical vapor

deposition (SiH4; combined with N>O and NHj3).

e Low-pressure chemical vapor deposition also used

(SiH,Cly combined with O, and NH3).

e Photolithography pattern formed on a 200-nm-thick chromium layer.

e Propagation losses typically <0.2 dB/cm.

W. Wang 33
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Silicon-on-Insulator

(a) (b)

e Core waveguide layer is made of Si (n; = 3.45).
e A silica layer under the core layer is used for lower cladding.

e Air on top acts as the top cladding layer.

e Tightly confined waveguide mode because of large index difference.

e Silica layer formed by implanting oxygen, followed with annealing.
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Laser Written Waveguides

 CW or pulsed light from a laser used for writing waveguides 1n silica
and other glasses

« Photosensitivity of Ge. Doped silica exploited to enhanced refractive
index 1n the region exposed to a UV laser (245nm)

* Absorption of 244nm light from KrF laser changes refractive index by
10 only in the region exposed to UV light

 Index changes > 10~ can be realized with a 193nm ArF laser

* A planar waveguide formed first through CVD, but core layer is doped
with Ge.

 An UV beam focused to 1 micron scanned slowly to enhanced n
selectively. UV written sample then annelid at 80°C.

W. Wang 55



W. Wang

Laser Written Waveguides
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e Femtosecond pulses from a Ti:sapphire laser can be used to write
waveguides in bulk glasses. (800nm)

e Intense pulses modify the structure of silica through
multiphoton absorption.

e Refractive-index changes ~1072 are possible.
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Polymer Waveguides

i

Ww. wang
e Polymers such as halogenated acrylate, fuorinated polyimide,
and deuterated polymethylmethacrylate (PMMA) have been
used.
* Polymer films can be fabricated on top of Si, glass, quartz,or
plastic through spin coating.
* Photoresist layer on top used for reactive 1on etching of the core

layer through a photomask.
W. Wang 57



Additional Lecture on Polymer
Optics Fabrication

* We will discuss fabrication of polymer
optics later 1n the quarter mainly on latest
development 1n using novel approach in
polymer optics.

W. Wang
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Week 13

* Course Website:
http://courses.washington.edu/me557/sensors

« Reading Materials:

- Week 13 reading materials can be found:
http://courses.washington.edu/me557/reading/
* Proposals due today

* Work on Lab 2 (arrange time to meet with TA, please finish it
this week)

« HW 3 due today

 HW 4 assigned due week 16 if need more time send the HW
electronically to abong@uw.edu after week 16

* Final presentation is on 12/23, final report due 1/7/20

W. Wang 59



Outline

Waveguide structures and materials

Field equations

Wave equations in Waveguides

Waveguide modes, n g dispersion equation

Guided modes 1n symmetric and asymmetric slab
waveguides

General formalisms for step-index planar waveguides

W. Wang 60



Waveguide Theory

« Ray approach
* Wave approach

W. Wang
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Wave Equation 1n free space and
waveguide

W. Wang
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If looking at wave propagating in a slab waveguide, the wave equation
from free space propagating in z direction:

2 2
0 E(x,y) vau g E(x,y) = 0°E(x,y)
oz 0z
1s modified for wave propagating in the slab with confinement in x
direction and plane wave propagating in z direction E(r)= E(x,y)e’” or
E(r)=(3E, + JE )e%; the wave equation becomes:

+k; n’E(x,y)=0

0’ E(x, y) O°E(x,y)

2

VE+w’u s E =
OxX oy”

+(kon” = B*)E(x, ) =0

B 1s propagation constant

If only focusing on x variation:

X{;@/'k aE(xJ/)_I_(kz 2 _ BY)E(x, y) =0

TL—.. z 5)6 68
W. Wang







E-M Field in a Planar Waveguide

Fig. 2.1. Misgram
of the basic three-
layer planar waveg-
wide structure. Three
mode are shown,
representing disin-
bumions of cleetrie

[ ficld in the x dirse-

fien

Assuming a monochromatic wave propagating in z-direction

E(r,7) = E(r)e’® =E(x, y)e Bz  jot
v “E(r) + k*n* (r)E(r) =0

0* ;
Region I: a—zE{x, y)+ l[k“f’:-'l2 - BHE(x,y) =0

X
Region II: ?E(xﬁy)ﬂkzﬂ% - B)E(x.y)=0  (wave equations)
Region it O E(x, ) +(k*n? - B2)E(x,y) =0
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Outline

Waveguide structures and materials
Field equations
Waveguide modes, n g dispersion equation

Guided modes 1n symmetric and asymmetric slab
waveguides

General formalisms for step-index planar waveguides

W. Wang 71



Waveguide modes

W. Wang
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E-M Field in a Planar Waveguide

Fig. 2.1. Misgram
of the basic three-
layer planar waveg-
wide structure. Three
mode are shown,
representing disin-
bumions of cleetrie

[ ficld in the x dirse-

fien

Assuming a monochromatic wave propagating in z-direction

E(r,7) = E(r)e’® =E(x, y)e Bz  jot
v “E(r) + k*n* (r)E(r) =0

0* ;
Region I: a—zE{x, y)+ l[k“f’:-'l2 - BHE(x,y) =0

X
Region II: ?E(xﬁy)ﬂkzﬂ% - B)E(x.y)=0  (wave equations)
Region it O E(x, ) +(k*n? - B2)E(x,y) =0
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Things covered in this section

» k vector 1n propagating and confined
direction (x, z)

W. Wang
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Waveguide modes

« \Waveguide modes exist that are characteristic of a
particular waveguide structure.

« A waveguide mode is a transverse field pattern whose
amplitude and polarization profiles remain constant along
the longitudinal z coordinate.

* Therefore, the electric and magnetic fields of a mode can
be written as follows

E (r,t)=E (x,y)expi(f, z—wt)
Ilv (”3 t) = Ilv (xﬂ ,v) exm(ﬁ»z - (‘Ut)

where v is the mode index, E (X, y) and H (X, y) are the

mode field profiles, and B, is the propagation constant of the

mode
W. Wang 75



Mechanical Vibration Analogy
Fix-Fix Boundary Mode Shape

/\

> <

dd( =Ln=0) 3rd mode (m=0.n=1)

Fix-fix resonant mode in 2 D structure

Fix-fix resonant mode in 1 D structure

W. Wang 76



Index Profiles

3
o3

* n(x)

n(x)
A waveguide 1n which the index profile has

1. abrupt changes between the core and the cladding 1s called a
step-index waveguide,

2. index profile varies gradually is called a graded-index
waveguide.

We will focus only the step-index waveguide in the class.

W. Wang 77



Ray Optics Approach to Optical Waveguide Theory

wavefronts

There are two critical angles associated with the internal
reflections at the lower and upper interfaces:

O.3= sin”'(n3/ny) Oc,= sin~t(ny/ny)
0.5 > 0., because n; > n,

If 6 > 6c, > Oc,, the wave inside the core is totally reflected at both interfaces
and is trapped by the core, resulting in guided modes.

W. Wang 78



Ray Patterns for Different Modes

This shows how ¢ needs to be to be able (in terms of refractive indices of each layer) to form //
either radiation or guided modes.

%n".'-
¢ PR | B | Hl //( ¢m f
y =sin - <si

N 71 ds3 > ¢, because ng > n, B
- - Only n, sine ¢, > n,sin
, . 5 . -1y 900, greater than both
— < SIn ¢’! < — ¢!2 > Sin sides are confined
1, 14 H-+ because ¢y3 > ¢
because n; > n,
0 v kn, kn, Higher-order kn,
o O O = = O
| ower-order
v v
/ n n n,
- 1 % | o2 i ®: 2 &
@2 n, n, » "4 My
ny "y - gl gy
¢3 l:l:-l. ¢] ¢l3
al cl
Fig. 2.10 ptical ray patterns for a air radiation modes: b subsirate radiation modes;

¢ cuided mode. In each case a portion of the incident light is reflected back into layer 3:
however, that ray has been omitted from the diagrams

W. Wang 79
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Waveguide modes

* Consider the qualitative behavior of an optical wave 1n an
asymmetric planar step-index waveguide, where n,>n;>n;.

* For an optical wave of angular frequency o and free-space
wavelength A, the media 1n the three different regions of
the waveguide define the following propagation constants:

”

ki =nw/c,k, =nw/ck,=nw/c

where k, > k; > k;

* We can obtain useful intuitive picture from considering the
path of an opftical ray, or a plane optical wave, 1n the

waveguide.
W. Wang 81



k-vector triangle

Remember only wave is propagating in Z direction

» The orthogonal components of the propagation constant, 3
and k, are related by the “k-vector triangle.”

X
Core n, ’ 0 ok,

» »
> »

k,=P

Transverse component k, = k n,cos0 = (n,w/c) cosO
Longitudinal component 3 =k, n,sin0 = (n,w/c) sind
“k-vector triangle” 3%tk 2 = (n,w/c)?

W. Wang 82



k, and B components

\ \ L l

\\ \ \1%\
\ z
|

\ \‘ \\ \
|

K,
d —B 4y :

* We can consider the “zig-zag” wa
orthogonal components traveling in the longitudinal (z) and
transverse (X) directions.

* The transverse component of the plane wave is reflected back

and forth 1n the x direction, interfering with 1tself.
W. Wang 83



Things covered in this section

* Mode field in confined direction (x)

W. Wang
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a® Guided modes

 As the wave 1s reflected back and forth between the two
interfaces, 1t interferes with itself.

=) A guided mode can exist only when a transverse
resonance (x direction) condition is satisfied (e.g. the
repeatedly reflected wave has constructive interference
with itself).

* In the core region, the x component of the wave vector 1s
k, =k, cos 0 for a ray with an angle of incidence 0, while
the z component 1s § =k, sin 0.

* The phase shift in the optical field due to a round-trip
transverse passage in the core of thickness ¢ = 2k,dcos 0.

d Ky \
I
W. Wang 85
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Most important summary
Power of sin(a)+sin(b)

Everything can be expanded or explained in a series of sin function
either a summation, multiplication or convolution. Many of our
optical theory and sensor concept exploit this concept to allow us to
study small physical changes using resolution of optical wavelength
but observed at relatively lower frequency or longer wavelength or
simplify the way we calculate them. e.g. interference or beats

< WA
sinA+sinB = 2sin(A+B)/2 *cos(A-B)/2
= WA
- WWW\WU\ LetA=kx+ot+¢, k, =2mn/A
B = kxto,t+¢, k,=2nn,/A 86
Light phenomena 1s just a superposition of waves with
different wave lengths, phase, etc. (ambient light)

W wang



T ransverse Resonance Condition

 There are phase shifts ¢, and ¢, associated with the internal
reflections in the lower and upper interfaces.

 These phase shifts can be obtained from the phase angle o@
(reflection coeff) for a TE wave ave nd that of|r . oraTM
wave (p wave) for a given 0 > O¢c ris reflecti or?cee@%% t.

* Because ¢, and ¢, are functions of 0, the transverse  outitsoon
resonance condition for construc%ence In a

roundtrip transverse passaqge Is
coen, 7 . 2k dcos0 + (p, (0) + (p (0)=2mmn

where m is an integer = 0, 1, 2, ...

Y»‘Zﬁ 290

T

Because m can assume only integral values, orﬂ*feerté#}“—
discrete values of 0 can satisfy the transverse resonance

condition. —~——
lower-order . - \ 87
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TEM Mode

Transverse electromagnetic (TEM) waves. In this case both Ez and Hz are zero.
An example of this is a plane electromagnetic wave which has both electric and
magnetic field perpendicular to the propagation direction. There is no cutoff
frequency for supporting TEM mode. It can be shown that at least two separate
conductors are needed for TEM waves. Examples of waveguides that allow TEM
modes include A coaxial cable, parallel waveguide, strip line and microstrip.
Rectangular, circular, elliptical or any hallow waveguides cannot support
TEM mode.

TEM TE ™
| | |
I I I
. | E I B
k k k
| ’E T | |
.-';.I__ __B___ .-’;J_%_____ KIJ_% |
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Transverse Electric Polarization
(TE mode)

* For slab waveguides, we define the x-z plane as the plane of incidence.

* An electric field pointing in the y direction corresponds to the
perpendicular, or s, polarization.

« \Waves with this polarization are labeled transverse electric (TE) fields
because the electric field vector lies entirely in the x y plane (i.e. Ez = 0)
that is transverse to the direction of net travel (the z direction).

Magnetic field

Ve 4
4 // >
™y s - ey
ayd Vi
/ s s
// // // // //
R Py e
Electric field R LAV
A v/ .
/ — A /
// & / g
[# b 4
AN / — Vs
2 2 // 4
o ~

< S
y
C //

core 1,

cladding
W. Wang Ray explanation
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Transverse Magnetic Polarization
(TM mode)

* For the parallel, or p, polarization, the electric field is no longer
purely transverse. It has a component along the z direction.

« However, the magnetic field points in the y direction for this
polarization is entirely transverse (i.e. Hz = 0).

The p polarization is labeled transverse magnetic (TM) in the slab.

