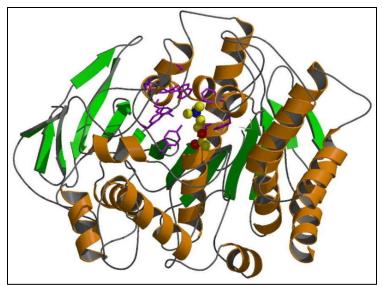


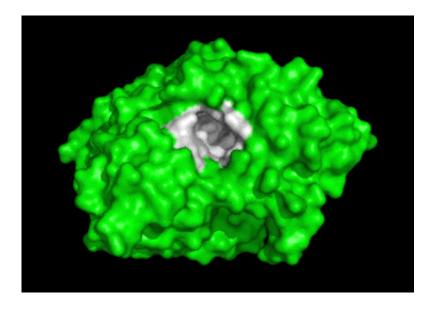
Bioinformatics projects supporting Infectious Disease research at Seattle BioMed

Peter J. Myler, Ph.D.

MEBI590A, February 14, 2012

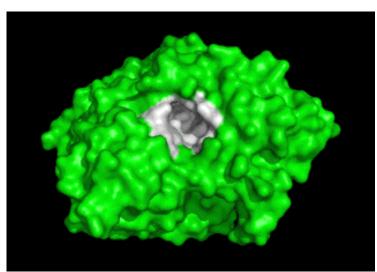
Protein structure determination in support of treatment and ultimately prevention of infectious diseases.

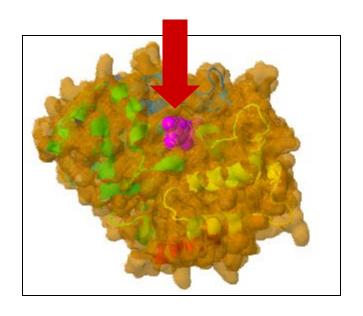

Operated by Battelle for the U.S. Department of Energy


- What is structural genomics?
- NIAID contract
- Pipeline development
- Project Progress
- Informatics challenges
 - > Project management
 - > Target selection
 - > Target status tracking/LIMS
 - > Data dissemination/community outreach

What is Structural Genomics?

 Determination of the three dimensional structure of all (or most) proteins of a given organism, by experimental methods such as X-ray crystallography or NMR spectroscopy, or by computational approaches such as homology modeling. (Wikipedia)





Why is it important?

- Protein structure determines function
- Can sometimes predict function from structure
- Can identify small molecules that interact with protein
- Design drugs to block active site
- Interfere with function and cure disease

Why is it different?

- "Big science"
- High throughput
- (Semi-)automated
- Lots of people/money
- More efficient per structure
- Hypothesis generating, not hypothesis testing
- What about traditional "small" labs?

- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - > Target status tracking/LIMS
 - > Data dissemination/community outreach
 - Pathway database

Structural Genomics Contract

RFP-NIH-NIAID-DMID-07-19

• Issued: September 14, 2006

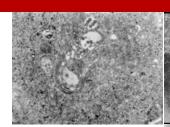
To apply state-of-the-art structural genomics technologies to structurally characterize targeted proteins from NIAID Category A-C pathogens and organisms causing emerging or re-emerging infectious diseases. The goal is to create a collection of three dimensional protein structures that are widely available to the broad scientific community and serve as a blueprint for structure-based drug development for infectious diseases.

