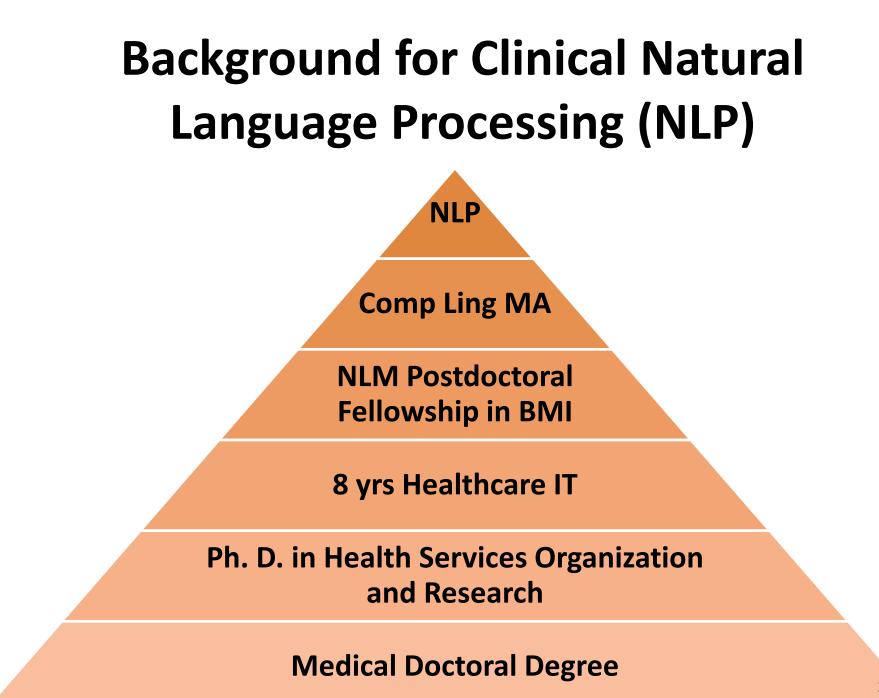
Natural Language Processing for Clinical Informatics and Translational Research Informatics

Imre Solti, M. D., Ph. D.