— Wave explanation
1

E
core n 5 ™ L‘Zk o
1

cladding Electric

field

Ray explanation

W. Wang 90
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I&m@‘hher two are perfect conductors, J =0, then boundary
Q\eﬁ“%onditions requires both the tangential electric-filed and
magnetic-field components be continuous at z =0 thus,

— jk — jk — jk
e " HR ' = Tem (E component)
- k. k N iy N
Lo Mty Trm R gt — T T/t (B component)
WH, Wi, Wi,

For the above equations to hold at all x, all components
must be the same, thus we get the phase matching condition:

k.,=ksint, =k =k smf =k, =k sino,

From this we obtain law of reflection:

0, =0. Since k =k, because k> =k’ = & =k

And Snell’s Law: 1, =Cy 1€ _S
n, sing, =n, sinb, “

1
W. Wang — —£k 91
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W. Wang

Reflection Coefticient

‘ R is Complex (because n is and Function of 8

92



Reflection and Refraction

c‘a\}'se 0 Reflected

n, cos0, +n, cos0,

For TE wave: & Lo =14 1o —
TE TE TE r—r
n, c0s0, +n, coso, s Ik
n, cos0, m cosoO n
For TM wave: 2 L. ] 2 tr, =—(1+7;,) —
TM M TM I rTM
n, cos9, +n, cos0, ", P
Recall Frp = P | €Xp(J0ys )y Fryy = g |Exp(j£m)
W. Wang 93
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« Discrete Guided Modes

X 2900

The transverse resonance condition results in discrete values of the
propagation constant 3., for guided modes identified by the mode

number m.

Although the critical angles, 6., and 6.5, do not depend on the
polarization of the wave, the phase shifts, ¢.,(0) and 05(0), caused

by the internal reflection at a given angle 6 depend on the o
DOIarization' — incident angle
Therefore, TE and TM waves have different solutions for the
transverse resonance condition, resulting in different 3., and

different mode characteristics for a given mode number m.

For a given polarization, solution of the transverse resonance
condition yields a smaller value of 6 and a correspondingly smaller
value of B for a larger value of m. Therefore, Bo.> B1>By> ...

W. Wang

The guided mode with m =0 is called the fundamental mode and

m=0, 6=90° kind of true but still

those with m # 0 are higher-order mode depending on 9. and 9, gy

dc0s0% ¢,(0) + ¢,(0) = Iz |

k
Core n, k, Transverse component k, = (n,w/c) cosd

Longitudinal component 3 = (n,w/c) sinO
“k-vector triangle’] B?+k,? = (n,m/c)? 94
k, goes up with increasing m and B goes down because k,d are fixso >
when m increases, cos 6 has to increase because 2m is increasing

V4




Ray Patterns in the
Three-Layer Planar Waveguide

| n the guided region, E ~ Sil‘l( k, +y )
2 I
Bm+ kX =k 1,

Fig. 2.9. Geometnc (vectonal) relationship between the propaga-
tion constants of an optical waveguide

m B . -

Fig. 2.8, Optical ray pattern
within a multimode planar
wavegnide

For the m-th mode,

‘ Lower-order mode has smaller 6, and larger 3, (propagating faster!) phasevelocity

W. Wang 95
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Qualitative Picture of A Waveguide Mode

N Standing wave oscillation (1n the x direction)

/ \ , Look at how
E i wave is
| e ;- propating inside

waveguide in x
and z direction
over time

Core n,

* The stable field distribution in the transverse direction with only a periodic
longitudinal dependence is known as a waveguide mode.

W. Wang 96



Trigonometric Functions in Exponential Function vs.
Terms of Exponential Functions Trigonometric and

_ oX _gix
sinx = -
2i
oX 4 oix
COSX =
2
ix _ —ix
tan x = , -
i (e"x 4+ % )

w wang

Hyperbolic Functions

21
CSCX = .
X _ =i
2 X = cos x +ist X = cosh x +sinh
- ‘ (24 =COoS X Isinx g =Ccosnhx sinn x
e
i(ejx +e_jx)
cotx = .
oX _ g—ix

Hyperbolic Functions in Terms of
Exponential Functions

. eX—o % 2
sinh x = csch x = - .
2 " —e
X —X
e" +e 2
coshxr= —m8— sech x = - -
2 e" +e
X —X X —X
2" —e " +e
tanh x = - coth x = - -
e” +e e” —e 97



\0“
" Discrete Waveguide Mode

* Because m can assume only integral values. only certain discrere
values of 6 = 6, can satisfy the resonance condition.

* This results in discrete values of the propagation constant B, for
guided modes identified by the mode number m.

* The guided mode with m = 0 1s called the findamental mode and
those withm =1, 2. ... are higher-order modes.

m=20 m=1 m=2

Cladding core Cladding Cladding core Cladding Cladding ¢core Cladding

(n)) (ny) (n)) (n3) (n)) (ny) =

W. Wang 98



Mechanical Vibration Analogy
Fix-Fix Boundary Mode Shape

/\

> <

dd( =Ln=0) 3rd mode (m=0.n=1)

Fix-fix resonant mode in 2 D structure

Fix-fix resonant mode in 1 D structure

W. Wang 99



Plane Wave Propagating in a Planar Waveguide

(TM mode)
Qd
Q\

n wavefronts k

1 : l \ | ‘\61 Ljﬁ klx X
%)

L.

13

Upper field E, =Ee /" =Ee """

DOWII ﬁeld Ed — Eoe_jkdor _ Eoejh x—jpz

Where  r=xt+z2,k, =—hi- Bk, = hi- &

W. Wang 100



Plane Wave Representation
e g0 (TM mode)

O The mode field is found through the superposition of the plane
wave components. Assuming that these are in phase.

Incoreregion g =F +E,=Ee”™" =E cos(hx)e "

o

O In real instantaneous form.

E(rt)=E +E,=E ¢’ "

TE,

=2FE_cos(hx)cos(fz —wt)

Cladding n, :k

i_

d| Coren,

decay

Cladding n, {( \

W. Wang
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Trigonometric Functions in Exponential Function vs.
Terms of Exponential Functions Trigonometric and

_ oX _gix
sinx = -
2i
oX 4 oix
COSX =
2
ix _ —ix
tan x = , -
i (e"x 4+ % )

w wang

Hyperbolic Functions

21
CSCX = .
X _ =i
2 X = cos x +ist X = cosh x +sinh
- ‘ (24 =COoS X Isinx g =Ccosnhx sinn x
e
i(ejx +e_jx)
cotx = .
oX _ g—ix

Hyperbolic Functions in Terms of
Exponential Functions

X =X
. 2" —e 2
sinh x = csch x =
2 et —o ™%
X —X
e" +e 2
coshxr= —m8— sech x =
2 e* 42 %
X —X X —X
2" —e " +e
tanh x = ——8M8M— coth x =
e o= * et —e™* 102



Most important summary
Power of sin(a)+sin(b)

Everything can be expanded or explained in a series of sin function
either a summation, multiplication or convolution. Many of our
optical theory and sensor concept exploit this concept to allow us to
study small physical changes using resolution of optical wavelength
but observed at relatively lower frequency or longer wavelength or
simplify the way we calculate them. e.g. interference or beats

< WA
sinA+sinB = 2sin(A+B)/2 *cos(A-B)/2
= WA
- WWW\WU\ LetA=kx+ot+¢, k, =2mn/A
B = kxto,t+ ¢, k,=2nn,/A 103
Light phenomena 1s just a superposition of waves with
different wave lengths, phase, etc. (ambient light)

W wang



Surface waves and the reflective phase shift

* An electric field componeni in the upper cladding region
assumes the phasor form:

— _jkl.r — _jklxx —j,BZ
E, = FE e = E e e

lo

* When &, >8,,,k, becomes imaginary and can be expressed in
terms of a real attenuation coefficient x as

TE, TE,

Cladding W, :l j: S::Iiln-n[ul
1 +

|

|

d Core n; |

|

|

|

— jk e - jfBz
El — Eloe JKper — l;:1 ) iB o :( ‘

0,>0., =k =jk

B

* This 1s the phasor expression for a|surface or evanescent wave
— propagates only in the z direction. decays in the direction
normal to the interface.

W. Wang 104



AP

Q : :
«° Phase-matching at an interface

B,

As the spatial rate of change of phase at the boundary (or the projection
of the wavefront propagation) on the n, side must match with that on the
n, side, we have 3, =3,=. This condition 1s known as phase matching

condition which allows coupling of oscillating field between the two
media.

B, =p=>n,sind, =n sinf,  (Snell’s law)

W. Wang 105



o
\Q
OQ\

<
<*"Evanescent field in total internal reflection

* Phase matching at TIR 0,>0, (1.e. sinO,>n,/n,)

= kn,sin0,= 3, > kn
B, ,SIn0,= [3, 1 kLBj k. «
* k vector triangle in n; K,
k =((mk)* —(nksing,)")” B

kl — ]((nzk sin6’2 )2 _ (Vllk)z )0.5
= j((n,ksind,)* —(nk)*)™ = ji

 Evanescent field in the transverse direction

E oC e—l(‘xe—jﬂz-i-a)t

W. Wang Kis o like before 106
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Evanescent fields in the waveguide cladding

Evanescent wave outside the waveguide core decay exponentially
With an attenuation factor given by 8
dn L , n

= ((n,ksing,)* —(mky)"

In the upper layer (x > d/2) ->nz
-2

E _ Ele—K(x—d/2)e—j,Bz+a)t n,
In the lower layer (x < -d/2) Kis a lik? in.
| hand derivatipon
E _ Elel((x+d/2)e—],6’z+a)t

Where E, peak value of te electric field at lower (x=-d/2)
and upper (x=d/2) boundaries.

W. Wang 109



Guided Modes In a Planar Waveguide

YA

B=s =

m: Mode order

Only discrete values of are allowed in a waveguide.

110
w. wang



Waveguide Mode observed at the end of a Slab Waveguide

Fig. 2.5 Dicgram of

e lloseope an es permmendal sei-

Bheploy up than can he wsed
o messure optical
0SCILLD. mode shapes [2.4]
SC0OPE
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Powet : Somple  with
sanitar cleaues Ga TFG and TEI MODE PROFILES
. oned ey Delocto-

L

15 4% 3

Haam -’J/

i .- I age
] ' . Converier
oo @ /o o
Splillar picraposticrer Maunia
L’f

faiiing TI'LI;I‘I;IT‘ Bisplay Fig. 1.5 Ciprical mode shapes ae mewsured using
syncrronized  with = iz, 2.3 'he wavernids in this cas
Onzilloseops Swaep st _uiew i Upjiniits ol Fig e Lhe e E{-I!u'].. WIS G
was formed by proton soplantativn inle a gallum
arsenide substrate g proslues & 5 pm thick cuie
AIR =4 CLIDE = SUE. compensated kayer |2,12]
W. Wang 111
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Examples of Optical fiber modes
" 1P

LHTICAL FIRGRS WITH YL R S FEF N e es

Flgure LY, lcenaity ooy for dhe din LP modes. with = = 1 faj PG, - X AP ms
(A LA rdn L 15, deh 4P n AT s

Figmre 19, | oasarwed

W. Wang 112
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Things covered in this section

* Doy

W. Wang 113
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time harmonic function)

Dispersion equation

| 4
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X - s , ™
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k (“(42’ 2)('::: —# [\L S(uzvs kon _a)/c‘
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> 7 Zﬁ (K: Wave n““"be'ty‘r‘/?ra( )
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Waveguide effective index

* We can define the waveguide phase velocity Vv, as

Based on Dispersion

equation, only Z v. = o/ ﬁ Core n, ‘
direction is P

propagating so

* We now define an effective refractive index n_ as the free-space
velocity divided by the waveguide phase velocity.

Nng = cl/lv
eff 1

v
Or ngy=¢pf/w|=p/k

» => neff = nzsine

* The effective refractive index 1s a key parameter 1n guided
propagation, just as the refractive index 1s i unguided wave travel.

W. Wang 115



» For wave guiding at ny-n, interface, we see that n;<n g <n, ;.5 ,,
1> 3 . . . _ . —
n>3Since S, == n,sinf, =n,sinf, = N4

» At 0,=90°, n

=n, => a ray traveling parallel to the slab (core)
has a effective index that depends on the guiding medium alone.

I At 0,=0,, 0,=0°, n. = n, => the effective index for critical angle
rays depen . )nh;fegaa the outer material n,

The effective refractive index changes with the wavelength
(1.e. dispersion) 1n a way related to that the bulk refractive index does.

The wavelength as measured 1in the waveguide 1s

) = A/n
W. Wang “owaveguide  * 7 “ell 116




Things covered in this section

* Dispersion equation in confine direction (x)

W. Wang 117



Dispersion Equation in Waveguide

W. Wang 118



Dispersion Equation in Waveguide

* Looking at Phase term to figure out guided
modes

W. Wang 119



Things covered in this section

* Derive dispersion equation with TE TM
reflection coefficient

* Dimensionless parameters: normalized
frequency, normalized guided index,
asymmetry, dispersion equation with above
parameters, mode number, effective film
thickness

W. Wang 120



Reflection coefficient at BC

Looking at :

* How phase shifts ¢, and ¢; associated with the
internal reflections in the lower and upper interfaces.

 How these phase shifts can be obtained from the
phase angle of r, (reflection coefficient) for a TE wave
(s wave) and that of r, for a TM wave (p wave) for a
given 6 > 65, 6., and 0,,..