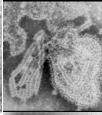
Two contracts awarded

- Center for Structural Genomics of Infectious Disease
- Seattle Structural Genomics Center for Infectious Disease
- \$30.6M over 5 years
- Start Date: September 28, 2007

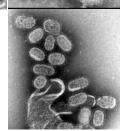
SSGCID Vision and Goals

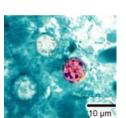
- Multi-pronged, serial escalation pipeline
 - > protein expression in bacterial, wheat-germ cell-free translation, baculovirus and mammalian systems
 - > structure solution using X-ray crystallography and NMR spectroscopy
- Ligand-based drug lead discovery campaign on a small number of high-impact targets
- Pro-active engagement of the research community
 - > community involvement in target selection
 - > structural genomics service to the community
 - > public dissemination of all structure information and materials
- 75-100 protein structures per year
 - > NIAID Category A-C agents
 - > Emerging and re-emerging infectious disease organisms
- Protein structures will provide a blueprint for structurebased drug design of new therapeutics against infectious diseases



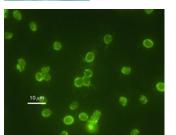

Target Organisms

I. New pathogens


Viruses, bacteria, protozoa



II. Re-emerging pathogens


Viruses, bacteria, fungus, prions

III. Agents with bioterrorism potential

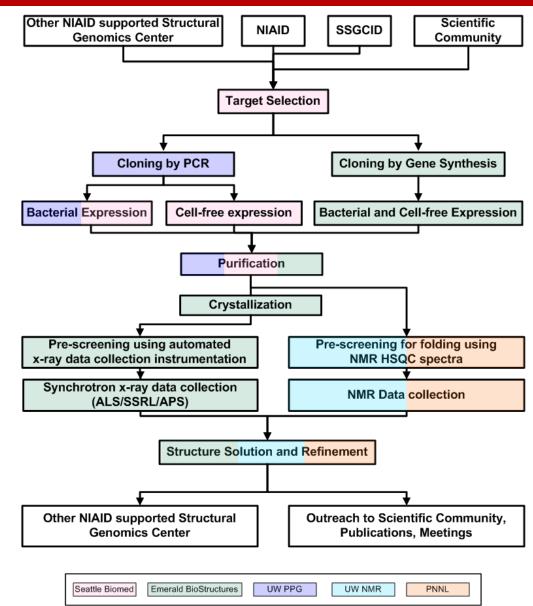
- Category A (anthrax, botulism, plague, tularemia, pox viruses, viral hemorrhagic fevers)
- Category B (Q-fever, brucellosis, glanders, melioidosis, psittacosis, tularemia, typhus fever, ricin & epsilon toxins, water-borne bacteria, protozoa & viruses, pox viruses, viral encephalopathies)

Category C (multi-drug resistant TB, Rickettsia, Nipah, hanta, CCHF, yellow fever, influenza, rabies, chikungunya, SARS-CoV)

SSGCID organism focus

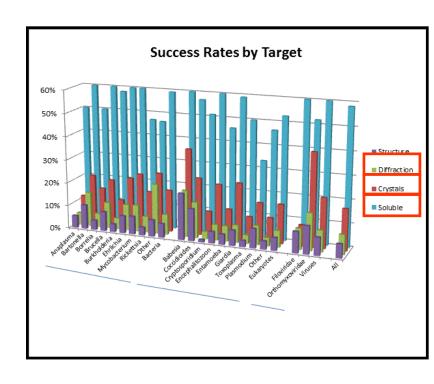
CSGID and SSGCID divided the organisms

- Actinobacteria (Mycobacterium)
- Alpha-proteobacteria (Bartonella, Brucella, Ehrlichia, Rickettsia)
- Beta-proteobacteria (Burkholderia)
- Spirochaetes (Borrelia)
- Eukaryotes (Acanthamoeba, Babesia, Cryptosporidium, Cyclospora, Toxoplasma, Giardia, Entamoeba, Coccidioides, Encephalitozoon)
- ssDNA viruses (Erythrovirus)
- ssRNA negative-strand viruses (Filoviridae, Orthomyxoviridae, Arenavirus, Hantavirus, Henipavirus, Lyssavirus, Nairovirus, Orthobunyavirus, Phlebovirus, Rubulavirus)