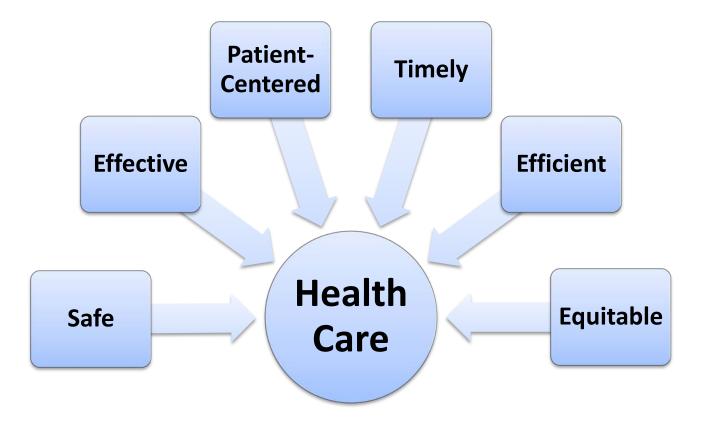
solti@uw.edu

K99 Fellow in Biomedical Informatics University of Washington



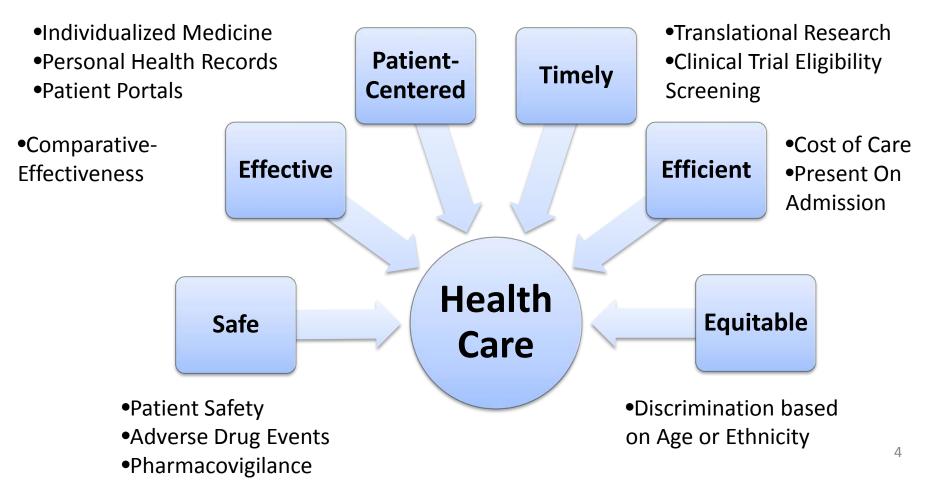
Career Interest

NLP as strategic tool to achieve the six aims of the Institute of Medicine



Research Interests

NLP for Clinical Informatics and Translational Research Informatics

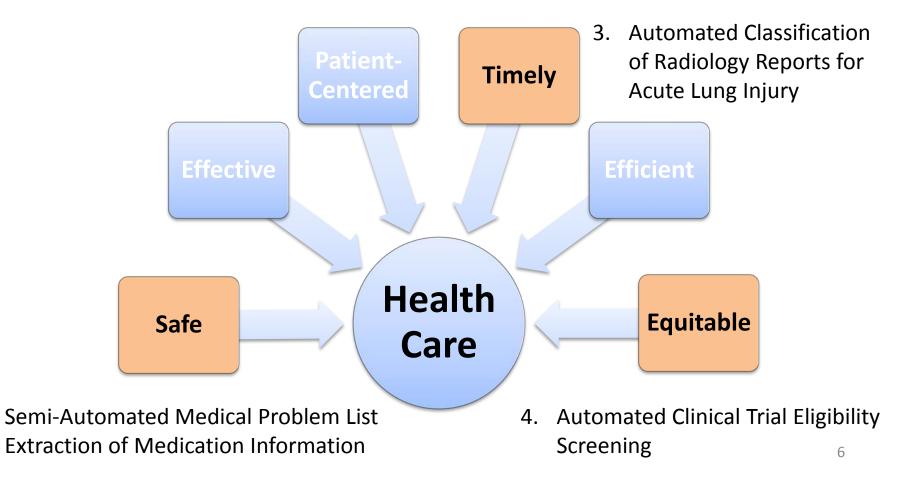


Research Interests - Summary

- Information Extraction from unstructured clinical text -> Linking phenotype and genotype
- Document Classification
- Data Mining

Use Cases for Today's Presentation

NLP Research Use Cases for the Electronic Medical Record



1

2

Collaborators

- University of Washington
 - Eithon Cadag, Ph. D. Biomedical Informatics
 - John Gennari, Ph. D. Biomedical Informatics
 - **Scott Halgrim**, M. A. Computational Linguistics
 - Tom Payne, M. D. IT Services Medical Center
 - Peter Tarczy-Hornoch, M. D. Biomedical Informatics
 - Mark Wurfel, M. D. Pulmonary and Critical Care Med
 - Fei Xia, Ph. D. Computational Linguistics
- External Investigators
 - University of Pittsburgh
 - Columbia
 - Albany/MIT, i2b2 (Informatics for Integrating Biology and the Bedside)

Definitions¹

<u>Natural Language Processing (NLP):</u>

NLP research focuses on building computational models for understanding natural (human) language.

• Information Extraction (IE):

IE involves extracting predefined types

of information from text. Subfield of NLP.

<u>Named Entity Recognition (NER):</u>

Recognizing expressions denoting entities (i.e., Named Entities), such as diseases in free text documents. Subfield of IE.

• Information Retrieval (IR):

Information retrieval (IR) is focused on finding documents.

[1] Meystre, S. M., et al., "Extracting information from textual documents in the electronic health record: a review of recent research." Yearb Med Inform. 2008:128-44.

Definitions¹ – Cont.

<u>Document Classification:</u>

Assigning electronic documents to one or more categories.

Biomedical Text:

Text that appears in books, articles, literature abstracts.

• <u>Clinical Text:</u>

Texts written by clinicians in the clinical setting.

• <u>Biomedical-NLP:</u>

NLP for biomedical text.

• <u>Clinical-NLP:</u>

NLP for the clinical text.

