
Mining Mountains of Data:
Organizing All Atom Molecular Dynamics Protein

Simulation Data into SQL and OLAP Cubes

Andrew M. Simms

Daggett Lab

Overview

• Background

– Daggett Lab

– On-line Analysis Processing (OLAP)

• OLAP Details

• An OLAP Cube Design for Simulations

• Implementation Results

• Conclusions

BACKGROUND
Daggett Lab

Daggett Lab

• Two areas of focus

– Disease related proteins

– Dynameomics

• Primarily computational

• Both focus areas study
protein motion

Van der Kamp MW et al. Dynameomics: A comprehensive database of protein dynamics. Structure, 18: 423-435, 2010. [DOI]

www.dynameomics.org

http://dx.doi.org/10.1016/j.str.2010.01.012
http://www.dynameomics.org/

Molecular Dynamics (MD)

• Atomic resolution structure and dynamics

sim_id struct_id struct_inst atom_number step x_coord y_coord z_coord bin

678 122 1 1 0 -5.846 8.722 11.445 408

678 122 1 2 0 -5.989 8.026 12.191 480

678 122 1 3 0 -4.842 8.797 11.24 408

678 122 1 4 0 -6.157 9.627 11.775 480

678 122 1 5 0 -6.634 8.372 10.247 408

One Simulation

• A “typical” simulation contains

Protein
Coordinates

Structures Coordinate
Table

Analysis Tables

29.3 x 106 31.0 x 103 4.4GB 0.6GB

2,070 Targets Simulated

Informatics Challenge (in 2007)

Storage Analysis

Organization

• Storage and basic organization

Simulations Targets Time Structures SQL

2,300+ 300+ 35 s 50,600,000 ~24 TB

Informatics Challenge Now

• The lab has run over 10,915 simulations, each
containing millions to billions of protein atom
coordinates and even more analyses

Storage Analysis

Organization

Simulations Proteins Time Structures Space

7,344+ 1248+ 186 s 251 x 106 71+ TB

ONLINE ANALYSIS PROCESSING
(OLAP)

BACKGROUND

Online Analytical Processing (OLAP)

• Term coined by Ted C. F. Codd, the inventor of
the relational data model

• Described as a set of principals that posit the
type of database needed for transactional
tasks is fundamentally different than the type
of database needed for analysis

Codd EF, Codd SB, Salley CT. Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate 1993.

OLAP Concepts

• Data are organized around and

• FACTS are continuous measurements on a
item of interest

• DIMENSIONS are discrete quantities that
classify measurements into useful groupings

sim_id struct_id struct_inst atom_number step x_coord y_coord z_coord bin

678 122 1 1 0 -5.846 8.722 11.445 408

678 122 1 2 0 -5.989 8.026 12.191 480

678 122 1 3 0 -4.842 8.797 11.24 408

678 122 1 4 0 -6.157 9.627 11.775 480

678 122 1 5 0 -6.634 8.372 10.247 408

Dimensions

• An individual dimension is similar to a number
line, but you are not limited to integers

1 2 3 4 5 6 …

x_coord y_coord z_coord

-5.846 8.722 11.445

sim_id struct_id struct_inst atom_number step x_coord y_coord z_coord bin

678 122 1 1 0 -5.846 8.722 11.445 408

678 122 1 2 0 -5.989 8.026 12.191 480

678 122 1 3 0 -4.842 8.797 11.24 408

678 122 1 4 0 -6.157 9.627 11.775 480

678 122 1 5 0 -6.634 8.372 10.247 408

atom

Dimensions, Continued

• A set of dimensions provide coordinates to
facts

1 2 3 4 5 6 …

sim_id struct_id struct_inst atom_number step x_coord y_coord z_coord bin

678 122 1 1 0 -5.846 8.722 11.445 408

678 122 1 2 0 -5.989 8.026 12.191 480

678 122 1 3 0 -4.842 8.797 11.24 408

678 122 1 4 0 -6.157 9.627 11.775 480

678 122 1 5 0 -6.634 8.372 10.247 408

x_coord y_coord z_coord

-5.846 8.722 11.445

simulation

atom

676

677

(678, 1)

OLAP Cubes

• A collection of facts and related dimensions
form a (hyper) cube

• The cube concept can be implemented using
relational tables in a star schema or using a
multi-dimensional database…

FACT DimensionDimension

Dimension

Dimension

Multidimensional OLAP

• MOLAP is an implementation of a OLAP
database optimized for multidimensional
storage

• SQL Server Analysis Services (SSAS) is a set of
tools including a MOLAP storage engine and
the Multi-Dimensional Expressions (MDX)
language