W. Wang 121



Reflection and Refraction

Reflected
Wave

Incident
wave ¥

n, cos0, +n, cos0,

For TE wave: I Lo =1+ P —
TE TE TE r=—r
n, cos0, +n, cosO, s Ik
1, c0s0, n;cosO n
For TM wave: 2 L. ] 2 tr, =—(1+7;,) —
TAM TM M = Ity
n, cos 0, +n; cos, ", P
Recall Frp = vy [ €Xp(JQs )s Fray = Fpag | €XPJO7y, )
W. Wang 122
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Total Internal Reflection for TE Wave

tan

.2 .2 2 . 2 2
¢H5_:Jmn 0, - sin Bc__Jn,mn 0,- n

1 '_ |' ‘F - Iy
: Fa
l==| [ ] A ¢ r
z/; EREEY-
i 5 A
L HEENEEE =
0 O noE D . o

5 #

Flgure 62-3  Mapnitude and phass of the refiection cosffcient for internal refiecrion of the TE

wave [my . = 1.5
‘W, Wang

1, cos 0,

. |

= 20" \;mﬂ
h By
Fig. 2.3, Phase shift ¢pp of the TE mode as

a function of the angle of incidence #y

123
w. wang
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Total Internal Reflection for TM Wave

.2 ) 2 . 2 2

t Oy \/sm 0, - sin” 0, nf n sin” 0, - n;

dll —— = = =
2 cos®, sin’ @ n 1, C08 0,

] [
1 _’.5-"‘
. AT
|| * Fy i
i i
N/ : LS
0 6g &, a0 o fr Oc S0+
E}_ .ﬂ'l

Figure 8.2-8 Magnitude and phase of the reflection coctficicnt for internal reflection of the T™

W. Wang "¢ (m/i = L3, 124
Ww. wang



Derivation for
Irp and 1y

///R

f{e*((ec:fi% 7 é RQ ﬂpm{f{%\ :

_—

—P

¥y ("’5@! ~ Yalese,

TE - e T Them o~ el

((Of&r -{-7)2 (05_@6
N, & -
- g n@se " 7],Cles @, P
T Ceslous | TR Ne
PRLTE f W tav
) )
(ol € Vi = /YT ( cNSrL_- AL
psgndud Phaseshift due

to reflection

C56s = A /- g 2 _ 2
- [~ 5m* @, >[/(g~){m,ga\]%

W. Wang 125



73 )

% T& wave TE:-{-a_,Q |w+e~<—muﬁ FE'(/@C-{-(?_%

M T s, 8

- KUY

Remember 6, = 6, 0, = 90 and siné?l=M =Iz

ny ny
\
. S
_ S C‘)C
Yo Look at next
— 2z

2 2/ - - S 5: page and see

< O { a — why cosf is

= . imagina
= ﬂl 5076, bg(wﬁ 71 Ilg_fﬂ@ — o gmary
and N b L Tesmes __ (phase matching condition)

& = =5 77, cos@g, <S'ﬂ29‘+6952@¢_);

P z
6__ 4.—»9; _/]L

e oy R il e

[ > -
A B (4-B"+2;,46)

[ Vi | & 7% = [ Rl Pcferin)

Total internal reflection
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Transverse resonance condition

Dispe

Dispersion Equation

Fig.2.5. Side-view of a slab
wavegulde showing wave noz-

NI A

mals of the zig-zag waves cor-

responding to 2 guided mode

SUBSTRATE Be A S

2knfh cos 0-

kﬂfhcos
Z(I)c =¢TE,TM |
2¢’s =¢TE,TM

z 2 SUBSTRATE

2¢c: = 2(1)5 = 2}?&"}'[ 111 : mode number

: phase shift for the transverse passage through the film

. phase shift due to total internal reflection from film/cover interface

hase shift due tal internal reflection from film/substrate interface

sion equation (P vs. o):

The phase shift can be representing the zig-

' —_ ag ray at a certain depth into the confinin
knghcos® -0, -0, =mm 5 P :

Effective guide index

W. Wang

layers 1 ad 3 before it is reflected (goos-
Hanchen shifts- lateral shift)

j\f’:%:ﬁfsinﬁl HS{ﬁ“T{Hf 129

w. wang
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Graphical Solution of the Dispersion Equation

Find 6 with different h and A m=0 Plotting left and right side of
knhcos =g, 49,
g = 0=900, ¢c = /2

Q° 20° 40" 60" 20°
1 1 1

—— Symmetrical waveguide, o, = ¢,
knhcosd

Above critical angle

e B Asymmetriﬂal WEVEQUidE: ¢'5 = ¢'ﬂ

dsymmetric solutio \4\ TE
T | 7
. 7
I Wiy | //
| (.. / 1
. ¥ 90¢
E‘I'rnfh ] “

y . Fig.2.6. Sketch of graphical solution ap=
of the dispersion equation. for the, ;
fundamental modes| of symmetric and | | |

. . ' ‘ asymmetric slab waveguides o i
8. %
knhcosé 0 £ 2

2¢¢=0 de+hs=0

For fundamental mode (m = 0), there is always a solution (no cut-off) for symmetrical waveguide.

Increasing h (and/or decreasing %) will support more modes. « (will show again in VB curve)

W. Wang 131
Ww. wang
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See how [ relates to frequency

TE, mode
Ispersion relation

TE, mode
iIspersion relation

-
-
-~
-
-

o7 k=0l &

1 ; TE1 Ih'lOdE
o

disp:ersion relation

2knhcos6-2¢,-2¢, = 2mm

BHK2 = (n,0/c)?

W. Wang

v

@3
How does one obtain dispersion curves?

(1) For a given frequency & find k_using:

{tan = »}_ \{wzﬂo(ﬂ-ez) v

=

(2) Then find k, using:

"‘z'\[mzl‘oﬂ‘k‘%

135









Outline

Waveguide structures and materials
Field equations

Waveguide modes, n

Wave equations in Waveguides

Guided modes 1n symmetric and asymmetric slab
waveguides

General formalisms for step-index planar waveguides

W. Wang 138



Numerical Solution for Dispersion Relation (l)

Another common way to do this is to introduce the normalized

a2
Define: parameters so that you don’t have to worry about the dimension _ o
. o™
Normalized frequency and film thmkness 5 R
, W
"=kh ,n n L0ed
N ’s \JO\)G?*
L | - b
Normalized guide index = @W‘“
AT & P v
b — N? 1, R c0d®
g | “ 0
ny-n; e
b = 0 at cut-ooff (N = n,), and approaches 1 as N-> n,.
{substrate radtattomrmode; m>=0) tgurde-mode; m=0)
Measure for the asymmetry
4 > 9
n-f“ e n. - n. . .
a=———forTE, a=—Fr———forTM
n, n_\ n. ny” n

a = 0 for perfect symmetry (n, = n_), and a approaches infinity for strong asymmetry (n \g N, Ng ~ Ny).

Table 2.2, Asymmelbsy measures for the TE modes (ag) and the TM modes (apg) of
slab waveguides

Waveguide g g rig ag e
GaAlAs, double 366 3.8 3.55 0 0
heterostructure
Sputtered glass 1.515 1.62 1 3.9 27.1
Ti-diffused LikNbO: 2214 2,234 1 43.9 1093
W. Wané)ul:uiili'uan::d LiNLCs 2214 2,215 1 881 21206 139




The normalized frequency, also
known as the V number, of a

step-index planar waveguide is
defined as

»

The propagation constant § can be
represented by the normalized

guide index:

1

b:(ﬁz'kzz)/ (k12'k22)

W. Wang

o

(dimensionlesé)

B

(dimensionless)

140



P C‘J% ( AS =As ) (radlatloode)
We know {

a< r == e (Lowest order mode m=0)
P Oa Sl fov the &) W
-0
L ¢ e . *
ne - Ny

emte (®
O = 0 S Percec-t' ’7(’”’;?:&)

A = & ﬁY 54@,7 a))um-r-fry

W. Wang 141



Numerical Solution for Dispersion Relation (1)

or TE modes, dispersion relation 1/— Bra
- -1 D |0 +d
e kn hcos®—¢ .- =mn >  Vl- b =mn+ tan | +tan |
e : | \1- b V1- b
- | Curve sho Ver readnes i g i —
. : Uniless really high frdquency ;ﬁ—*—_l | - m - Mode number
T 2 | |
? 1 i .
al I ,/’}" ZZEE (Normalized) cut-off frequency:
: Wl P
: Y/ pZ4uny” Vo =tan Va
/il 7 w2
i /,f | T L1 | | bz V. =V, +mn
ammuw// ARV
o 5 /,HW 7777 /I/J{//;r'f | # of guided modes allowed:
| ; L
HERS7 74
Smwirmme// ARV ] m2t 22
S | N T
T T 2, |
2 wiaY; LI | <Example>
Elg(;’n q ‘; J il ; / . ;,f ,*’j ./ xf‘ / AlGaAs/GaAs/AlGaAs double heterostructure
O ﬂwﬁ v/-/,?/q-_?/i,g% n = 3.55/3.6/3.55
v\ Ay Y/
0 ? B 8 o 12 4 16
V= k]‘l[n{E-nle:lE
Fig. 2.8NWangized w- diagram of a planar slab waveguide showing the guide index & 142

as a [unction of The normalized thickness V' for various degrees of asymmetry [2.20] W. wang



Total Internal Reflection for TE Wave

Ga* 8o+

recall
an Orp Jsinz 0, - sin® 0 B \/nf sin” 0, - n;
1, cos 0,
1f - ‘}‘ _ =
B : 7
<l [ l /; ¢ s
| [ |
JIF r | f/ : 200 .4
D £'I'; 90" 0 | .:: . .m\'- \

5 #

Flgure 62-3  Mapnitude and phass of the refiection cosffcient for internal refiecrion of the TE

wave [my . = 1.5
‘W, Wang

nﬂ
h & —=
Fig. 2.3, Phase shift ¢pp of the TE mode as
a function of the angle of incidence #y

143
w. wang



Total Internal Reflection for TM Wave

& ':' - j "
recall by \/sm“ 0,-sin’0. p? Anisin?0, - n?
2 cos®, sin’ @ ny  mcoso,

1
~/ |

0 fg 8. e g B O, 0~
E}_ .ﬂ'l

[ r——
1
B

I —

Figure 8.2-8 Magnitude and phase of the reflecton cocificicnt for internal reflection of the T™

W. Wang "¢ (m/i = L3, 144
Ww. wang



Deriving cos 8, ¢, Using Snell’s law and 1= cos§?+sin6?
and ¢, @ TE mocke

I&nFI\COfB = M 'rds T ¢C
f-fm9‘f7h

77, (050

_Jﬁ%f osp ll; =A™ ‘l cos 6 = (n? —N2)05/n,

Y
V) C05Q = 7Pw m

W. Wang .



Numerical Solution for Dispersion Relation (1)

or TE modes, dispersion relation 1/— Bra
- -1 D |0 +d
e kn hcos®—¢ .- =mn >  Vl- b =mn+ tan | +tan |
e : | \1- b V1- b
- | Curve sho Ver readnes i g i —
. : Uniless really high frdquency ;ﬁ—*—_l | - m - Mode number
T 2 | |
? 1 i .
al I ,/’}" ZZEE (Normalized) cut-off frequency:
: Wl P
: Y/ pZ4uny” Vo =tan Va
/il 7 w2
i /,f | T L1 | | bz V. =V, +mn
ammuw// ARV
o 5 /,HW 7777 /I/J{//;r'f | # of guided modes allowed:
| ; L
HERS7 74
Smwirmme// ARV ] m2t 22
S | N T
T T 2, |
2 wiaY; LI | <Example>
Elg(;’n q ‘; J il ; / . ;,f ,*’j ./ xf‘ / AlGaAs/GaAs/AlGaAs double heterostructure
O ﬂwﬁ v/-/,?/q-_?/i,g% n = 3.55/3.6/3.55
v\ Ay Y/
0 ? B 8 o 12 4 16
V= k]‘l[n{E-nle:lE
Fig. 2.8NWangized w- diagram of a planar slab waveguide showing the guide index & 146

as a [unction of The normalized thickness V' for various degrees of asymmetry [2.20] W. wang
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Normalized guide index vs. V number

* When the V number. i.s very small (e.g. h/A <<1) apd the guiFled ray b_l’N:,n;H_e T -0 T

travels close to the critical angle (b << 1), the effective index is close A s e i g{/ ; T )@ L

to that of the cladding layer n, or n,. . A1 2

=>The wave penetrates deeply into the cladding layers, because the rays /ﬁ// /,}'/4/?/;" z 1

are near the critical angle. The evanescent decay is slow: : /ﬁ / //Z’// ! m;ﬂ//"? Z
T

* As the V number increases, the ray travels more nearly parallel-to the ) / {17 ;’/}7 /;;/ |

waveguide axis, and the effective refractive index lies between n, and n,. 1 / Ill 7 /5 f /

 For a very large V number (e.g. h/A >> 1) and the effective index is nea : / / / | ‘ l/ // : //V%

that of the core index n, or n;, the wave in the cladding layer decays very pg= u[/ 1l - / //4/

rapidly for evanescent waves traveling at angles far above the critical ;?EIJ }‘;/Ij‘ /i’/; d /I/ /j\/ 9‘ =

angle. S R iv =Skn(n,28.n,2)'zllo 2 14 16

Normalized frequency and film thicknes:

Intersections showing what
mode that dimension and
wavelengths can excite

V= kh\,/ n?- - n;

Normalized guide index .

~
A

h 1 = L
= — x
W. Wang n’ - n’

148






Cutoft Conditions

»  Cutoff occurs when the propagation angle for a given mode (different mode has
different critical angle) just equals the critical angle 0, --- a guided mode transits
to an unguided radiation mode.

* This corresponds to the condition that B, = k, (b = 0,N=n,) and k,, = 0=> 6,=90°.
» The fields extend to infinity for k,, = 0 (i.e. the fields become unguided!).
This defines the cutoff condition for guided modes.

The size of waveguide determines,its operating frequency, is determined by the
dimension of the waveguide (~A/2N) and at cutoff frequency and below, the

waveguide energy will attenuate rapidly.

Intersections points
between curves and
X axis

2 is layer 2 or film layer not m sorry!!!