[1] Meystre, S. M., et al., "Extracting information from textual documents in the electronic health record: a review of recent research." Yearb Med Inform. 2008:128-44.

Agenda for Today

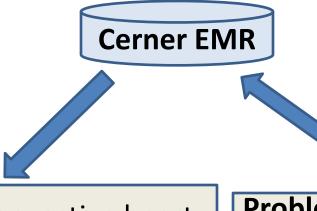
Past Projects:

- Semi-Automated Medical Problem List: Clinical-NLP, IE, NER - 1 Slide
- Extraction of Medication Information: Clinical-NLP, IE, NER - 1 Slide
- **3. Classification of Radiology Reports for Acute Lung Injury**: Clinical Document Classification

Future Project:

***Automated Clinical Trial Eligibility Screening**: Clinical NLP, Biomedical-NLP, IE, NER, Document Classification
*Grant funded

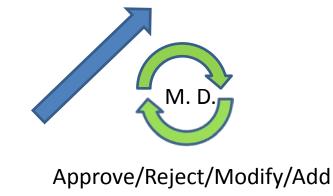
Semi-Automated Medical Problem List



Clinic Note: BPH. Congestive heart failure. Some of this is related to his tachy-brady syndrome. He has no nausea, vomiting, diarrhea.

Problem List:

- 1. Benign Prostatic Hypertrophy
- 2. Congestive Heart Failure
- 3. Tachy-Brady Syndrome

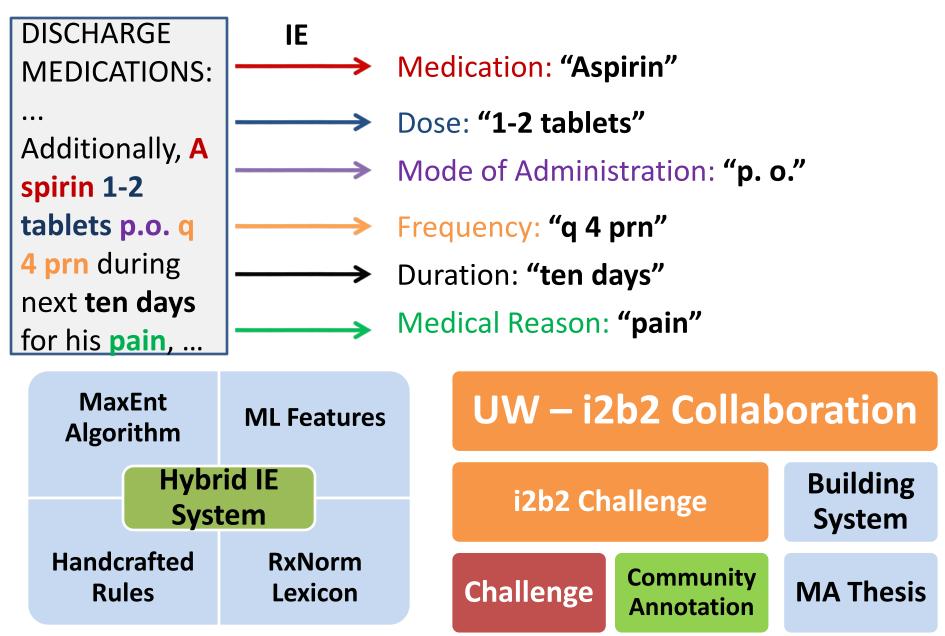


Solti I., et al. "Building an automated problem list based on natural language processing: lessons learned in the early phase of development. "AMIA Annu Symp Proc. 2008 Nov 6:687-91.

NLP

Server

Automated Extraction of Medication Information



Classification of Radiology Reports for Acute Lung Injury (ALI)

Motivation

- 30 % Mortality
- Delayed manual chest x-ray classification

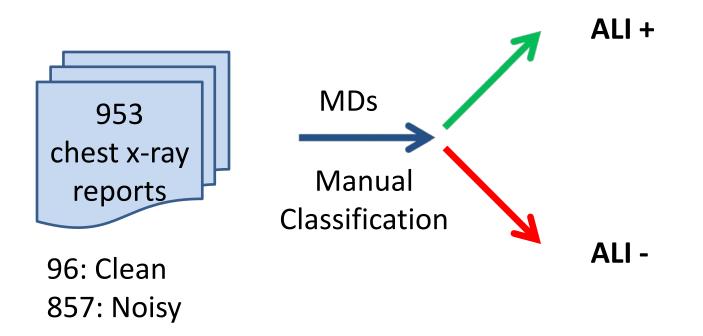
Aims

- Build NLP-based classifier
- Intuitive link: Machine Learning Clinical Expertise