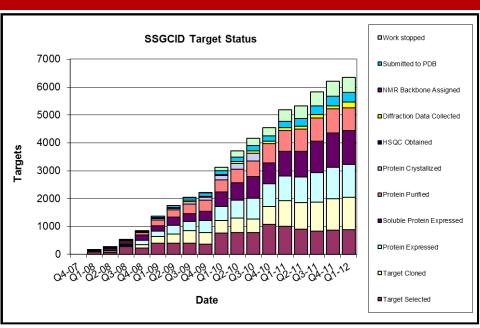


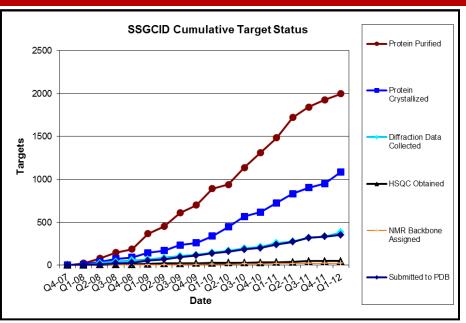
- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - > Target status tracking/LIMS
 - > Data dissemination/community outreach
 - Pathway database

SSGCID Production Pipeline


- Infectious Disease focus
- Targets selected for function
- NIAID approval of targets
- Three protein production labs
- X-ray & NMR
- Ligand screening
- Community outreach

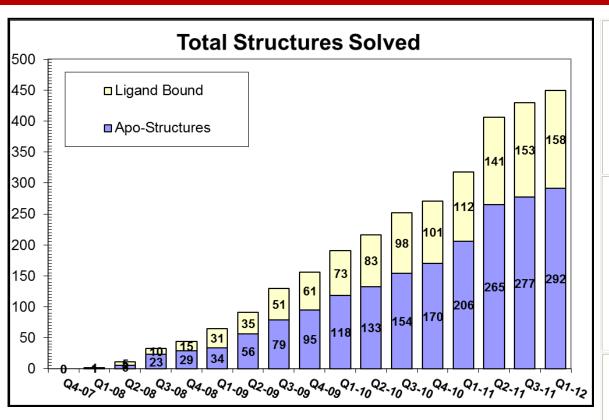
The Good, the Bad and the Ugly


			Succ	ess by Pr	cess			
Genus	Cloned	Soluble	Purified	Crystals	Diffraction	Structure	Overall	Structures
Anaplasma	170	50%	75%	31%	45%	100%	5%	9
Bartonella	230	65%	72%	46%	69%	71%	10%	24
Borrelia	170	50%	64%	50%	37%	70%	4%	7
Brucella	419	66%	50%	61%	56%	74%	8%	35
Burkholderia	1624	58%	44%	45%	41%	71%	3%	55
Ehrlichia	134	69%	63%	50%	52%	67%	7%	10
Mycobacterium	1650	60%	70%	57%	48%	68%	8%	128
Rickettsia	115	47%	70%	50%	42%	50%	3%	4
Other	28	46%	100%	54%	86%	33%	7%	2
Bacteria	4540	59%	59%	52%	48%	70%	6%	274
Babesia	30	60%	83%	73%	55%	100%	20%	6
Coccidioides	65	57%	84%	52%	63%	90%	14%	9
Cryptosporidium	94	51%	69%	30%	30%	33%	1%	1
Encephalitozoon	119	64%	70%	51%	30%	75%	5%	6
Entamoeba	272	46%	69%	40%	53%	67%	4%	12
Giardia	120	59%	89%	46%	31%	89%	7%	8
Toxoplasma	108	50%	48%	42%	36%	75%	3%	3
Plasmodium	12	33%	50%	100%	50%	100%	8%	1
Other	28	46%	62%	38%	33%	100%	4%	1
Eukaryotes	848	53%	71%	45%	42%	78%	6%	47
Filoviridae	11	100%	27%	33%	100%	100%	9%	1
Orthomyxoviridae	25	52%	100%	77%	40%	75%	12%	3
Other	29	72%	19%	75%	33%	100%	3%	1
Viruses	65	69%	44%	70%	43%	83%	8%	5
Total	5453	58%	60%	51%	47%	71%	6%	326