W. Wang
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Numerical Solution for Dispersion Relation (1)

For TE modes, dispersion relation e g
_— 21 ! ) 1 1D !
. kn heos®—¢ -0 =mn >  Vl- b =mn+ tan | +tan |7
LNy j - \Vi-b V1-b
: | Curve shows b rlever reaches l m=0 T |
. : Uniless really high Tréquency ;ﬁ—*—_ | - m - Mode number
o == | m=1 -~ generated
|_. ! Pl .-
= | f/’}" o mnrmalized} cut-off frequench
¥ 7 Y am > /o
i . | e — )
d /AR A Vo =tan “Wa
i /,f | Lyl | | ez V., =V, +mn
11 74Ny &
o J : ! I H .
L /{/ﬂ _ ”::’/;/,/ '//:_,ff,? # of guided modes allowed:
| A )
Smwirmme/// AR/ AREE I
S A | \ TV )
“EUNT T 2 |
2L LY LI | <Example>
Elg(;’n q ,*"il ,J[ il ;/f . },ff ;,fi .rf xf‘ / AlGaAs/GaAs/AlGaAs double heterostructure
. = o] S~ n-—?-—-i =3 ] .
g AL St
ot @A VSV VALY |
o 2 4 & 8 16 2 4 16
V= khlne=ns2)2
Fig. 2.8NWangized w- diagram of a planar slab waveguide showing the guide index & 151

as a [unction of The normalized thickness V' for various degrees of asymmetry [2.20] W. wang



For  mthe o oukee gt Cutoff =0
(\) - 11 ju-z(l wicel, Yy —

Hea € ,_._!".-;// for Tl waily: o wasriss

= I r——- V5% tene ; _ e
m T e —>0)
- ¥ 2 b Ve =2 ] PR

_)\ N “H3 . = = >~
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m= 0 when h is 0 or n=ng lik€ TE
- ~/ [bta
-— +|-l - ——
a)  wITE = T e i

Obtain N from b
L ¢
73 *
¥ ~ b=0 and m=0 as N-> n y
AL W fie Ll Normalized Cut off frequency
W. Wang @ m=0 and b =0, when yvave

Becomes radiation mode



W. Wang

& L
. ff Vg

Z% \>
o he 7N T = w7
75" -7
ey e I s
N TR Sy e
f'}/lf y\
s 7 Mrwp—f‘rr(a./a AWM/O)_’ nS:nc
ho _ Any A, will satisfy
’;\T -0 —> Xo cud % cutoff condition
F=1 . P

Look at the b v curve

Different modes will have different cutoff frequencies. In the
Example 1s for m=0 and a=0

153




Wave path in metal waveguide

High frequency

Medium Frequency

Low Frequency

Cut off Frequency

Opposite of dielectric waveguide

. . . o
W, Wang Because index is lower 1n core!!! .



Numerical Solution for Dispersion Relation (l)

Another common way to do this is to introduce the normalized

: . 22°
Define: parameters so that you don’t have to worry about the dimension _ae”
. . . ot
Normalized frequency and film thickness o g
) | 5 , wo®
V =kh\|n; - n; RO
\ f S \JO\)Q‘A
. . . ©
Normalized guide index P A
\ . ’7: ;{6\6‘03
h - 2 2 \Q\O‘N ée“a
ny - ng s
b = 0 at cut-ooff (N = n,), and approaches 1 as N -> n;.
{substrate radtatton—mode; m>=6) tgurde-mode; m=0)
Measure for the asymmetry
) o 4 > 9
n.-n. . ... e ng-n. . ..
a=——-7torlk, a=—F——-—ftforTM
ne N n. ny ng

a = 0 for perfect symme'try (ng = n,), and a approaches infinity for strong asymmetry {ns\g Ng, Ng ~ Np).

Table 2.2, Asymmetry measures for the TE modes (ag) and the TM modes (apg) of
slab waveguides

Waveguide 1y Ty Fie ag e
GaAlAg, double 386 3.6 3.55 0 ]
heterostruclure
Sputtered glass 1515 1.62 1 4.9 27.1
Ti-diffused LikNbO: 2214 2,234 1 439 1093
W. Wané}" tdiffused LiNBOs 2,214 2,215 1 8¢1 21206 155




Numerical Solution for Dispersion Relation (1)

For TE modes, dispersion relation 1/— e
] _ | ) | D) (l
) kn hcosO—h -0 =mn > VA1- b =mn+ tan | +tan . [——
b=1,N~ f ¢ §
o J | \1- b V1-b
| Curve éhovs’sbrieverireadhes l m=0  J.
. | Unless really hlqh treiquency ;ﬁ*‘_ | e m - Mode number
.:aE | ,ﬁﬁ;j ; m=1 ,;?‘;J;E" generated
- | //Z" i (Normalized) cut-off frequency:
i | -
" W/ | ] |7 V, =tan "a
| //ARBRY 7 4
. /ﬁ/ | [ L7 | | 2z V. =V, +mn
1 74Ny &
0 5 /, /K _ ”::r/;/‘, '//1.‘:-/’,{7 # of guided modes allowed:
| A )
1 1/ T/ AN /4 | VT
) f// | /{/’y | /Y /A |
2 i LI | <Example>
Elg(;’n q ,*"il J 1;1' ; / . ;,f ,f’i ./ xf‘ / AlGaAs/GaAs/AlGaAs double heterostructure
O W/ /g ‘.}/=/_o7; / -3/ % n = 3.55/3.6/3.55
T:lﬁi\d ¥/ IRV !.‘r M1/ i/f/' | | < Cutoff for different modes along
0 2 & & o 2 14 16 intersection between curves and x axis
V= k'n[I'I{E- 1152:'_5 (V)
Fig. 2.8NWangized w- diagram of a planar slab waveguide showing the guide index & 156

as a [unction of fhe narmalized thickness V' for various degrees of asymmetry [2.20] Ww. wang



Another way to find V:

Eigenvalue equations in terms of normalized frequency

For TE modes, dispersion relation r
| .1 |b+a

I'ecall kn hcosB—¢ .-'1)\ =mn > VA1- b =mn+ tan ™! [ +fan ™.}
£ Vi-5 Vi- 5

TM: tan (hd/2 - mn/2) = (n,*/n,?) (V? - h*d?)¥?/hd

TE: tan (hd/2 - mn/2) = (VZ—h2d?)V?/hd ¢=m Remember h=kn cos 8 and|d

m=0.1.2, ...

-

* The eigenvalue equations are in the form of ranscendental
equations, which are usually solved graphically by plotting their
left- and right-hand sides as a function of hd.

* The solutions yield the allowed values of hd for a given value of
the waveguide parameter V for TE/TM modes.

W. Wang
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Examples

W. Wang 158



Symmetric weakly guided
waveguide

« Consider a weakly guiding waveguide n2— n1 << n2

e Here we choose n2= 3.6 and n1= 3.55. These values are characteristic
of an AlGaAs double heterojunction light-emitting diode or laser diode.

» The critical angle for this structure is 6c = sin-(n,/n,) ~ 80c

» The range of angles for trapped rays is then 80- < 6< 90-.

« The range of waveguide effective refractive index is 3.55 < nefi< 3.6

W. Wang 159



Graphic solutions for the eigenvalues of guided TE and TM
modes of a weakly guiding symmetric slab waveguide

n, =3.6,-0- 3.55,V=>5x(assumed)
tan-(hd/2—mm/2)

*

00000 ¢ ¢ o

=

1' 12 14 18 18 20

hd

W. Wang 160



Mode chart for the first six TE and TM modes (m =0 —5) of
symmetric slab waveguides in AlGaAs (n, = 3.6, n, = 3.55)

b=1,N~n; ) 1

0.8 4

0.8 4

Normalized guide index b

IR
(V=mn) L (assumed)V =5
Cut-off form=1 T

Know V find b and From b you can find N and from N your incident angle and modes

W. Wang 161



Examples

* For example, consider V = 15 on the mode chart, the TE;/TM, modes could
not propagate because V was not large enough to intersect with the b vs. V
curves.

=> The TE;/TM; modes, and all higher-ordered modes, are cut off.

W. Wang 162



Example: Symmetric strongly
oguiding slab waveguides

 Consider a strongly guiding waveguide n, —n, >> 0

* Here we choose n, = 3.5 and n, = 1.45. These values are
characteristic of an silicon-on-insulator (SOI) waveguide.

e The critical angle for this structure is 0, = sin"!(n,/n,) ~ 24.5°

 The range of angles for trapped rays 1s then 24.5° <0 < 90°.

» The range of waveguide effective refractive index is 1.45 <
neg<3.5

W. Wang 163



Graphic solutions for the eigenvalues of guided TE and TM
modes of a strongly guiding symmetric slab waveguide

'n, 3.5, .n_ .45 V=>5x (assumed)

V=5n
tan (hd/2 - mn/2)
TM * - * *
m=0 1 . 3 + 5
| @ 0 - n . n
| TE ; ér) [ . : :
hd

W. Wang 164



Mode chart for the first six TE and TM modes (m =0 —5) of
symmetric slab waveguides in SOI (n, = 3.5, n, = 1.45)

( b=1,N~n; » .
O m=0
%
- os
5 07
= -
% 05 4
-g 04 -
—
£ .
@)
AT
b=0 N~ns  0- i . . A . - - .
0 2 T 4 L] ] 10 12 14 16 18 0
(V=m) V (assumed)v = sn
Cnt-off form=1

Know V find b and From b you can find N and from N your incident angle and modes

W. Wang 165



Asymmetric Slab waveguide mode chart

Asymmetric Slab Mode Chart

)

5n2)_‘

n2)/(n1

ff

‘gne
[

o
(=)

V = 2n*d/2*(n,2-n,2)"2/\o

W. Wang 166
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Effective Index for fundamental mode

Effective Refractive Index vs. Wavelength
3.60 for various core thickhesses, d

NN TEO
L d=10um
N

« Effectivg Refractiye Index, N
( 5 0 o)
~ 0 L {s]

o
(0))
T

Wavelengthi [um]

W. Wang Thicker the waveguide less affected by wavelengths 168



Dispersion Equation

recall

2 : CE_W'E.H'-' = : | hg_ - Fig.2.5. Side-view of a slab

wavegulde showing wave noz-
mals of the zig-zag waves cor-
responding to 2 guided mode

SUBSTRATE

SUBSTRATE De Y R \3{

Transverse resonance condition:

2/{}?th05 e‘ 2¢iﬂ = 2(1)# :2m‘1'[ 111 : mode number

knfh CcOS : phase shift for the transverse passage through the film
Z{I)C = ¢TE TM hase shift due to total internal reflection from film/cover interface
2(I) ¢ = ¢’TE M : I al internal reflection from film/substrate interface

Dispersion equation (bvs. ®): The phase shift can be representing the zig-

zag ray at a certain depth into the confining

knfh COS e _¢c - (I);:; = mT layers 1 ad 3 before it is reflected (goos-

Hanchen shifts- lateral shift)
Effective guide index N = % =n, sind n, <N < Ny 169

Ww. wang
W. Wang



The Goos-Hanchen Shift

Zg r ~A+—=UBSTRATE
J" E ‘\'\.H :"'i nn X
.-f'.'. ~ | : Fig.2.9. Nay picture of total
" S T rellection sl e ieclace
Ny between two dielectric media
FILM showing a latcral shift of the
A B reflected ray (GoosHEnchen
shift)
. 2 - .
For TE modes kz, = (NE - n?) V21000  The phase shift can be

, representing the zig-
ar2 - 2y -¥2 .
_(N"" n;) "“tan®  zagray at a certain

For TM modes hz ’ 5 depth into the
N n N -1 confining layers 1 ad 3
Hf ”i before it is reflected

The lateral ray shift indicates a penetration depth:

Z do
Xg = - Zy~ °
W. Wang tan ‘ dp 170

w. wang




@

Effectine  Gude Thizkness
The Goee — Hewele. S'L%

This is basically the

evanescent wave or e <l _

leaky wave part r T Ppsaden Cmsead

which extended Pegtetrec.  of istier o

beyond the confined /"9 <

core into cladding Cﬁ » = .

using ray optic way (s Lefe ) 49 = 45 < (O ) 4 7 ﬂ

to explain it. ( o
= ¢5 ({g) %"

(_ A.sfwm) = 44{%
iF

W. Wang Z—S A o 171




Total Internal Reflection for TE Wave

Ga* 8o+

recall
an Orp Jsinz 0, - sin® 0 B \/nf sin” 0, - n;
1, cos 0,
1f - ‘}‘ _ =
B : 7
<l [ l /; ¢ s
| [ |
JIF r | f/ : 200 .4
D £'I'; 90" 0 | .:: . .m\'- \

5 #

Flgure 62-3  Mapnitude and phass of the refiection cosffcient for internal refiecrion of the TE

wave [my . = 1.5
‘W, Wang

nﬂ
h & —=
Fig. 2.3, Phase shift ¢pp of the TE mode as
a function of the angle of incidence #y

172
w. wang



Total Internal Reflection for TM Wave

& ':' - j "
recall by \/sm“ 0,-sin’0. p? Anisin?0, - n?
2 cos®, sin’ @ ny  mcoso,

1
~/ |

0 fg 8. e g B O, 0~
E}_ .ﬂ'l

[ r——
1
B

I —

Figure 8.2-8 Magnitude and phase of the reflecton cocificicnt for internal reflection of the T™

W. Wang % (/13 = 13). 173
w. wang



T M
CN=n") "2 g
Kz =
NE L
— — e /
L ¢
—Thae f/LM_( 5[1/7[{ telcatfe s Qa /7\9'19*1@7@ ;/5’/{-[,\
_ s
PN Temg)
Ay X¢

effectane Guizle :f’”«{%/"‘ﬂ
h Yk

- =k T‘KL’T‘XC

Ne Evanescent

Plv—f fhun ot ra. Sunctrre of the wave

A i lieed fre }

V= kkJo—an

W. Wang 174



Effective Waveguide Thickness

1 Zig— Fig. 2.10. Ray pictur: of
Effective thickness SRRl b TOVER fp  fiKEom linht propagation
4& ;l;cl' i aslab waveguide, Gons
Z . S I Ninchen chifts are incor-
h _ | poe ] poratad in the madel, and
=h+ X +Xx, ! g . e fsebive i ik
Eﬁ 3 C h ness e s ndicated
L Mg —£ n
- 53