OLAP IN DETAIL

Dimensions

• Recall dimensions uniquely identify facts

• Dimensions are composed of discrete values
called members

• Fact data can be “addressed” by specifying a
member from each associated dimension

• Members can be organized in a hierarchy

Hierarchies

Atoms

Amino Acid

Chain

Structure 1enh-1

A

ARG

N H1 H2

PRO

N

Dimension

Levels

Members

Facts are Associated with Members

• Example:
coordinates
and atoms in
a structure

Atoms

Amino Acid

Chain

Structure 1enh-1

A

ARG

N H1 H2

PRO

N

Members

sim_id struct_id struct_inst atom_number step x_coord y_coord z_coord bin

678 122 1 1 0 -5.846 8.722 11.445 408

678 122 1 2 0 -5.989 8.026 12.191 480

678 122 1 3 0 -4.842 8.797 11.24 408

678 122 1 4 0 -6.157 9.627 11.775 480

678 122 1 5 0 -6.634 8.372 10.247 408

Facts can be associated members at
any level

• Example:
Dihedral
angles are
computed on
amino acids

Atoms

Amino Acid

Chain

Structure 1enh-1

A

ARG

N H1 H2

PRO

N

sim_id struct_id struct_inst residue_id step dh_id dh_angle

678 122 1 2 0 1 5.412

678 122 1 2 0 2 -1.562

678 122 1 2 0 5 -2.908

678 122 1 2 0 8 6.536

Tuples and Sets

• A tuple is the collection of dimension members
that define a fact

• Similar to a multidimensional array in C#
– Float[,,,,,] myarray = new Int32[10000, 2400, 50, 900,

300000,255];
– myarray[678,122,1,2,0,1] = 5.412

• Unlike a C# array, OLAP dimensions are self
describing and can listed in any order

• A set is a collection of tuples

sim_id struct_id struct_inst residue_id step dh_id dh_angle

678 122 1 2 0 1 5.412

678 122 1 2 0 2 -1.562

678 122 1 2 0 5 -2.908

678 122 1 2 0 8 6.536

OLAP and Aggregation

• Individual facts are specified by a “tuple”

• Leaving out a dimension means “*” or all,
resulting in a set

• Choosing a member above the base is short
hand for a set of all descendants

• OLAP will apply the defined aggregation,
typically SUM

sim_id struct_id struct_inst residue_id step dh_id dh_angle

678 122 1 2 0 1 5.412

678 122 1 2 0 2 -1.562

678 122 1 2 0 5 -2.908

678 122 1 2 0 8 6.536

OLAP is not for Managing Data

• OLAP cubes do not

– care about integrity constraints

– support easy or fast updates to data

– worry about missing or sparse data

• One way to think of OLAP – a materialized and
optimized view of data stored somewhere
other than the store of record (which is
typically SQL)

Microsoft SQL Server:
OLAP and Relational

Analysis Services (MOLAP)

• Cube

• Proprietary Store*

• Language is MDX

• Queries are top-down

• Results are multi-
dimensional cubes

• Data are ORDERED

SQL Server (Relational)

• Database

• Relational Store

• Language is SQL

• Queries are bottom-up

• Results are two-dimensional
tables

• Data are UNORDERED

* No longer undocumented: I Gorbach, A. Berger, E. Melomed, Microsoft SQL Server 2008 Analysis Services UNLEASHED, 2009 Pearson
Education, Inc.

SQL Server Analysis Services

• Discrete dimensional values mean indexes can
be implemented as bit vectors—fast but
difficult to update and create

• Data are inherently ordered, making it easy to
do things like compute medians

• Cubes effectively must be compiled from
other sources

Multidimensional Expressions (MDX)

• The query language for Analysis Services is
MDX

• An MDX query defines a sub-cube, possibly
multi-dimensional, derived by slicing and
dicing (their words) data from the source cube

A Quick Look at MDX

WITH
MEMBER [Measures].[atm_type] as '[Structure].[Atom Type].membervalue'
MEMBER [Measures].[res_type] as '[Structure].residue.membervalue'
MEMBER [Measures].[res_num] as '[Structure].[residue number].membervalue'
MEMBER [Measures].[atm_num] as '[Structure].[Structure Hierarchy].Properties("Atom Number")'

SELECT { [Measures].[atm_num]
, [atm_type]
, [res_type]
, [res_num]
, [x Coord]
, [y Coord]
, [z Coord] } on AXIS(0)

, { [Structure].[Structure Hierarchy].[Atom].&[122]&[1] :
[Structure].[Structure Hierarchy].[Atom].&[122]&[5] } on AXIS(1)

