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Outline

e Searching for occurrences of a given motif

e High-resolution models of transcription factor
binding to DNA

* An embedding approach to remote protein
homology detection



Motif in Logo Format
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Splice site motif in logo format
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CTCF binding motif
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Scoring with a motif

* This motif assigns the

sequence NMFWAFGH

ascoreof 0+-2+-3 +

¥ 2 0L o

C
Q
E
G
H
|

L

2+-1+6+6+8=12.

wn



Searching human chromosome 21

with the CTCF motif

Position Str Sequence Score
19390631 + TTGACCAGCAGCGGGEGCGECCce 26.30
32420105 + CTGGCCAGCAGAGGGCAGCA 26.30
27910537 — CGGTGCCCCCTGCTGGTCAG 26.18
21968106 + GTCGACCACCAGGGGGCAGCA 25.81
31409358 + CGGCGCCTCCAGCGGGEGECECTC 25.56
19129218 — TGGCGCCACCTGCTGGTCAC 25.44
21854623 + CTGGCCAGCAGAGGGCAGGGE 24.95
12364895 + CCCGCCAGCAGAGGGAGCCE 24.71
13406383 + CTAGCCACCAGCTGGCGCETE 24.71
18613020 + CCCGCCAGCAGAGGGAGCCE 24.71
31980801 + ACGCCCAGCAGGGEECGeee 24.71
32909754 — TGGCTCCCCCTCGGCGGCCEE 24.71
25683654 + TCGCGCCACTAGCGGGCACTA 24.58
31116990 — GCGCCGCCACCTTGTGGCCAG 24.58
29615421 — CTCTGCCCTCTCGCTGGCTGC 24.46

6024389 + GTTCGCCACCAGAGGGCACTA 24.46
26610753 — CACTGCCCTCTGCTGGCCCA 24.34
26912791 — GCGGCGCCACCTGGCGGETCAC 24.34
20446267 + CTGCCCACCACGCGGGCAGCE 24.22
21872506 — TGGCGCCACCTGGCGGCAGC 24.22



Significance of scores
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-26.30

Low score = not a motif occurrence
TTGACCAGCAGGGGGCGCCG High score = motif occurrence

How high is high enough?



CTCF empirical null distribution
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Poor precision in the tail
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Converting scores to p-values

A-2.3 1.7 1.1 0.1 A 10 67 59 44
c 1.2 -0.3 0.4 -1.0 C 60 39 49 29
G -3.0 2.0 0.5 0.8 G O 71 50 54
T 4.0 0.0 -2.1 1.5 T 100 43 13 64

e Linearly rescale the matrix values to the range
[0,100] and integerize.
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Converting scores to p-values

01234 .

400

10 67 59 44
60 39 49 29

O 71 50 54
100 43 13 64

e Say that your motif has N rows. Create a matrix
that is N rows and 100N columns.

e The entry in row i, column j is the number of
different sequences of length i that can have a
score of j.




Converting scores to p-values

01234 . 10 60 100 400

A 10 67 59 44 1 1 1 1
C 60 39 49 29
G O 71 50 54
T 100 43 13 64

* For each value in the first column of your motif,
put a 1 in the corresponding entry in the first row
of the matrix.

 There are only 4 possible sequences of length 1.



Converting scores to p-values

01234 . 10 60 77 100 400

A 1059 A4 1 @ 1 1

C 60 39 49 29 <:>
G 0 71 50 54
T 100 43 13 64

e For each value x in the second column of
your motif, consider each value y in the zth
column of the first row of the matrix.

e Addy to the x+zth column of the matrix.



Converting scores to p-values

01234 . 10 60 77 100 400

A 10(67)59 44  |* O

C 60 39 49 29 <:>
G 0 71 50 54
T 100 43 13 64

e For each value x in the second column of your motif, consider
each value y in the zth column of the first row of the matrix.

e Addy to the x+zth column of the matrix.

e What values will go in row 27
— 10+67, 10+39, 10+71, 10+43, 60+67, ..., 100+43

e These 16 values correspond to all 16 strings of length 2.
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Converting scores to p-values

01234. 10 60 77 100 400
10 67 59 44 1 1 1 1
60 39 49 29 1

O 71 50 54
100 43 13 64

In the end, the bottom row contains the
scores for all possible sequences of length N.

Use these scores to compute a p-value.