Normalized effective thickness

_ 2 2
H =khyiny - n

M

For TE modes

1 1
H=V+ +
JE Nb+a

Minimum H - > Maximum confinement

i
b ook hgge (N ng2HT

<Example> Sputtered glass, n, = 1.515,
n=162,n,=1,a=39

b G

1
W= hh:ﬂra—ﬂg?]!
W- Wang Fig. 21, Normalizel effective thickness of & slab wavepnide as a fioection :lI?lS— 0Ty

wsalized filo thivkness ¥V ofor various deerees of asvooonetey {after 122000

w. wang
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Foe T1TZ  mofe
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H = dn ChrXs TX)

e V-y-ml +W1

AN Zn? JN=n*

= P .
s e b = s
2'__)4 .Z
é—(-a_ = N?_ 6?_

fride s thiekness Hud §rre
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Multilayer Structure (wave equation)

W. Wang 177



Things covered in this section

* Multilayer structure

* Analytical approach to various rectangular
waveguide

« Examples

W. Wang 178
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Guided E-M Wave in a Planar Waveguide

Fig.2.14. Sketch of an “asymmetric” slah
waveguide and the choice of the coordinate
system. Note that the z-axis lies in the film-
substrate interface

Define:
K, =mk’- B’ =7,
iy ‘r fjff;‘-f;.r’ — 2 _ 272 N2
7 //;,; Ky =nrk
Ky =ngk® - BT ==
‘ 0 * 2;2 2 P 0 2
Cover: — E(x,y)+(n k™ - P)E(x,y)=0> _ —E-y.£=0
0 k 0 x°
Fil 07 E(x,y)+(n3k” - PHE(x.y)=0> 0 - E-y3E=0
Hm: T x-:- 1 = x., — = 5 - . =
PR V)T Ny X, PR Ty
Substrate: 0 TE(x,y)+(ﬁ‘fk3 - BHE(x,y)=0> 0 —E- ?§E=U
W. Wang a X a X 180

w. wang



TE Modes (1)

Modal solutions are sinusoidal or exponential, depending on the sign of (k‘j‘nf-z - [32)

Boundary conditions:  The tangential components of E and H are continuous at the interface

between layers. # E, andOFE, /’ x continuous at the interface.
: - -

For guided modes: )
Cover: — E '1"-; _0 > E =E_exp[-v.(x- h)] From Maxell equation
2
‘ o
Film: — E, -If:f y=0> E =E cos(k x- ¢)
o x*
a 2
Substrate: — E, yﬁ —0 > £ =FE_ exp(yx)
0 b’ g
Applying boundary conditions, we obtain:
5 Ve
tang ;= i , tan¢, = — - ‘ We derived in last section
Ke Ky L
Icf-f? - ¢’.~; - ¢1E, = mm -> Dispersion relation
W. Wang 181

w. wang



TE Modes (ll)

Relation between the peak fields:
2,2 2 2, 2 2 2,2 2
Ey(ny- N )=E (ny- n;)=E (ny- n;)
E., E;, and E_ can be determined by,

Optical power P =%SRE{E H*} zdx

Optical confinement factor

h
5 Re{E H'}-zdx
= 0
Normalized power ! SE{E H*}. 2dx
distribution 2 oo

W. Wang 182
Ww. wang



TM Modes

Cover: 0 |2_ H, Tt —U::- H, =H, expl-v.(x- h)]
A
Film: 5 x_H +1c: H,=0> H =H cos(k x-¢)
|z
Substrate: 5 &2 T'.H =0> H =H_ exp(y,x)
Boundary conditions:  //,and £,  continuous at the interface between the layers
> M and Ld—"’ continuous at the interface between the layers

2
n

Applying boundary conditions, we obtain:
7 7

H
tand, —[ ]h,tand)cz[—f]?—c
H‘i‘ I{f Hﬁ. I{f

K fh d.- ¢ = mn —:= Dispersion relation

. N?) | .

Relation between the peak fields: 772 ( f 5 =H’ (”_? - ”lf)g_; :Hf(ﬂ?' - Hf)g_;

H_.i'rl H.‘n‘ H:,'

2 2 2 2
N N N N

g =l—1+—=1-1 g =l—T4H=1 -

W. Wang ' 1. b2 1. b2 183
/ s J ¢ w.wang
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( Ls eLf, s

TE =2 I
E;\ :EZ = t 7
s S Q
= _2
|4 U/b( Z X &

E) gncl
2&«
é?“r?(ec( Ww‘—ﬂfz
(oue) Fy =5 £ lep Yo
(rfn'lu«) E‘y:z—;és s
[ bt  E =zs €
applvr B-C & Tangential and normal fields are cont.

= S DS C(:,L\ ’_45)
(6s Cé. T m7)

G Ec T&

= E_fCGSdSc :E}'
@ ’rcg's :éfé:f =S d)f <é é Ph i diti
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B @ > am e g NN
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Frenna = — @
Dispersion relation [¢f h "4 i E 45 c = mT L{ ,

o IL?!,F heosé *45"45(—'144;[- "
“Z
| > W/Jffrﬂ \('-C/a.'{’m.\ be turee. tlio /Vea.x %"p/J; & ;Z?\(;:_;—? t-e&f
- — a(r v
eb‘\;'d 4 Z;c/é:f/t”) Whine  Cconn tof
Wj é’wW/

L:S ,gf/osqﬁ ’f? W
=& N ) =) = o A

aﬁ(’l—cd {7% ‘4- OF{’(’E&,@ (mﬁmmJ-ﬂzfa{
[ = kel [l
L [ Re fFne*f tex

—_ a‘ &J
“e = We " ax H), = Hec e Y &xb) X
B.C. - Hy=Hs© =% x <o
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Wave propating in multilayer structure

W. Wang 188



Multilayer Stack Theory

Focusing on TE modes first, : Ae
[ = E}-"’ ' =w ]_I.H: : /
U = Aexp(- jxx)+ Bexp( jkx) I

. p - Fig. 2.15. Shkelch of & wultilayer stack
V=« [A EP‘LP(' jm) " BE“p(ﬂ'Cx)] = waveguide with substrate index ng and eover

ol R r———
s index n.. The z-axis indicates the direction
— [ d i
At x 0, ol mode propagaticn
A Bs

U, =U(0), V,=V(0) 43
cos(Kx) isin(Kx} i: TJ
K
jKsin(kx)  cos(kx) 4

M: Characteristic matrix of the layer

| cos(x;hy) isir.u(lr:jh;-)

J¥,sin(K;h)  cos(K,h)

U U m m
VD - M Vn M = 11 12 :M[ Mj ' M”
0" W. Wan i My 189

w. wang



Dispersion Relation
for Multilayer Slab Waveguide

Consider guided mode. For substrate and cover,
U = Aexp(yx)+ Bexp(- yx) Imaginary
V = jyldexp(yx)- Bexp(- yx)]
In the substrate,
Uy=4A,. Vo= Jjv,4,
In the cover,
Uy=4c. V,=-Jvc4

Using the multilayer stack matrix theory, we obtain:
Jv sy +y My ) =My - v Y My

-> Dispersion relation for multilayer slab waveguide

<Example> Four-layer waveguides

W. Wang 190
w. wang



Multilayer Stack Theory for TM Modes

U=H,, V=owk,
U = Aexp(- jxx)+ Bexp( jxx)

V=- %[A exp(- jkx)- Bexp(jkx)]

n
Therefore,
K
TE> TM K > — ]
n
Dispersion relation:
: Y. Yoo Ys Yo
- J(my =5 My —5)= My - S5 my,
1.5' HC F° 0
Characteristic matrix of the i-th layer: e j
cos(x,A.) - j—sin(k A)
M, = |<: !
- j—Lsin(k;h.) cos(k,h)
H,
W. Wang N 191

w. wang



— T g—— — e wE W W -!lv'l,

6,‘:»:“ ‘eﬁ)

UX) 4 VCX) & @rtmisn
ot the [than. brndarin
aaxg_ ‘1‘(77( k ’/ez)t O‘R

l. Focu'ﬂg or; TE modes first, By P 6‘

A e TR D
.Féu Umw’ ‘ — —w - ne

onendd zU Aexp(-jix) + Bexp( jkx) g

J@lufm V' = dexp(-jxx) - Bexp( jkx)] ) _—

Atx=0, Y U':’jl/;)\/:]'u \
Cd% Uy=U(0), ¥,=V(0) 3
frud MJ () L) H Vlhe™ pe
A Yol | jksinn) cos(ir) |V

U
, , =M M: Characteristic matrix of the layer D e
Rewrite this as [ 4 J of

(¢ hactendl ) M= cos(K;/,) E]jsin(lc,h,.) P e
} :‘gj‘:ﬂ‘;u JK;sin(K;h)  cos(K;h)
%

]

( o5 kx Ll Vo V ﬁk(;;e—a'tx Be J‘Ky - .
J [aw J[ U 4 s ) = 2T Ee  s-f

W. Wang

R =AP-

(KnJ- s (P2re
&(ZM""‘WJE{g) /
2 A<k > Smusuidaf )

Fig.2.15. Sketch of a multilayer stack
waveguide with substrate index n, and cover
index n.. The z-axis indicates the direction
of mode propagation

V= (/g zL)UtiB ;';fv
VAR

Satr

(h=00) V, -“—V(&)

\= b os (x) - AVSMKK»c)
192

7

2 X




Derive wave
equation
going in
fransverse
direction

W. Wang

From Maxwell eq.

From wave equation
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e A0 'u"J >Lyl=nl ]
) ]\/]—:. /mz, V;:‘;J M, Mo My

Dispersion Relation

for Multilayer Slab Waveguide

l Consider guided mode. For substrate and cover, n
U = Aexp(yx)+ B exp(—yx) 5
V= jfAexp(yx) - Bexp(-w)] | | —=FFH#s e
In the substrate, | U=4s e VA x 1
U0=As’ VOZJY.SA.V "‘51/},/};@ s '

In the cover, U = B, € - U, =Bc
Upn=4, V,=—f.A4, V = -5VR e X __> V= ~3 7 B,

Using the multilayer stack matrix theory, we obtain:

[n
1 M,
— ““Mj(’ysm“+ch22)=m21—’Ysch12 [V"] Z"”?—/Mu,][l/nj

Ik B s )
meld VDIL\ — Dispersion relation for multilay;r\%veguide > A s =(my, Qv m ),3 (1)

) <Example> Four-layer waveguides Q’V As = 2~ d ) Ve M ) b @)
e e OO 51 rumr vome) =my 4 12 1.
P 5 8, I} fwctrns o B, £CPYw)

TG it g ) I
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Arbitrary Shape Waveguide
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Rectangular Waveguide Geometries

Ng
?’ 2,
Aﬁﬁ%ﬁ

a.) general
channel guide

Ng Ny
%Aﬂ}%ﬁ

c) raised strip

e.) embedded sl.np
W. Wang

Ng

I:III buried channel

W

d)rib guidu

f}ridgu guide

Fg224 ~f. Cr
I;.,l!l

»::Linn

5 of six
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The Method of Field Shadows (l)

,«f’ 7 . Fig.2.26. Illustration of the mthnd
/ // f"’ of field shadows show ngh
ection of a buned chan gd
s. ne ff Ids‘nﬂd w,r Tt rastlid igucres the fields in the
/7# /,’/// chaded “shadow” areas

. % ‘ /;:

Mg ng Nge

'
/2//; L 7

Ilgnore the fields and refractive indices in the shaded field shadow regions.
> Results in separable index profiles.

Works well as long as the fields are well confined in the high index (n,) region of the waveguide.
-> Not applicable at cut-off.

W. Wang 207
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The Method of Field Shadows (ll)

Assuming a buried channel waveguide structure.

K .
1 nxa Y i
. de a?'&
e e waves™
i ¥ ""52—“{
I'I.-sznrl EHE nn .

y-slob ngeﬂ n e

y X\
0“0“,

nand®

E(wwfﬁ(x)ny)
B _Bx+ﬂr N _N§+N§

V. = kk..,,‘n?-r - nf
V, =}'fw.,{'n_§- - n‘f

Obtain N, and Nr’ therefore N, by
using the dispersion relation chart and

NZ-nj+n;/2

bh =

T s

5 _Ny-ﬂ +fsz’2

¥y Hz nz
rE

ng -rf%*z 428 Nz 2
x-sich guide composite channel guide n, -’T;
Fig. 2.27. Method of ficld shadows, The sketch shows Lhe z-p cross-section of a compasite
guide made up by summing the pr'rmtliwﬂun, (n*) of an z-slab guide of height & and a
208

y-slab guide of height w. The various n® values are indicated

w. wang



Another example

Field Shadows Method Exermse?
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The Effective-Index Method

a%a\“

in
(1) Determine the normalized thickness of the channel and Iater @mﬂ’és =

e(
[ 2 2 ! @16
Vll,r—kh Hf-?? V"-r“a&e fﬁfﬁe?’}
(2) Use the dispersion relatlon{cngstﬂ@‘ﬁetermlne the normalized guide indices b,and by
Determine the c\gggeép?)hdmg effective indices by referring to the Table on Effective index for

$S
oction @ ) rectangular waveguide
T‘(ea&ea S JP\'Ier _”S +i}flp{ﬂf ”S)

(3) Determine the normalized width.  V, = kw,j ’\f - N}
Then determine the normalized guide index beq using the dispersion relation chart

(4) The effective index of the waveguide can be determined from

b - .ﬂi’fz = ..!II\i'fI'l2
4ONITN/

>  N’=N}+b,(N7- N;)

Note: For multi-layer waveguide structure, such as ridge waveguides, use
the matrix method to determine N, and A, then continue on (3).