FROM [UnifiedDSV]
WHERE ([Simulation].[Simulation Hierarchy].[Step].&[678]&[1]&[0])

atm_num atm_type res_type res_num x Coord y Coord z Coord

N 1 N ARG 1 -5.846 8.722 11.445

H1 2 H ARG 1 -5.989 8.026 12.191

H2 3 H ARG 1 -4.842 8.797 11.24

H3 4 H ARG 1 -6.157 9.627 11.775

CA 5 C ARG 1 -6.634 8.372 10.247

A CUBE DESIGN FOR SIMULATIONS

Design

• Dynameomics has 4
OLAP dimensions

– Structure

– Simulation

– Simulation Group

– Structure Group

Structure

1enh-
1

3chy-
1

Simulation

681

5050

Structure
Group

COMT
Group

Sim

Group

Top
807

Primary Dimensions

Structure Dimension

Atom

Residue

Chain

Structure 1enh-1

A

ARG

N …

PRO

N …

Simulation Dimension

Step

System

Simulation 681

1

0 100 …

Simulation
Group Simulations …

Secondary Dimensions

Structure Group is a Many-to-
Many relationship between
Structures

Structure
Group Parent Structure

• Child Structure(s)

Simulation Group is a Many-
to-Many relationship with
Simulations

Dimensions and SQL

• Dimensions are closely tied to SQL tables in
the main warehouse

– Simulation is keyed at the lowest level on sim_id,
struct_inst, struct_id and step

– Structure is keyed at the lowest level on struct_id
and atom_number

– Structure Groups and Simulation Groups are
related though intermediate tables to Structure
and Simulation, respectively

Facts (Measures)

• Atom Coordinates
• Box
• Forces
• Dihedral Angles
• DSSP
• Flexibility
• Solvent Accessible Surface Area (SASA)
• Cα RMSD
• Congenial
• Radius of Gyration (Radgee)
• Contacts

Dimensionality

Coordinates

Forces

Structure

Chain

Residue

Atom

Simulation

System

Step

SASA

Box

RMSF

RMSD

Radgee

Flexibility

Contact

Dihedral

DSSP

IMPLEMENTATION

Starting Point

• A cube based on the top 6 Dynameomics
targets:

• Contains coordinates, box size, and dihedral
angles only

Simulations Structures Time SQL Space

63 1.5 x 106 1.15 s 214GB

Initial Observations

• Initial build/processing time ~2 hours

• Cubes are significantly smaller than their SQL
counter parts:

Simulations Structures Time SQL Space OLAP Space

63 1.5 x 106 1.15 s 214GB 41GB

Test Query: Dihedral Angles

• Dihedral angles are used to study side-chain
conformations

• One visualization technique is to make
histograms, effectively binning observed
angles into 1 degree buckets

• 855,484,304 rows of Dihedral data in my test
set

• In SQL…

SQL Dihedral Query
SELECT byres.residue

, dh.angle_name
, byres.[bin]
, SUM(byres.[count]) AS [count]

FROM (
SELECT i.residue

, d.dh_id
, CAST (ROUND(d.dh_angle,0) AS INT) AS [bin]
, COUNT(*) AS [count]

FROM (SELECT DISTINCT struct_id, residue_id, residue
FROM [Directory].dbo.Master_ID) AS i
JOIN [dynameomics-9].dbo.andrew_TOP6_Dihed AS d WITH (NOLOCK)
ON (i.struct_id = d.struct_id

AND i.residue_id = d.residue_id)
GROUP BY i.residue

, d.dh_id
, CAST (ROUND(d.dh_angle,0) AS INT)

UNION ALL
-- FOUR MORE SELECTS HERE

) AS byres
JOIN dbo.Dihedral_Angle AS dh
ON (byres.dh_id = dh.dh_id)

GROUP BY byres.residue , dh.angle_name, byres.[bin]
ORDER BY byres.residue, dh.angle_name, byres.[bin]

SQL Results

• First version was too slow (I stopped it after 3
hours)

• Second version, 65 lines, took 32 minutes,
35,364 rows

• This query could be more thoroughly analyzed
and perhaps made faster

residue angle_name bin count

ALA chi1 -180 53596

ALA chi1 -179 107007

ALA chi1 -178 105977

ALA chi1 -177 104639

ALA chi1 -176 103918

Here’s the MDX Version

SELECT NON EMPTY { [Structure].[Residue Hierarchy].[Residue Name]

} on AXIS(0)