- Overall success rates are 1-20%
- 33-100% of cloned targets produce soluble protein
- 31-77% of purified proteins crystallize
- 30-100% of crystals yield usable diffraction data
- Eukaryote proteins diffract slightly less often

Current Target Status



		Yea	ar 1			Year 2			Year 3				Award '	Year 4		Award Year 5				
Status	Q4-07	Q1-08	Q2-08	Q3-08	Q4-08	Q1-09	Q2-09	Q3-09	Q4-09	Q1-10	Q2-10	Q3-10	Q4-10	Q1-11	Q2-11	Q3-11	Q4-11	Q1-12	Q2-12	Q3-12
Target Selected	0	168	289	556	872	1381	1780	2065	2242	3062	3729	4187	4880	5461	5644	6163	6552	6721	0	0
Target Cloned	0	87	222	284	639	984	1373	1660	1875	2170	2721	3140	3524	4178	4669	5252	5604	5764	0	0
Protein Expressed	0	58	176	252	528	747	1058	1218	1455	1735	2205	2652	2881	3262	3687	4164	4430	4543	0	0
Soluble Protein Expressed	0	52	149	211	378	542	748	881	1036	1249	1574	1920	2070	2376	2719	3062	3250	3311	0	0
Protein Purified	0	21	78	145	185	366	452	609	698	890	938	1136	1311	1483	1721	1842	1926	1997	0	0
Protein Crystallized	0	8	40	74	90	143	170	233	260	337	446	566	618	726	832	903	950	1086	0	0
Diffraction Data Collected	0	0	26	41	57	66	87	108	122	146	169	196	214	258	275	317	333	382	0	0
HSQC Obtained	0	2	5	9	9	14	18	19	23	26	27	29	30	34	36	46	46	46	0	0
NMR Backbone Assigned	0	0	1	4	5	5	5	9	9	11	11	16	17	19	19	22	22	23	0	0
Submitted to PDB	0	1	7	23	29	53	67	92	112	137	157	183	200	240	270	317	333	351	0	0
Work Stopped	0	0	0	0	0	0	0	19	24	123	219	259	286	410	455	495	537	542	0	0

Structures submitted to PDB

- 447 PDB entries released
- 7 entries unreleased
- 351 different targets

1- BupsA.00033.a Methionine-R-sulfoxide reductase 3CEZ, 3CXK Solved by X-ray

crystallography

Malate dehydrogenase Solved by X-ray crystallography

3- Bups.A00023.a Inorganic pyrophosphatase 3D63, 3EJ2, 3EJ0, 3EIY, 3EIZ, 3GVF

> Solved by X-ray crystallography

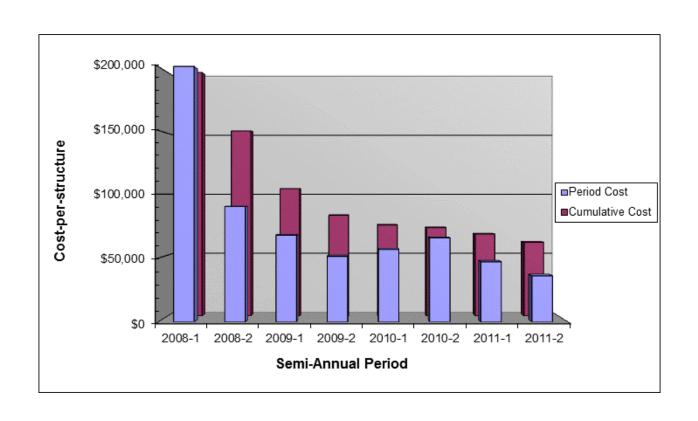
28- Bups.A.00010.e acetyacetyl-CoA reductase 3EZL Solved by X-ray crystallography