<Example> Ti:LiNbO,, 7. = 0.8 um,
Fiz.2.28. llustration of the cffeetive-index Ny = 2.234, ng, = 2.2 14“.3 =1,
method showing the top view and (he cross

section of a rib guide - h=1.8um,I= ‘Hm

210
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W. Wang

The Dispersion Relation Chart

T | I l =T
=} =
t | 7l pe
S22 1=
3_ WY P
N | ////// ! A Z
1 1 1 1 24 | vz, 7
b /A7 A NN 4
1/ 74 VI
B /1 VT
i VA4 i/
SOOI T
(1]l /1] Wi/
/i A /4
[ A WA/,
S WL LY /1]
A
s e
8y IRvAY/R /i//}’
0 2 4 6 0 12 4 16
V= khin,& n521?
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Effective Index Parameters
for Rectangular Waveguides

Channel Guide height Eff. index Channel guide index
structure | Vi, Vi Ni, Ny N} - N} b
a) V¢ = khy/nf — n? N} = nl + b(n} — n?)
General be(n} — n?) - bi(n? — n?) bebeq + bi(1 = beq)ach
Vi = khy/n} = n} | N} =nl? +b(nf —n})
b) Vi = khyfn? — n2 | N} = n} 4 bi(nf — ni)
Buried be(n} — n?) bebeq
Ni=ng
c) Vi = khy/n} = n2 | N} = n2 +b(nf — ni)
Raised (n?2 —n?)+ b;(n? - n?) brbeq — (1 = beq)a
N; =ne
d) Vi = khyfn} = n2 | N} = n2 + be(n} — n?)
Rib (b = by)(nf = n?) bebeq 4+ bi(1 = beq)
V;:kl\/ng—ng N?:ng-}-b;(n?—ns}
e) Vi = khy/n —n? | N} = n? + by(n} — n?)
Embedded bf(nf - nf) b{bcq
N =n,
f) Vi = khy/n} — n2 Nfz =nd, + b;(n? - n?)
Ridge (1= bi)(ny = ndy) +be(n? = n2y) | bea(1+ b asiage) + bi(1 = bea)
Vi = kly/n} = n2 | N} =nl, + bi(n?), = nk,)

212 W. wang



Numerical Comparisons
Between Different Methods

6, 1.0 .
£ | E14 L
b | |wen=s Nl
= L~ Eyo e Effective index method provides good
~ 06 z,f’/ ) approximation even near cut-off.
N Z
" F
= Uq-'q' T - -_.F;E- i ’;}'JJ
N[ 02 f"? /J"./;Hr
Z s / 4'; 7‘;" ;
= | - Al vl | (2)
= 0O 04 08 1.2 1.6 20 2.4 2.8 3.2 3.6 40
Vi =Vesr=(2h/A) (ng—n2)172
&, 1.0 : =y
'|= Aa w/h=2 f—ﬁ‘—-———'——
o | e -,d-‘". -_"_____,.-
< 0.6 e ﬁ#’
E4 il
— |2 i
& -
2 04 =
| /
%, 02 i
1 | |
m 0 =
0O 04 08 12 46 20 24 28 3.2 36 40
Y/ T =Ve/m=(2h/X) (ng>—n,2 )17 2
Fig._:.'_.!ﬂa,b. Normalized dispersion curves for 2 buried channel guide comparing the
predictions of the numerical calenlations (doi-dashed lines), of the effective index method 213
(solid lines ), and of the ficld-shadow method (dashed lines ). Comparisons are shown far w. wang

the aspect ratios of w/li = 1 and w/h = 2. (After [2.661)
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The Dispersion Relation Chart
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Channel waveguides

] Most waveguides used in device applications are nonplanar waveguides.

] For a nonplanar waveguide, the index profile n(x, y) is a function of both transverse
coordinates x and vy.

] There are many different types of nonplanar waveguides that are differentiated by the
distinctive features of their index profiles.

] One very unique group is the circular optical fibers (to be discussed in Lecture 5).

] Another important group of nonplanar waveguides is the channel waveguides, which
include

— The buried channel waveguides
— The strip-loaded waveguides

— The ridge waveguides

— The rib waveguides

— The diffused waveguides.

W. Wang 222



Representative channel waveguides

W. Wang 223



Numerical Analysis

» Except for those few exhibiting special geometric structures,
such as circular optical fibers, non-planar dielectric
waveguides generally do not have analytical solutions for
their guided mode characteristics.

* Numerical methods, such as the beam propagation method,
are typically used for analyzing such waveguides (e.g.
silicon-on-insulator waveguides modes, TE and TM mode
electric field distributions)

W. Wang
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Take away

* Metal (low frequency, well confine beam) versus dielectric (high frequency low loss, leaky wave)

 Total Internal Reflection

(skin depth for dielectric) 8, = 1/a = % \/% (skin depth for conductor) 5, = /o = / (wiw) =0

ogm E“ 5 \'"'u ‘Q /|2 /|3 |‘\5 rave oscillation ( 1 x o 1 >
a 2: Q (-- ladding B - -

""‘ .;) =" 4]

& (LA

Hiy Hiz

* Propagating modes are discrete and function of incident angle

relating particle and wave theory.. We need to know both
2k, dcosO +q@,(0)+@;(0) =2mn

* Modes are determined by transverse resonating condition R
where mis an integer=0, 1, 2, ...

»  Wave equation determined by Maxwell’s equations and B.C. (see next page)
»  Operating frequency, mode numbers, effective index, waveguide dimension, can be determined by

dlSpGI’SlOl’l equatlon Dispersion equation (p vs. o):
kn;hcos® -¢, -0, =mm

Effective guide index N= % =n sin0 ng <N <ng,

Normalized freq 'y and film thick

V =kh. 'uf n

Later a dimensionless dispersion equation

Normalized guide index .
N*-n;
p=t T

my - ng

W. Wang b =0 at cut-ooff (N = n,), and approaches 1 as N -> nj.
Measure for the asymmatry . 225

", - n; "ot
u=—ﬁ!l][ a= J—h‘Jt‘[\eI

4 2
neTony " et on;

a = 0 for perfect symmetry (n, = n ), and o approaches infinity for strong asymmetry (n, = n_, n, ~ n).



Take away

» Using slab waveguide to figure out other waveguide configuration
(1% Determine the normalized thickness of the channel and lateral guides.
Vy =khq|in§ n, v =k11fni- n’
(2) Use the dispersion relation chart to determine the normalized guide indices byand by
Determine the corresponding effective indices by referring to the Table on page 1b-14.

N}J =",;2 +bf‘,(n} - nf)

(3) Determine the normalized width. ¥, = kw,/N7 - N}
Then determine the normalized guide index beq using the dispersion relation chart.

(4) The effective index of the waveguide can be determined from
B NZ N er

eq = W

>  N?=N?+b

eq

(N7 - N})

Note: For multi-layer waveguide structure, such as ridge waveguides, use
the matrix method to determine N, and N, then continue on (3).

<Example> Ti:LiNDO,, & = 0.8 um,

Fig.2.28. lllustration of the offeetive-indes n = 2,234. ng = 2.2 14I‘1c =1,
method showing the top view and (e cross = ="
section of a rib guide h=1 '8!'lm‘ ! 1Lm‘

Three two
layers slabs ‘
Assuming a buried channel waveguide structure. E(x,y)=X(x)Y(y)
y-sleb guide BZ = B‘z + B? NE = N;. + NI

LS 7-. A V. =lch1ﬂir12 - n?
V, =kw. n, i}

Obtain N, and N, therefore N, by
using the dispersion relation chart and

NI- nf+n?f‘2

=N

Two ni2n@s2 b= ny n}
N2-nl+nk/2
orthogonaN‘ R\\\\ \\\ b, =#

three layers

. Or instead of solving for N, and N,, we can use

ngZri%s2 2_ 2
slabs N -1,
I Z == 1‘ =b,+b, -1
x-sicb guide cnmposaLe cl'annel e ong
Fig. 2.27. Mcthod of field shadows, The skelch shows Lhe z-y cross-section of a composite 226

guide made up by summing the permittivities (n?) of an z-slab guide of height h and a
p-slab guide of height w. The various n® values are indicated



Evanescent fields in the waveguide cladding

Evanescent wave outside the waveguide core decay exponentially
With an attenuation factor given by 8
dn L , n

= ((n,ksing,)* —(mky)"

In the upper layer (x > d/2) ->nz
-2

E _ Ele—K(x—d/2)e—j,Bz+a)t n,
In the lower layer (x < -d/2)

E — EleK(x+d/2)e—jﬂZ+a)t

Where E, peak value of te electric field at lower (x=-d/2)
and upper (x=d/2) boundaries.

W. Wang 227



Waveguide effective index

* We can define the waveguide phase velocity v, as

y e ky i
Vp = @/ |‘_) Core n, k,
B Z

* We now define an effective refractive index n_s as the free-space
velocity divided by the waveguide phase velocity.

Dg = C/ Vp

Or ng=cf/w=p/k

i neff = nzsine

* The effective refractive index 1s a key parameter 1n guided
propagation, just as the refractive index 1s in unguided wave travel.

W. Wang 228



Dispersion Equation

Fig.2.5. Side-view of a slab

wavegulde showing wave noz-
mals of the zig-zag waves cor-
responding to 2 guided mode

= cover A

z 2 SUBSTRATE

SUBSTRATE De Y R \3{

Transverse resonance condition:
2knfh COS 0- 2¢£ - 2(1)5 = 2m'}'[ 11 : mode number

k”fh CcOS : phase shift for the transverse passage through the film

Z‘bc(: ¢TE,TM)

2(I)S (= ¢TE,TM ) : I al internal reflection from film/su

hase shift due to total internal reflection from film/cover interface

Dispersion equation (bvs. ®): The phase shift can be representing the zig-

zag ray at a certain depth into the confining

knfh COS e _¢c - (I);:; = mT layers 1 ad 3 before it is reflected (goos-

Hanchen shifts- lateral shift)
Effective guide index N = % =n, sind n, <N <n T 279

Ww. wang
W. Wang



Graphical Solution of the Dispersion Equation

g — B=900, ¢c = m/2
0° 20° 40° 60° 20°
1 1 1 T
£ —— Symmetrical waveguide, ¢, = ¢,
Z
Z : .
Sl T e Asymmetrical waveguide, ¢, = ¢,
psymmetric g
E
g |r
#, ~122
YFIF i TR (D +s) %*"# ‘-’#'
| - ‘!' dpasymmetric
2n.h # !
s ,
X K- Fig.2.6. Skeich of graphical solution
i of the dispersion equation. for the
: fundamental modes of symmetric and
x . ' - asymmetric slab waveguides
8 8-
2¢¢=0 de+hs=0
For fundamental mode (m = 0), there is always a solution (no cut-off) for symmetrical waveguide.
I I‘\ HHJ‘II‘HF l'lﬂﬁl‘ﬁﬂﬁll‘lﬂ ' ilf;ll lllll I" | i W i I“H.Aﬂﬁ
III'L-I '.._.-EIGIII'H LI l'.l:l.l L= rpw) | UGUIGGGIIIH .I"l..ll] LA AL GUPFUII PTG S T A
W. Wang 230
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Typical B — o diagram

FORBIDDEN
REGION

2 Cut-off

e

ngk ,

70

— D

1

W. Wang B— 231
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Numerical Solution for Dispersion Relation (l)

Define: 10
g™
Normalized frequency and film thickness W\ N
, 5 < <\
V'=khyny - ng -0 0
Normalized guide index Vi A
N°-n
P ————
n; - n;

b = 0 at cut-ooff (N = n,), and approaches 1 as N -> n,.

Measure for the asymmetry

2] 4 o 2
n_-n. . |, Nen. - n. . .
a=——-—torTE, a= y —— forT™M
nye N n. ny Ang

a =0 for perfect symmetry (n, = n.), and a approaches infinity for strong asymmetry (n, =n,, n, ~ ny).
Table 2.2, Asymmelsy measures for the TE modes f_t!‘r_.;:i ane the TM modes [apg) of
slab waveguides

Waveguide Tty g e ag e
GaAlAg, double 385 3.6 4.55 0 ]
heterostructure

Sputtered glass 1.85156 1.62 1 a9 27.1
Ti-diffused LinbDs 2,214 2,234 1 43.9 1093
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Outdiffused LiNbOy 2,214 2,215 1 881 21206
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Numerical Solution for Dispersion Relation (1)

For TE modes, dispersion relation = ,T
f 1 ) 1 10
kn hcos®—¢ .- =mn >  Vl- b =mn+ tan | +tan [T
| -' | | N \V1-b \V1- b
& i | | I L
" i i =71 | | |~ m :Mode number
i ZZr | nol
= | — ;//}" = o (Normalized) cut-off frequency:
=) /74 7l
inmny7anlny duugy V, =tan "Va
‘ /ARy 7 ey 0
. /ﬁ/‘_ | }’/{"' /xfé’fﬂ V. =V, +mn
/ A
o 5 i %// M # of guided modes allowed:
[ ‘-" '
| / _
Umwimmys/ ARV 4 | o _2h 5
/I 7./ AN /4 | N
. Im | 1 / /B |
2L L LI | <Example>
."lil ,J[ i :f ,ii},ff ,*’J ;fﬁ AlGaAs/GaAs/AlGaAs double heterostructure
e A n = 3.55/3.6/3.55
T T2V TA77 | |
0 ? 4 8 8 o 12 14 16
V= kh(ng=ns2)2
Fig. 2.8NWangized w- diagram of a planar slab waveguide showing the guide index & 233

as a [unction of The narmalized thickness V' for various degrees of asymmetry [2.20] w. wang



Multilayer Stack Theory

Focusing on TE modes first, : Ae
[ = E}-"’ ' =w ]_I.H: : /
U = Aexp(- jxx)+ Bexp( jkx) I

. p - Fig. 2.15. Shkelch of & wultilayer stack
V=« [A EP‘LP(' jm) " BE“p(ﬂ'Cx)] = waveguide with substrate index ng and eover

ol R r———
s index n.. The z-axis indicates the direction
— [ d i
At x 0, ol mode propagaticn
A Bs

U, =U(0), V,=V(0) 43
cos(Kx) isin(Kx} i: TJ
K
jKsin(kx)  cos(kx) 4

M: Characteristic matrix of the layer

| cos(x;hy) isir.u(lr:jh;-)

J¥,sin(K;h)  cos(K,h)

U U m m
VD - M Vn M = 11 12 :M[ Mj ' M”
01 W. Warl ity My 234

w. wang



Dispersion Relation
for Multilayer Slab Waveguide

Consider guided mode. For substrate and cover,
U = Aexp(yx) + Bexp(- yx)
V = jyldexp(yx)- Bexp(- yx)]
In the substrate,
Uy=4A,. Vo= Jjv,4,
In the cover,
U,=A4.. V,=-Jjv.4.