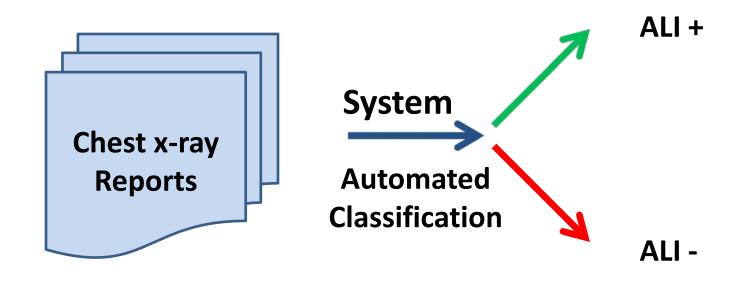
Methods

- Keywords
- Maximum Entropy: Character n-grams

Data (Corpus) and Gold Standard



Task for Automated ALI Classification



Sample Report

Tubes and lines: satisfactory position and alignment

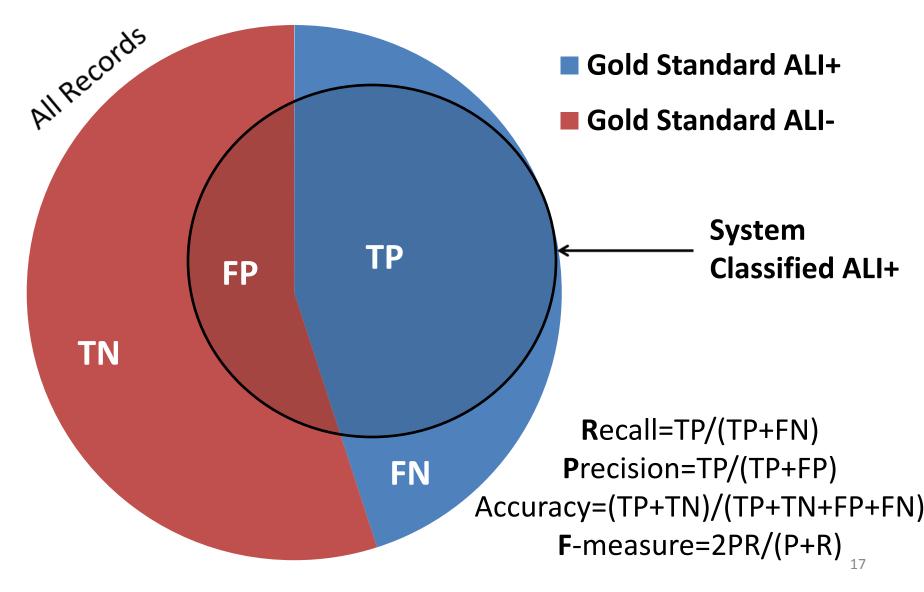
Lungs: The lung volumes are low and unchanged. There are diffuse, bilateral opacities that are worsened.