Computing a p-value

d.4
0.35  The probability of
0.3 - observing a score >4 is
005 | the area under the
curve to the right of 4.

b.c r
- e This probability is
| called a p-value.
g.1 r

e p-value = Pr(data|null)
g.05 -




Multiple testing correction
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MEME Suite Menu
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Outline

e Searching for occurrences of a given motif

e High-resolution models of transcription factor
binding to DNA

* An embedding approach to remote protein
homology detection
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Transcription factor binding sites

* Predicting genome-wide occupancy of TFs, key part of unraveling
regulatory code

e > 500 sequence-specific human TFs, vast non-coding regions

e Need to model sequence preferences of TFs

Ofran et al., 2007



Transcription factor binding sites

Usually described as a position
specific scoring matrix (PSSM)
giving position-specific
nucleotide frequencies

Yields many false positives

Mub_primary

15 16 17

Ofran et al., 2007



Can we learn better TF binding
preferences from high resolution data?

e Protein binding microarrays (PBMs): array with ~40K double-
stranded probes (36-mers), designed to cover all 10-mers

e Measure in vitro DNA preferences of fluorescently tagged TF

e Good statistics on 8-mer patterns

PBM
experiment
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Standard analysis of PBM data

* Compute an E-score
(enrichment score) for
every 8-mer pattern, using
rank statistic on probe
intensities

e (Obtain list of hundreds of 8-
mer patterns with

significant E-scores | % | 5;
* Too unwieldy, too much TRNBG
noise? (&

AACCGTTA, AACCGTCA,
ACCGTTAT, AACGGTTA,
AAC GTTAT, ATCCGTTA,
A CCGTTAT, ..

Derive position weight
matrix

E.g., Seed-and-wobble
(Bulyk lab): seed at
top-scoring 8-mer, pull
in additional patterns

Too compact,
underfitting?

aACci[TaA




Can we learn better TF binding
preferences from high resolution data?
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Sequence reads

(Park Nat Gen 2009)

Information extraction

ChlIP-seq RNA-seq RNA-seq
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(Pepke et al. Nat Meth 2009)



Our approach: discriminative learning

protein binding microarray
learn in vitro

W

N ? model
/ N SVR or SVM training
‘ Y

ChlP-seq data
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Modeling Sequences With Kernels

Spectrum kernel (k=3)
TTA GCT CCA TTT ATG

CCACAGGCGGCTAGCTCGCTGCACGATATTATACAT
CCTTCGCTCGATAGTAGTTCTCGGCGGTATTATTTC
ATGGTTATCCGCTTTATTGCCGCCAGAATACTACTG
GTTACATCAACCAATAGCCGCTGGCAAGTTCTCACA
TAGCACATTGATATCCCAATTAGCCGCCTAGCACAG
GCTAGACTAGGGGACATCCGGCGGCTACTTCCAAAT
CGTTCTGCCCGTTGATCACATGCCGCTTATAAAACT
ACTGCGTTCGTTTAGGTTTTTGTGCGCGCTTAACCT
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Mismatch Kernel (k=5, m=1) GCTTA TATTA TCACA
CCACAGGCGGCTAGCTCGCTGCACGATATTATACAT 0 1 0
CCTTCGCTCGATAGTAGTTCTCGGCGGTATTATTTC 0 1 0
ATGGTTATCCGCTTTATTGCCGCCAGAATACTACTG 0 1 0
GTTACATCAACCAATAGCCGCTGGCAAGTTCTCACA 0 0 1
TAGCACATTGATATCCCAATTAGCCGCCTAGCACAG 1 1 0
GCTAGACTAGGGGACATCCGGCGGCTACTTCCAAAT 0 0 0
CGTTCTGCCCGTTGATCACATGCCGCTTATAAAACT 1 0 0
ACTGCGTTCGTTTAGGTTTTTGTGCGCGCTTAACCT 1 0 0




Kernel versus PSSM

* A kernel can
—model dependencies between
positions,
—model background accessibility
sequence signal, and

—capture multiple and mutually disjoint
cofactors of a given transcription
factor.



Better test accuracy on in vitro data

Two PBM probe
designs, train on one,
test on other

3 large yeast and
mouse data sets

Detection of top 100
probes: improves over
E-max (max E-score in
test probe) in > 80% of
experiments

Similar performance
improvement over
PBM-derived PWMs

SVR
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PBM-derived SVRs improve prediction
of ChlP-seq peaks

Use AUC to assess
detection of mouse/
human ChIP-seq peaks
(+’s) or nearby non-
peak regions (-’s)

+ -

IV YW

Take PBM for “nearest
neighbor” TF if needed

Good improvement on
high-resolution data

Area Under ROC Curve
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Training SVRs directly on genomic
occupancy data increases accuracy

e Same kernel, train SVMs Tralhing on ohe
esting on ChIP
on peaks vs. flanking "7+ cne-svm
non-peaks " MDscan ]L
ChiP-seq g I ‘i-

2 daa & . + ‘i»

5 T model |4 e4 00 .
__:_é‘: I —— SVM training S {
e Comparison to motif- o
discovery methods:
Weeder (k-mers), o

MDscan (PWMs) Ht4a Estb  Octd K4  Sox2  Sd  Gabpa



Inside the box: ChlIP-derived SVRs find

cofactor motifs
e ChlP-derived model of Sox2 (mouse ES cells) finds Oct4 motif

Sox2 motifs *

Oct4 motif




PBM-derived vs. ChiIP-derived binding
models

e 33 strong peaks missed
by Sox2 PBM model but P resie | Gy )
detected by ChIP model ™

e Oct4 PBM model
detects 32/33 peaks

e ChIP model learning
cofactor motifs

PBM-SVR scores
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Outline

e Searching for occurrences of a given motif

e High-resolution models of transcription factor
binding to DNA

* An embedding approach to remote protein
homology detection
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protein-protein B LA S T