Using the multilayer stack matrix theory, we obtain:
Jv sy +y My ) =My - v Y My

-> Dispersion relation for multilayer slab waveguide

<Example> Four-layer waveguides

W. Wang 235
w. wang



Multilayer Stack Theory for TM Modes

U=H,, V=owk,
U = Aexp(- jxx)+ Bexp( jxx)

V=- %[A exp(- jkx)- Bexp(jkx)]

n
Therefore,
K
TE> TM K > — ]
n
Dispersion relation:
: Y. Yoo Ys Yo
- J(my =5 My —5)= My - S5 my,
1.5' HC F° 0
Characteristic matrix of the i-th layer: e j
cos(x,A.) - j—sin(k A)
M, = |<: !
- j—Lsin(k;h.) cos(k,h)
H,
W. Wang N 236
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The Effective-Index Method

: agdt®
Qve
s effeC
_ (\{\(\C\‘
a an
(1) Determine the normalized thickness of the channel and Iater @mﬁéa%

[ 2 { e loye
Vll,r = kh Hll,r - ” Vl'-r “ea‘@ Jr’eﬁ ?’E"
(2) Use the dispersion relation cl'{@,gtﬂ@‘ﬁé\lermlne the normalized guide indices b,and by

Determine the c\agge,sp‘bﬁdel ng effective indices by referring to the Table on Effective index for
0 2 . rectangular waveguide
TY@‘A’& eac‘(\ 566“0 "'\"? ] = ” -+ h'f F{Hf ” )

(3) Determine the normalized width.  V, = kw,j ’\f - N}
Then determine the normalized guide index beq using the dispersion relation chart

(4) The effective index of the waveguide can be determined from

b - .ﬂi’fz = ..!II\i'fI'l2
4ONITN/

>  N’=N}+b,(N7- N;)

Note: For multi-layer waveguide structure, such as ridge waveguides, use
the matrix method to determine N, and A, then continue on (3).

<Example> Ti:LiNbO,, 7. = 0.8 um,
Fiz.2.28. llustration of the cffeetive-index Ny = 2.234, ng, = 2.2 14“.3 =1,
method showing the top view and (he cross

section of a rib guide - h=1.8um,I= ‘Hm

237
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W. Wang

The Dispersion Relation Chart

T | I l =T
=} =
t | 7l pe
S22 1=
3_ WY P
N | ////// ! A Z
1 1 1 1 24 | vz, 7
b /A7 A NN 4
1/ 74 VI
B /1 VT
i VA4 i/
SOOI T
(1]l /1] Wi/
/i A /4
[ A WA/,
S WL LY /1]
A
s e
8y IRvAY/R /i//}’
0 2 4 6 0 12 4 16
V= khin,& n521?

238
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The Method of Field Shadows (ll)

6{“@\’%
Assuming a buried channel waveguide structure. E(Sggm\;,\}yex-a?( ;)Y( V)
TR BB NP =N 4N

V, =khfn} - n?

y=slab %ﬂqkeaﬁd
/’

4 10 2yt fnd 19 effe
as S
‘i\SeGGO“ V = fﬂ,‘} 2. - 2
{ e . = n .
o ;o ok A
‘ Obtain N, and Nr’ therefore N, by
using the dispersion relation chart and
‘ NZ-nj+n;/2
b =
x 2 _.2
| ny = Hg
ns -r. EHE nn'
. ] 5 N, - n; +Hf /2
L%, P l-1 .::E: . —_
E.I"E h \ n \:f:i' £ ¥ HE‘ N nz
mm RN RO | 1
il Or instead of solving for N, and N, , we can use
s ‘”E"E o M Nz :
x-sich guide composite channel guide n, ) -"1;

Fig. 2.27. Method of ficld shadows, The sketch shows Lhe z-p cross-section of a compasite

guide made up by summing the pr'rmtliwﬂun, (n*) of an z-slab guide of height & and a

y-slab guide of height w. The various n® values are indicated 239
W. wang



Another example

Field Shadows Method Exermse?

I ( ;
b 7 Tv=ol
8 7.
—4%/ A ]

= g 4/ A | A
’ 7/; AVJ/ Va2 /I/
. /e ) 77/4 17
: 11/ v/ /4 Y%

5 . j/ / ! / I/ //'/
: THRRImy//4 N

) 1/ /4 77y

/1] MWid/ Yl 4/
ST 744
1T}/ 77/

S A W/
ey w1/

ALl 52

N NSVIE TAIH
o) L 47 6 8 10 12 14 16
v % V= kh(ns2ng?)2
J
i

W. Wang

L
(AVAN

A=0.8 um

/ N, > K \. ; f
Determine effective mdex and r et
modal distribution 5

- - > a—

0
AN
- & |
\ ;
V.,
| Wy & )
— Joy
:} K ar —
¢ — v
Ne=p | Q4 2.
X
b b o2
N’( —,,.‘H‘K,;li Q du / j x
N ;,L[(’/'



Effective Index Parameters
for Rectangular Waveguides

Channel Guide height Eff. index Channel guide index
structure | Vi, Vi Ni, Ny N} - N} b
a) V¢ = khy/nf — n? N} = nl + b(n} — n?)
General be(n} — n?) - bi(n? — n?) bebeq + bi(1 = beq)ach
Vi = khy/n} = n} | N} =nl? +b(nf —n})
b) Vi = khyfn? — n2 | N} = n} 4 bi(nf — ni)
Buried be(n} — n?) bebeq
Ni=ng
c) Vi = khy/n} = n2 | N} = n2 +b(nf — ni)
Raised (n?2 —n?)+ b;(n? - n?) brbeq — (1 = beq)a
N; =ne
d) Vi = khyfn} = n2 | N} = n2 + be(n} — n?)
Rib (b = by)(nf = n?) bebeq 4+ bi(1 = beq)
V;:kl\/ng—ng N?:ng-}-b;(n?—ns}
e) Vi = khy/n —n? | N} = n? + by(n} — n?)
Embedded bf(nf - nf) b{bcq
N =n,
f) Vi = khy/n} — n2 Nfz =nd, + b;(n? - n?)
Ridge (1= bi)(ny = ndy) +be(n? = n2y) | bea(1+ b asiage) + bi(1 = bea)
Vi = kly/n} = n2 | N} =nl, + bi(n?), = nk,)

241 W. wang



Rectangular Waveguide
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Optical Analysis
* Find Modes

« Find Maximum Coupling
Efficiency

 Total Power Out

R. Panergo, W. Wang, “Resonant Polymeric Waveguide Cantilever
Integrated for Optical Scanning,” Journal of Lightwave Technology (
Volume: 25, Issue: 3, March 2007 )

DEPARTMENT OF MECHANICAL ENGINEERING g‘\
UNIVERSITY OF W ASHINGTON (’




U groove tapered waveguide
B e ST SR = —
Batdee 3

)

R. Panergo, W. Wang, “ResontajfolaetrioyWavegidecdiantitowepler
Integrated for Optical Scanning,” Journal of Lightwave Technology (-
Volume: 25, Issue:"3, March 2007 ) .

coupled fiber

-

DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF W ASHINGTON




MICRO

Mode Coupling (MC) T

 Divided into 3 sections kAB

— Fiber input to facet of the waveguide
— Taper section
— Interface between taper to the beam

DEPARTMENT OF MECHANICAL ENGINEERING a‘\
UNIVERSITY OF W ASHINGTON (’




MICRO

Optical Parameters TES\HB

* |Index of Refraction
— Ng,g = 1.596, ngn, = 1.46, n;, = 1

* Input Source/tapered Fiber (D,
— Single Mode, 633nm wavelength

* Film Thickness
— Thickness 100 micron
— Initial Width 100 micron
— Final Width 50 micron

=62.5um)

DEPARTMENT OF MECHANICAL ENGINEERING a‘\
UNIVERSITY OF W ASHINGTON (’




MICRO

MC - Fiber to Waveguide T

* [Initial Assumptions kAB

— Input is a single mode Gaussian beam (end butt coupled)
— Ignore loss due to scattering and absorption

« SU-8 Waveguide with 85x230um cross section
* 633nm light source through a 62.5um core fiber

Cross Section Top View
Air
SU-8

Air

DEPARTMENT OF MECHANICAL ENGINEERING a‘\
UNIVERSITY OF W ASHINGTON (’




: - MICRO
Fiber to Waveguide oo

continued ... LAB

* Coupling efficiency determined by overlap
integral:

H | A(x, »)B. (x, y)dxdy
" [ [l4Ge [ dxdv [ [|B, 0| dvdy

« A(X,y): Amplitude distribution of input source
* B, (X,y): Amplitude distribution of the mth

mode DEPARTMENT OF MECHANICAL ENGINEERING g'\
UNIVERSITY OF WASHINGTON (’




MICRO
TrcH

Fiber to Waveguide

continued ... LAB

The first 100
combinations of modes
were examined TE

Mode Coupling Eff. (%)

00 61.44

TE,, 29.66

TEO 0 TEO 2 and TE04
couple 98% of the light TE,, 6.92

All 100 combinations
couple 99% of the light

Assume that 100%

coupling DEPARTMENT OF MECHANICAL ENGINEERING a'\
UNverstTy oF Waskngtoy YO




Fiber to Waveguide

TE g, 0 Mode Coupling Efficiency TE 0, 0 Mode Coupling Efficiency

INY

TE p, 2 Mode Coupling Efficiency TE 0, 2 Mode Coupling Efficiency

LU L0
Ly

TE g, 4 Mode Coupling Efficiency TE 0, 4 Mode Coupling Efficiency

DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF W ASHINGTON




MICRO
MC — Taper Section TecH

* Photolithography process produced step-like kB

features

« Mask for process was printed with a high resolution
printer
— Resolution: 2450 dpi horizontal, 300 dpi vertical

Waveguide Taper

DEPARTMENT OF MECHANICAL ENGINEERING | &\
UNIVERSITY OF W ASHINGTON (')




MICRO

Taper Sectlon continued . Tfilé

'<— AY—»

S

2dy

DEPARTMENT OF MECHANICAL ENGINEERING | g‘\
UNIVERSITY OF W ASHINGTON (’




Taper Section c

l ntaper

77 ltaper — 77 taper

MICRO

ontinued ... T
L AB

N

step

Step 2 Ay

DEPARTMENT OF MECHANICAL ENGINEERING | #\
UNIVERSITY OF W ASHINGTON (’




MICRO

Taper Section continued ... TE%{%

SU-8 Ay= 6.5um
”ttaper =96%

DEPARTMENT OF MECHANICAL ENGINEERING | a&
UNIVERSITY OF WASHINGTON (’




MC - Taper to Beam

Index change from
taper section to beam

2

A (x)B (x)dx
_|fawe.

oean = _“An (x)|2 dx“Bm (x)|2 dx

Y direction remains
unchanged

loss is <<1% and
assumed to be
negligible

MICRO

TECH
L AB

Output from Taper Input to Beam

Air Air
SU-8 SU-8

X SiO, Air

Output from Taper
X

Input to Beam

Air

DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF W ASHINGTON

2




MICRO

MC - Total Coupling T

L AB

77 ttaper 77 beam

Fiber Input

Nr= 17 ttaper Nbeam™ 96%

DEPARTMENT OF MECHANICAL ENGINEERING | &\
UNIVERSITY OF W ASHINGTON (’




Rib Waveguide

DEPARTMENT OF MECHANICAL ENGINEERING | a‘\
UNIVERSITY OF W ASHINGTON (’




MICRO

Rib Waveguide Design  Tix

800nm: H>1.24 um
900nm: H>1.4 ym
1300nm: H>2.02um

L AB

The rib waveguide is based on the single mode
conditions proposed by Soref as following:

C. S. Huang, Y. B. Pun,

W. C. Wang, “Fabrication

of a flexible rib

waveguide with Bragg

grating filter,” Journal of
7, 7, Optical Society of

q is defined as: EiniNsra Uy America B, 26(6), 1256-
NLTEEORRN UV R Ol 1262, 2009. [O05 /]

DEPARTMENT OF MECHANICAL ENGINEERING é\
UNIVERSITY OF W ASHINGTON (’




=1 Mag Det Qp t| MicTech [_1 § WD | Mag ‘Dex Spo t| MicTech
Rra| s k\z 7 mm | 1000 x 0N 1 La— BF7| 5 kV (8.5 mm |4000 x 0 U1 L

C. S. Huang, Y. B. Pun, W. C.
Wang, “Fabrication of a flexible
rib waveguide with Bragg grating
filter,” Journal of Optical Society
of America B, 26(6), 1256-1262,
2009. [ ]

DEPARTMENT OF MECHANICAL ENGINEERING a‘\
UNIVERSITY OF W ASHINGTON (')




Optical Fiber

W. Wang 260



W. Wang

Optical Fiber

Silica (S,0,) glass

Cladding

Core

Impurities

a) Increase n of core
OR
b) Decrease n of cladding

Increase Decrease
Ge B
F F
Na-B

261
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Wave Analysis:

Cylindrical dielectric waveguide

(step fiber)
assume all fields proportional to e/(®-h?)
E =(E, Ey E,)
H =(H, Hy,H,)

E. and H, are function of (r, ¢)

Vet

But now need to use cylindrical coordinates:

d’E /dr? + 1/r dE /dr + 1/r* d?E /d¢? + (n,’k? — B?)E, =0

W. Wang 262
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Assume E proportional to E(r) h(¢p) separation of variables

Since h(2p + ¢) = h(dp) =>try h(dp) = sin/ ¢

cos(/ ¢)

el

where /= integers
Substitute back into

d’E _/dr? + 1/r dE /dr + [(n,’k? — B?)-1?/r?]E, =0 => Bessel function
Solutions closer to match physical situation.