Pneumothorax: none

Effusions: none

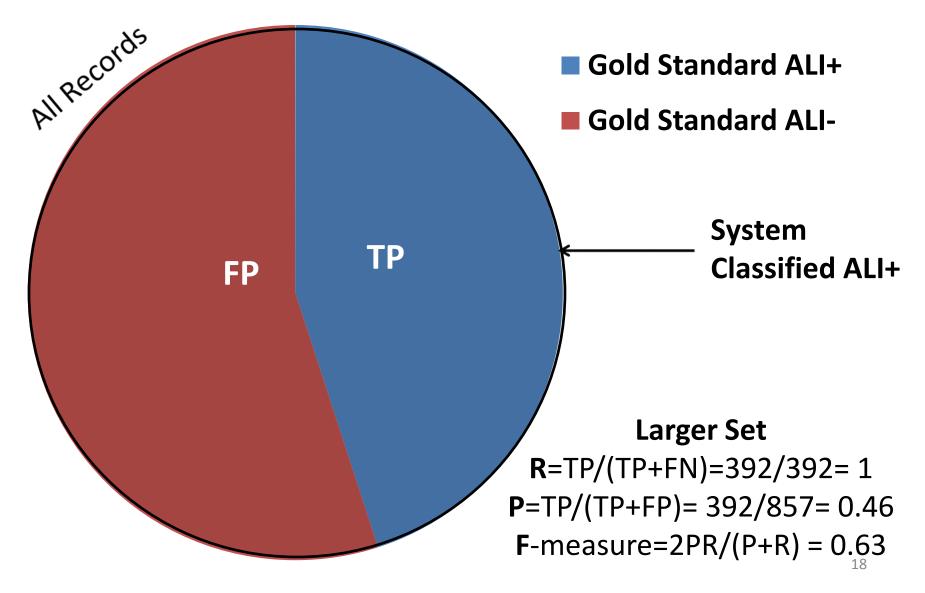
Measurement Metrics

Recall, Precision, F-measure, Accuracy



Baseline

No Processing: Assign ALI+ to Every Report



Gold Standard – Smaller Corpus

Reviewer	R	Р	F
1	0.94	0.98	0.96
2	0.98	0.91	0.94
3	0.80	0.95	0.87
4	0.80	0.98	0.88
5	0.62	1.00	0.77
6	1.00	0.83	0.91
7	0.92	0.94	0.93
8	0.70	0.92	0.80
9	0.70	1.00	0.82
10	0.96	0.96	0.96
11	0.92	0.98	0.95

List of Keywords (Sample)

Phrase	Weight/3	Weight/10
edema	2.5	8
lung opacities	2	5.5
diffuse	3	10
bilateral	3	10

48 Key Phrases

Keyword & Weight-Based Results

Method	R	Ρ	F	Acc
96-raw	0.88	0.83	0.85	0.844
96-w3	0.82	0.85	0.84	0.833
96-w10	0.72	0.88	0.80	0.800
Baseline	1	0.46	0.63	0.46

MaxEnt Character n-gram Features

- Unigram, Bigram, ... 6-gram
- "diffuse", 6-gram, sliding window
- nnnn d nnn_di nn dif n_diff diffu diffus iffuse ffuse fuse_n etc ...

MaxEnt Results (Smaller Corpus)

System	R	Ρ	F	Acc
word	0.83	0.78	0.80	0.81
n1	0.62	0.58	0.60	0.63
n2	0.67	0.81	0.73	0.76
n3	0.82	0.85	0.84	0.82
n4	0.85	0.97	0.91	0.88
n5	0.77	0.73	0.75	0.78
n6	0.84	0.82	0.83	0.85
Baseline	1	0.46	0.63	0.46

MaxEnt vs Keyword

System	R	Ρ	F	Acc
Raw	0.88	0.83	0.85	0.84
W3	0.82	0.85	0.84	0.83
n3	0.82	0.85	0.84	0.82
n4	0.85	0.97	0.91	0.88
n6	0.84	0.82	0.83	0.85
Baseline	1	0.46	0.63	0.46

ROC statistics - Not significant difference Keyword vs MaxEnt

Visualizing Machine Learning Features - MaxEnt			
Present on the 48-Phrase List			
N-gram Feature Clinical Phrase			
edema_	edema		
a_and_	edem a and		
ffuse_	di ffuse		
teral_	bila teral		
y_opac	patch y opac ities		
al_opa	bilater al opa cities		
Missing from 48-Phrase List			
perihi perihi lar			

Limitations

- 1. Two corpora (Selection and GS Criteria)
- Not tested Other ALI Research Team Corpora
- 3. Features limited to n-grams
- 4. Different performance peaks (96 vs 857-set)

Related Work ALI Classification

- Herasevich et al., Mayo Clinic, Rochester (2009)
- Azzam et al., UPenn (2009)
- Rule-based systems, focus -> ALI screening not on NLP component
- No details -> Not directly comparable