, { CROSSJOIN ({ [Dihedral Angle].[Dihedral Hierarchy].[Angle Bin] }

, { [Measures].[Dihedral Count] })}

ON AXIS(1)

FROM [UnifiedDSV]

MDX Results

• ~6 lines

• Returned the same results as SQL, but
conveniently pivoted for comparison (6,138
rows)

• Execution time: 4 seconds

Alanine Arginine Asparagine Aspartic acid Cysteine Glutamine Glutamic acid

-180 Dihedral Count 53596 22116 76832 95041 674 8626 26797

-179 Dihedral Count 107007 44841 155320 190478 1477 18000 55579

-178 Dihedral Count 105977 46318 154486 192171 1457 18379 57658

-177 Dihedral Count 104639 47175 153191 193343 1484 19194 59307

-176 Dihedral Count 103918 47725 152868 192268 1415 19518 60685

-175 Dihedral Count 101764 47928 149364 190889 1396 19569 62164

Contacts

• Atom-Atom contacts are frequently analyzed
in simulations

• Two heavy atoms (i.e. not Hydrogen) are said
to be in contact if they are less than 4.6 Å
apart unless both atoms are Carbon; then
they must be 5.4 Å apart or less

Contact Matrices are BIG

• A brute-force comparison of all atoms in a
simulation frame is the Cartesian product of
all rows in that frame divided by two

• For 1enh, that amounts to 631,688
comparisons PER FRAME

• A SQL implementation involves a self-join on a
Coordinate table

SQL to just compute distances

SELECT c1.sim_id
, c1.step
, c1.struct_inst AS struct_inst1
, c1.struct_id AS struct_id1
, c1.atom_number AS atom_number1
, c2.struct_inst AS struct_inst2
, c2.struct_id AS struct_id2
, c2.atom_number AS atom_number2
, SQRT (SQUARE(c1.x_coord - c2.x_coord)

+ SQUARE(c1.y_coord - c2.y_coord)
+ SQUARE(c1.z_coord - c2.z_coord)) AS [dist]

FROM dbo.Coord_112 AS c1
JOIN dbo. Coord_112 AS c2
ON (c1.sim_id = c2.sim_id

AND c1.step = c2.step
AND (

-- different instances
(c1.struct_inst <> c1.struct_inst)
-- different atoms in same structure
OR (c1.struct_inst = c1.struct_inst

AND c1.atom_number <> c2.atom_number
AND c1.atom_number < c2.atom_number)))

Brute Force SQL Result

• Limiting to heavy atoms, and applying filtering
based on distances for a single 1enh
simulation:

• Result: 36,210,336 rows, 2 hours 26 minutes

• Clearly not scalable…

Hash3D Optimization

• For contact distances, we can safely exclude
atoms more than 5.4Å apart

• Simulation box can be divided into 5.4Å cubes,
each atom can be placed in a cube

• “bin” – a 1-dimensional integer hash can
uniquely identify a cube

• “neighbors” are the 26 adjacent cubes

Bins Stored with Coordinates

• Bins are computed and stored with each
simulation at load time

• A C# Stored Procedure computes neighbors
for each bins, and is stored in another table
and indexed (under 1 second)

• Contact query with Hash3d: 36 minutes

sim_id struct_id struct_inst atom_number step x_coord y_coord z_coord bin

678 122 1 1 0 -5.846 8.722 11.445 408

678 122 1 2 0 -5.989 8.026 12.191 480

678 122 1 3 0 -4.842 8.797 11.24 408

678 122 1 4 0 -6.157 9.627 11.775 480

678 122 1 5 0 -6.634 8.372 10.247 408

MDX?

• Cube design is in progress

– Building a dimension and hierarchy using bin and
neighbors

– Determining syntax to utilize hierarchy and find
results

• A manuscript describing hash3d, support
functions, tables, and index design and in
progress

CONCLUSIONS

OLAP

Good

• Queries can be FAST

• Storage seems to be
extremely efficient

• Certain classes of queries
seem trivial to write (and
much less complicated than
SQL)

Bad

• MDX syntax can be
complicated

• Shares keywords but no
semantics with SQL

• Processing time and initial
set up are non-trivial

• Documentation is often
lacking sufficient detail

Conclusions and Future Directions

• OLAP/MDX and SQL are complementary
technologies, not replacements for each other

• More investigation is needed to tune OLAP
design to maximize performance and usability

• Specific Next Steps

– Finish hash3d OLAP design and compare to SQL

– Additional performance and scale testing

Acknowledgements

• Special thanks to Amanda Jonsson and Rudesh
Toofanny for their insights and help

Questions?

http://www.dynameomics.org

http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.dynameomics.org/