W. Wang 263
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For guided solutions:

In core, solutions must be finite
In cladding, solutions must approach 0 as r --> o

Forr <a: E(r) oc J;(UR)  “ Bessel function of st kind”
Forr>a: E(r) « K, (WR) “modified Bessel function of 2" kind”

UR — (n12k2 _B2)0.5 r= a(n12k2 _BZ) 0.5 I-/a
U R
WR= (B2 - n,2k?)"5 a

Let V2=1U2+ W2 =22 [n,2k? B2 + B? -n,2k?] = ak?[n,2-n,?]

s V=a-(2n/A) [n;>n,?] *> (Normalized frequency)
=a - (2n/L) - NA

W. Wang 264
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Solution procedure for step-index fiber modes:

1.
E

zZ

=AJ, (UR) etei©h2)  r<a
H

z

=B K, (WR) ellbei@tbz) 1> g
2.MatchE, andH, atr=a

3. Use Maxwell’s curl equations to find E, and Hy E, and
H, and E, and Hy must match for r = +a and —a. Solve all
four equations simultaneously to yield eigenvalues

W. Wang 265
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OPTICAL FIESRS WITH SINGLESTEP INDEX PROFILES 4.3  FRELD ANALYSIS OF THE STEF INDEX FIRER

W. Wang Figure 13, Ordiawry Baciel functioss Figure 84, bod i) Brel funcliona. 266
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A major simplification in math results if (n;-n,)/n; <<1
(weakly-guiding approximation A << 1)

The eigenequations reduces to

Jipy (U) /], (U) =+ (W/U) (K.; (W) /K, (W) (+ only for / =0)
There are m possible solutions for each value of /
.. U, are solutions

From definition of U, knowing U, permits calculation of 3

B = (0, °k* — U, )03

W. Wang 267
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The resulting system of equations can only be solved graphically. The
graphical solutions represent the mode cutoffs for the different modes that
can propagate in the fiber for any given V, where V 1s a convenient
parameter determined by the properties of the fiber and wavelength of
incident light.

V =2*g/A*a*NA

2.405

8.654 11.792

The intersections represent
the V numbers at which

these two modes turn on in
the fiber.

] |
| I
| I
I |
I I
| |
| [
i |
: |
| |
i [
| |
I i
| 1
| |
i 1
| ]

1
; |
l E
| |

I
| [
| 1
I [
1 |
[ I
| |
| I
i I
| |
|

i
} i
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Normalization Parameters for Cylindrical Waveguides

Normalized frequency

VZ% /nzz i nlz

2 2
ny— n- _ n, — N,

A = —2 —
2n; 1, n
Vo~ 2:" n, V2 A
Normalized propagation constant
5 2
2
( kﬂ) -
b = 2 2
n, - n
B
p= /Ko T
h, - n
b max =1
bmin =0

W. Wang Same as slab waveguide except a=0 (almost always)

269
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n.kK;

Jj —

n(1 = Ak

V-number

The normalized wave number, or V-number of a fiber is defined as V =k a
NA. Here k;, is the free space wave number, 2r/A, a is the radius of the core, and

NA is the numerical aperture of the fiber, NA = (n ;% - Njaq4ing?) " & Neore(24) 172,
with A = (n

core Neladding) Neore- Many fiber parameters can be expressed in terms of
V. The TE and TM modes have non-vanishing cut-off frequencies. The cutoff
frequency is found from V = aw(2A)*%/c = 2.405. Only the lowest HE mode, HE,,,

has woveutoff frequency. For 0 <V < 2.405 it is the only mode that propagatesgan
the fiber. w.wang



In the weakly-guiding approximation (A << 1), the modes propagating in the fiber are linearly
polarized (LP) modes characterized by two subscripts, m and n. (The longitudinal
components of the fields are small when A << 1.) The LP modes are combinations of the
modes found from the exact theory of the wave guide. The HE,, mode becomes the LP,,,

mode in the weakly-guiding approximation.

V-number

W. Wang 271
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The following table presents the first ten cutoff frequencies in a step-index fiber, as
well as their fundamental modes.

W. Wang

V. Bessel Modes LP desig.
function

0 - HE,, LFy,
2.405 Jo TEpy, TMy,, HE;, LPy,
3.832 7 EH,,, HE;s, LP;,
3.832 J_1 HE,; L Fys
5.136 Ja EH,,, HE, LPy;
5.520 Jo T Eoz, TMpz, HEx; LPy;
6.380 T EH,,, HEs, LP,,
7.016 J; EH,;, HEs; LP;s
7.016 J-1 HE,; LFqs
7.588 I EH,;, HEg, LPsy

272
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Single mode fiber

Single mode (SM) fiber 1s designed such that all the higher order
waveguide modes are cut-off by a proper choice of the
waveguide parameters as given below.

2
V:T H%‘HE

where, A 18 the wavelength, a 1s the core radius, and n, and n, are
the core and cladding refractive indices, respectively. When V <
2.405 single mode condition is ensured. SM fiber is an essential
requirement for interferometric sensors. Due to the small core size
(~4 um) alignment becomes a critical factor.

W. Wang 273
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W. Wang

Figure 3.10 shows plots of b, calculated using (3.76) and (3.77) in (3.78), for
several LP modes as functions of V. As plotted on this scale, these results are
essentially indistinguishable from those given by the exact numerical solution
[5]. _

When considering single-mode fibers, the accuracy of the LPy; curve in Fig.
3.10 is of increased importance. It was in fact found to be accurate to within
3% over the range of V between 2.0 and 3.0, with the error increasing to around
10% as V decreases to 1.5 [7]. Numerous other approximate formulas exist as
alternatives to (3.77) for determining /. The best of these was found by Rudolf
and Neumann [8], who recognized that w is a nearly linear function of V over
lhe range 1.3 < V < 3.5. They were thus able to approximate w over this range
by the simple function

w = 1,1428V — 0.9960 (3.80)

Figure 3.10. Normalized propagation constant, b, for designated LP modes as functions of V.,
(Adapted from ref. 5.)

274
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LPoy

LPyy

LFPay

Electric and magnetic fields for eight fundamental modes.

W. Wang 275
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LPO1 P11

When the V number is less than 2.405 only the LP,,,
mode propagates. When the V number is greater than
2.405 the next linearly-polarized mode can be
supported by the fiber, so that both the LP,, and LP,,
modes will propagate.

W. Wang 276
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LHTICAL FIRGRS WITH YL R S FEF N e es 17

LF PCTHR !

" LPy,

Invemaity phols for the din LP modes. with 2 = 1 b0 0P 2 v - 2 b AP m

Flgure LY.
(R 5y Ly 15, djeh " A8 iF s

Figmre 19, | oasarwed
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The SM fiber mentioned above 1s not truly single mode in that two
modes with degenerate polarization states can propagate in the fiber.
This can lead to signal interference and noise in the measurement.
The degeneracy can be removed and a single mode polarization
preserving fiber can be obtained by the use of an elliptical core fiber
of very small size or with built in stress. In either case light launched
along the major axis of the fiber is preserved in its state of
polarization. It is also possible to make a polarizing fiber in which
only one state of polarization 1s propagated. Polarimetric sensors
make use of polarization preserving fibers. Thus, multimode fiber,
single mode fiber and polarization preserving fiber are the three
classes of fibers which are used in the intensity type, the
interferometric type and the polarimetric type of sensors,
respectively.

W. Wang 278
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While discussing step-index fibers, we considered light propagation inside the fiber as a
set of many rays bouncing back and forth at the core-cladding interface. There the angle 0
could take a continuum of values lying between 0 and cos !(n,/n)), i.e.,

Air
L -~ Cladding, n = n2
2 My ;f‘ ladding, n = my.
1% S T T -
Cladding C
Air

Scientific and Technological Education
in Photonics

0 <6 <cos™ (n,/n,)

- b
Forn,=15and A~®~"2 =0.01, we would get n,/n , = and cos ! Al =8.1° 50

0<0<8.1°

W. Wang 279
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Now, when the core radius (or the quantity A) becomes very small, ray optics does not remain

valid and one has to use the more accurate wave theory based on Maxwell's equations.
In wave theory, one introduces the parameter

V= ?aq,‘nlz .%‘2 - —anl«JZL‘s % —fmgxlr_
0

where A has been defined earlier and n, = n,. The quantity V' is often referred to as the "V-number"
or the "waveguide parameter" of the fiber. It can be shown that, if

V' <2.4045
only one guided mode (as if there is only one discrete value of 0) is possible and the fiber is known

as a single-mode fiber. Further, for a step-index single-mode fiber, the corresponding (discrete)
value of 0 is approximately given by the following empirical formula

2
0.994
cosBs | —ﬁ[l —[1.1428 —T] }

We may mention here that because of practical considerations the value A of ranges from about

OvpOR4gpabout 0.008 280
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Assignment

Consider a step-index fiber (operating at 1300 nm) with n, = 1.447, A= 0.003, and a = 4.2 pm. Thus,

2 .
T 4.2(um) x 1447 x JOT06 & 22

’= gy () Ag ()

Thus the fiber will be single moded and the corresponding value of 6—will be about 8 = 3.1°. It may be
mentioned that for the given fiber we may write

x 4.2(um) x 1.447 x 4f0.006 =~ 2.275

L.3(purn)

Thus, for A,>2.958/2.4045=1.23 ym

which guarantees that /' < 2.4045, the fiber will be single moded. The wavelength for which V'=2.4045 is
known as the cutoff wavelength and is denoted by A_. In this example, A, = 1.23 pm and the fiber will be single
moded for A, > 1.23 pum.
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Assignment

For reasons that will be discussed later, the fibers used in current optical communication systems
(operating at 1.55 um) have a small value of core radius and a large value of A. A typical fiber
(operating at A, ~ 1.55 um) has n, = 1.444, A= 0.0075, and a = 2.3 um. Thus, at A, = 1.55 um,
the V-number is,

27
V=
1.55(um)

x 2.3(um) x 1.444 x f0.015 =~ 1.649

The fiber will be single moded (at 1.55 pum) with 6 = 5.9°. Further, for the given fiber we may write

2 2556
y=—2% % 23(um)x 1444 x f0.015 &

g (um) A (k)

and therefore the cutoff wavelength will be A, = 2.556/2.4045 = 1.06 pum.
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Cladding N,

NA=SIN Sya= JN 12 -N ;2

*The Numerical Aperture (NA) of a fiber 1s the measure of the
maximum angle (0, ) of the light entering the end that will
propagate within the core of the fiber

*Acceptance Cone = 20NA

Light rays entering the fiber that exceed the angle 0, will enter the

cladding and be lost
*Forthe best performance the NA of the transmutter should magch the

NA of the fiber w. wang




NA derivation

sini

and  sind(=cosB) > %2

Weknow ing iy 7

24
Since SinB=.fl—cos? § Wweget sme“[“[%”

Assume the Oy, 1s the half angle of the acceptance cone,

sinBy ,=(n,%-n,?)!"2=n,sqrt(2A)
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We define a parameter A through the following equations.

_ A
A= 2
2ny

When A <<'1 (as 1s indeed true for silica fibers where 7, 1s very nearly equal to
n,) we may write

pao utn)m -ng) (m-nm)  (m-n)
n? " n,
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Acceptance Conef.;-;;:_

Cladding

Acceptance
Cone

Coating
Core

,*"’
A
i -
i
i P
- ,
g -
r"’
_F
" f’
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Acceptance Cone _

Cladding

(Critical Angle = 16°= O
\

Single mode fiber critical angle <20°
Multimode fiber critical angle <60°

W. Wang 287
w. wang



Example

For a typical step-index (multimode) fiber with n, = 1.45 and A = 0.01, we get

sini,, = 24 = 1.45,[2x (0.01) = 0.205

so thati ~ 12°. Thus, all light entering the fiber must be within a cone of
half-angle 12°.

In a short length of an optical fiber, if all rays between i = 0 and i_ are launched, the
light coming out of the fiber will also appear as a cone of half-angle i emanating from
the fiber end. If we now allow this beam to fall normally on a white paper and measure
its diameter, we can easily calculate the N4 of the fiber.
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