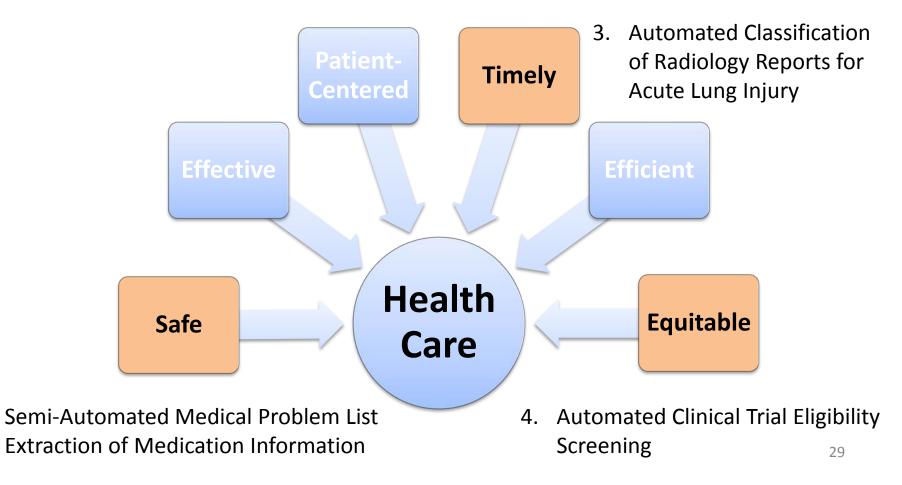
Conclusions for ALI Classification

1. Aims achieved:

- I. Built NLP-based classifier(s)
- II. Visualized ML features for clinicians
- 2. Advantages and disadvantages: Keyword and ML-based systems ->
- 3. What approach is better?

Use Cases for Today's Presentation

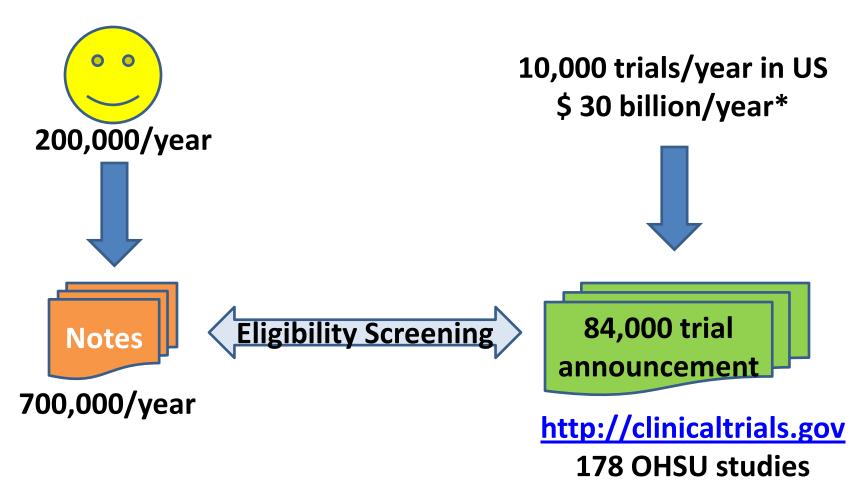
NLP Research Use Cases for the Electronic Medical Record



1

2

Automated Clinical Trial Eligibility Screening - Task



*Editorial - The Cost of Clinical Trials. Drug Discovery & Development . March 01, 2007

Automated Patient-Centered Clinical Trial Eligibility Screening

Background and Significance:

- Low Rate: 4% adult cancer patients
- Physician Bias: older age, minority status
- Not Mentioned: 25% b cc surg -> 0 offer, 40% -> 1-10% offer

Aims:

- Identify concept elements
- Build inf application to extract and match
- Interactive input module
- Evaluation of performance