Retrieve results for an RID
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Search
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History

Smith-Waterman (1981)

— Optimal pairwise local alignment via dynamic
programming

BLAST (1990)

— Heuristic approximation of Smith-Waterman

PSI-BLAST (1997)

— lterative local search using profiles

Rankprop (2004)

— Diffusion over a network of protein similarities

HHSearch (2005)

— Pairwise alignment of profile hidden Markov models



Supervised semantic indexing

e Data: 1.8 million Wikipedia documents

* Goal: given a query, rank linked documents
above unlinked documents

* Training labels: linked versus unlinked pairs

e Method: ranking SVM (essentially)
— Margin ranking loss function
— Low rank embedding
— Highly scalable optimizer

(Bai et al., ECIR 2009)



Key idea

 Learn an embedding of proteins into a low-
dimensional space such that homologous
proteins are close to one another.

* Retrieve homologs of a query protein by
retrieving nearby proteins in the learned

space.




Protein similarity network

Compute all-vs-all PSI-BLAST similarity
network.

Store all E-values (no threshold).

Convert E-values to weights via transfer
function (weight = e®/9),

Normalize edges leading into a node to sum to
1.



Sparse feature representation

®(p')

(E(P,p1),... E(p .pe))

-F

W', pi) = exp(=S;(i)/o)



Training signal

Use PSI-BLAST or HHSearch as the teacher.
Training examples consist of protein pairs.

A pair (g,p) is positive if and only if query g
retrieves target p with E-value < 0.01.

The online training procedure randomly
samples from all possible pairs.



Learning an embedding

e Goal: learn an embedding

g(p) = Wo(p)

where W is an n-by- reatrix, resulting in an n-
dimensional embedding.

 Rank the database with respect to g using

S, p:) = 1lg(@) — gpa)llr = [[WP(q) — WP(p;)||x
where small values are more highly ranked.
e Choose W such that for any tuple

flg.p") < flg.p™)



Learning an embedding

Good Bad

e Minimize the margin ranking loss with respect

to tuples (g, p*, p’):
> max(0,1— fg,p7) + fla,ph))

(g.pT.p7)ER



Training procedure

 Minimize the margin ranking loss with respect
to tuples (g, p*, p’):
> max(0,1— f(g.p7) + f(g.p7))
(g.pT.p7)ER
e Update rules:
if 1—f(a.p”)+ fla,p") >

W — W — A sign(Wd(qg) —
W — W + A sign(Wo(q) —
W — W + XA sign(Wd(q) —
W — W — A sign(Wd(q

o



Remote homology detection

Class

Fold

Superfamily ° \‘

e Semi-supervised setting: initial feature vectors are derived from a large set
of unlabeled proteins.

e Performance metric: area under the ROC curve up to the 1%t or 50t false
positive, averaged over queries.




Results

Method ROC, ROC.,
PSI-BLAST 0.624 0.632
Rankprop 0.647 0.707
Protembed PSI-BLAST 0.689 0.739
HHPred 0.771 0.836
Protembed HHPred 0.777 0.853

Results are averaged over 100 queries.







Key idea #2

e Protein structure is more informative for
homology detection than sequence, but is
only available for a subset of the data.

e Use multi-task learning to include structural
information when it is available.



Structure-based labels

e Use the Structural Classification of Proteins to
derive labels

y, €{1,...,C}
* Introduce a centroid c; for each SCOP category
(fold, superfamily).

* Keep proteins in category i close to c;:
/ (piﬁ Cy?’.) < f (pj: Cyi)? Vj: Y #+ Y



Structure-based ranks

e Use a structure-based similarity algorithm
(MAMMOTH) to introduce additional rank
constraints.

* Divide proteins into positive and negative with
respect to a query by thresholding on the
MAMMOTH E-value.

fla,p") < flq,p™)



Method ROC, | ROC,,
PSI-BLAST 0.624 | 0.632
Rankprop 0.647 | 0.707
Protembed PSI-BLAST 0.689 | 0.739
Protembed PSI-BLAST+SCOP 0.852 | 0.918
Protembed PSI- 0.744 | 0.844
BLAST+MAMMOTH

HHPred 0.771| 0.836
Protembed HHPrec 0.777 | 0.853
Protembed HHPred+MAMMOTH | 0.822 | 0.923
Protembed HHPred+SCOP 0.881 | 0.949




Hunber of test proteins
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PSI-BLAST embedding




Learned embedding

Multiheme cytochromes
Rudiment single hybrid motif

Type || DNA topoisomerase

5'to 3' exonuclease, C-terminal
subdomain

Resolvase-like

Bacterial enterotoxins

uperantigen toxins, C-terminal domain



Conclusions

e Supervised semantic indexing projects
proteins into a low-dimensional space where
nearby proteins are homologs.

* The method bootstraps from unlabeled data
and a training signal.

* The method can easily incorporate structural
information as additional constraints, via
multi-task learning.
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