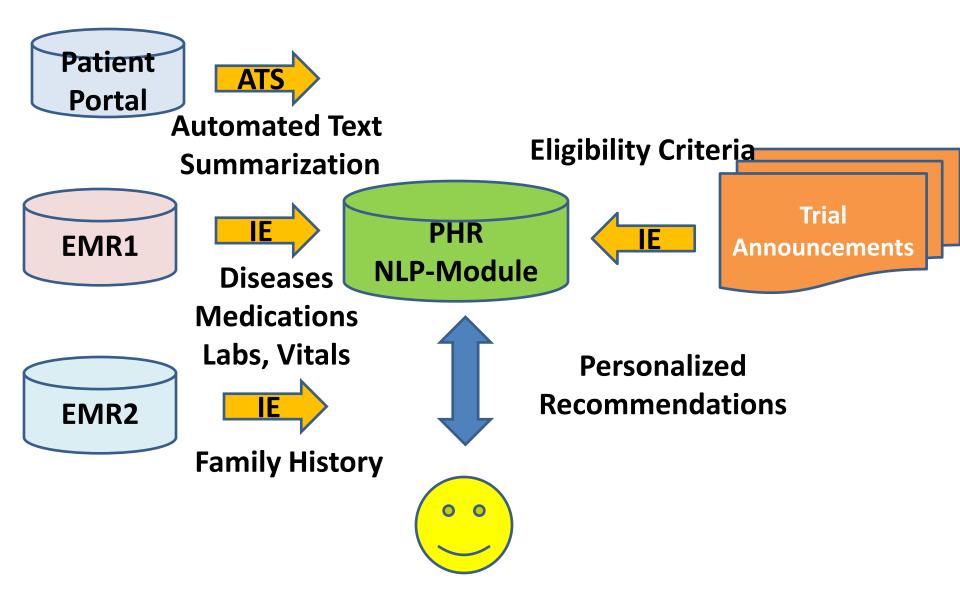
Related Work

- Protocol Authoring Tools
- Standardized Terminology
 - Clinical Data Interchange Standards Consortium
 - Biomedical Research Integrated Domain Group
 - HL7
 - Trial Bank/Open Trial Bank Ida Sim
 - Columbia Patel and Weng
- Cincinnati Embi
- Others...

Excerpts – Trial Announcement

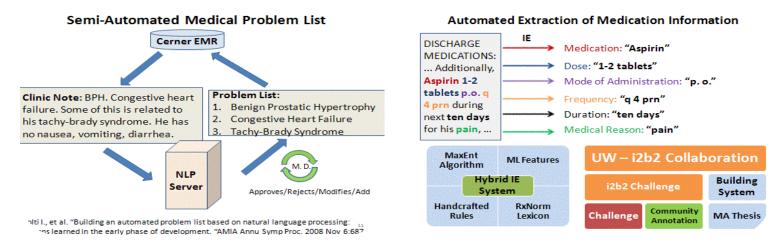
- First-degree relative with bilateral breast cancer who developed the first breast cancer at ≤ 50 years of age
- Postmenopausal, defined as at least 1 of the following:
 - Over 60 years of age
 - Bilateral oophorectomy
 - ≤ 60 years of age With a uterus and amenorrhea for at least 12 months
- No cancer within the past 5 years except nonmelanoma skin cancer Or carcinoma in situ of the cervix

Points of Intervention for NLP Systems

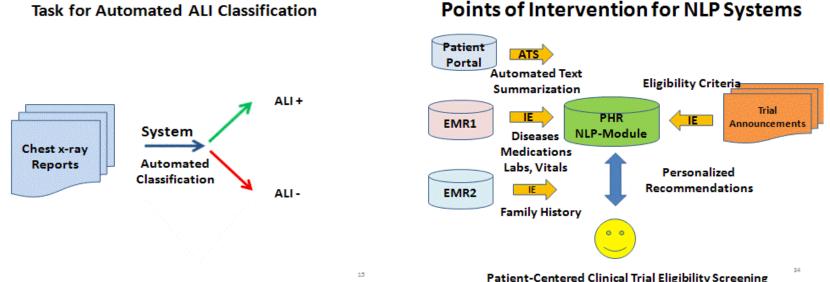


Patient-Centered Clinical Trial Eligibility Screening

Summary – Questions?



NLP Use Cases for Clinical Informatics and Translational Informatics



35

Summary – Questions? (Text Version)

Past Projects:

- Semi-Automated Medical Problem List: Clinical-NLP, IE, NER - 1 Slide
- Extraction of Medication Information: Clinical-NLP, IE, NER - 1 Slide
- **3. Classification of Radiology Reports for Acute Lung Injury**: Clinical Document Classification

Future Project:

4. *Automated Clinical Trial Eligibility Screening: Clinical NLP, Biomedical-NLP, IE, NER, Document Classification
*Grant funded