29- RiprA.00010.b 3-ketoacyl-(acyl-carrierprotein) reductase 3F91 Solved by X-ray crystallography

30- PlfaA.01650.a PFE0790c, putative bolA-like protein 2KDN, 16118 Solved by NMR

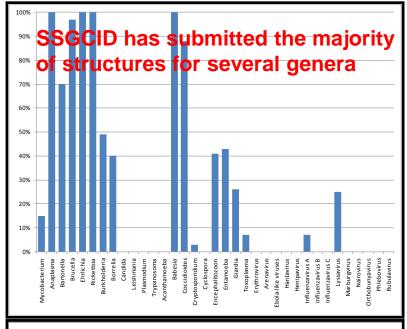
79-BupsA.00020.a succinate-semialdehyde dehydrogenase 3IFG, 3IFH (split entry) Solved by X-ray crystallography

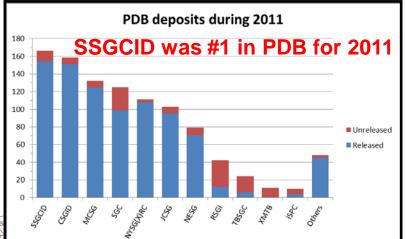
80-BaheA.01015.a tRNA (guanine-n1)methyltransferase 3IEF Solved by X-ray crystallography



phosphopantetheine adenylyltransferase 3IKZ

Solved by X-ray crystallography


Cost-per-structure



- Cumulative cost ~\$61K/structure
- Incremental cost now ~\$36K/structure

SSGCID Impact

Ctstet rtp

CSGID/SSGCID Measurements of Impact on the Scientific Community

I. Dashboard:

Total number of PDB deposits of Center targets	425
Number of PDB deposits of Center unique targets	326
Number of PDB deposits of protein-ligand complexes	152

II. Direct impact on the community:

Number of NIAID-approved protein targets requested by the	4499
scientific community	
Number of PDB depositions of community targets	65(114**)
Number of materials (clones/proteins) distributed directly to outside investigators	288
Number of clones deposited at Biodefense & Emerging	3396
Infections Research Resources Repository (BEI Resources)	
Number of submissions to PepcDB [number of protocols]	71

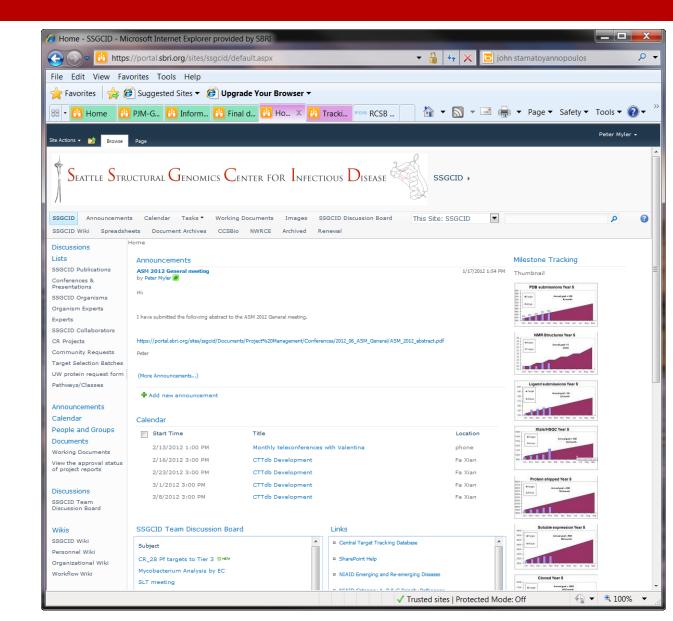
III. Publications:

Number of publications with joint authorship between the Center	10
and the requestor*	
Number of publications mentioning the use of protein structures	43
generated by the NIAID centers*	
Number of peer-reviewed journal publications with Center	54
Scientist as author or co-author*	
Number of reviews with Center Scientist as author or co-author*	2
Number of posters presented at meetings by Center scientist as author or co-author*	47
Number of talks held at meetings by Center scientists*	48
Number of patents authored or co-authors by Center Scientist*	0

IV. Outreach:

Number of scientific meetings where outreach activities (eg	9
centers'	
booths) were conducted	
Number of seminar speakers invited by the Center to present in	3
open scientific forums	

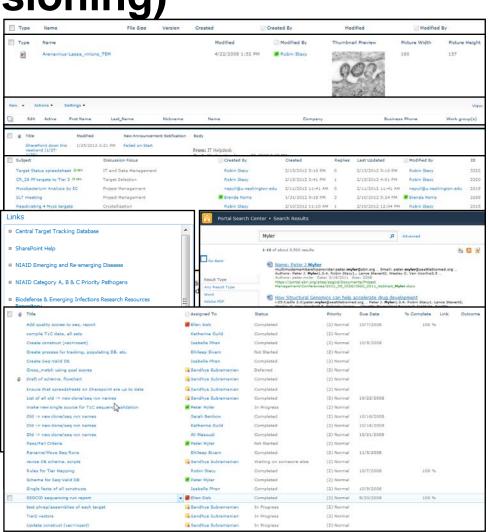
SEATTLE

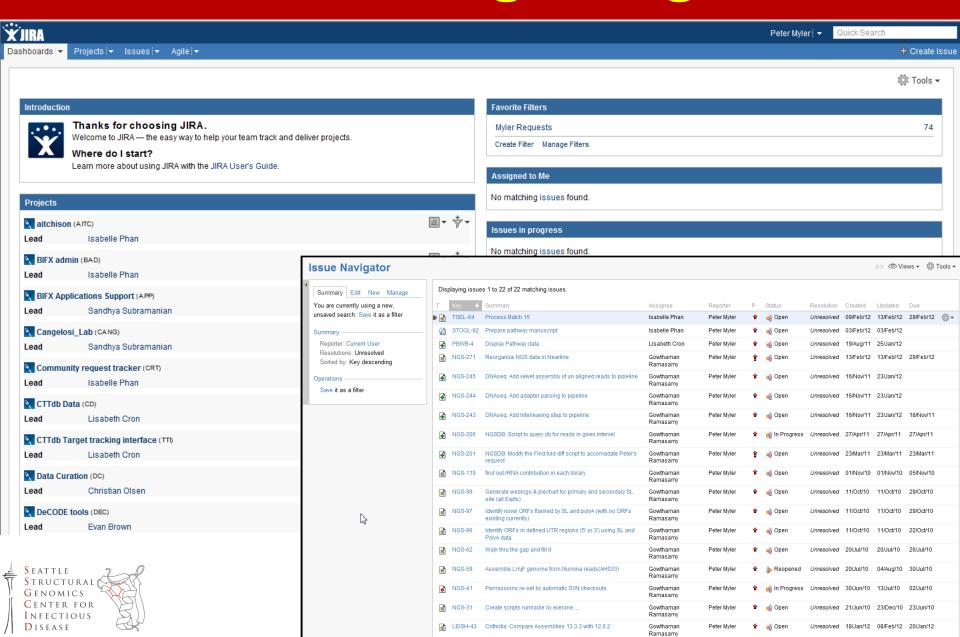

STRUCTURAL
GENOMICS
CENTER FOR
INFECTIOUS
DISEASE

- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - > Target status tracking/LIMS
 - > Data dissemination/community outreach
 - Pathway database

SSGCID SharePoint Site

Web-based, cross-network collaboratory platform




SharePoint Features

- Documents (with versioning)
- Images
- People & Groups
- Calendar
- Announcements
- Discussion Boards
- Wikis
- Links and Search
- Tasks/Workflows

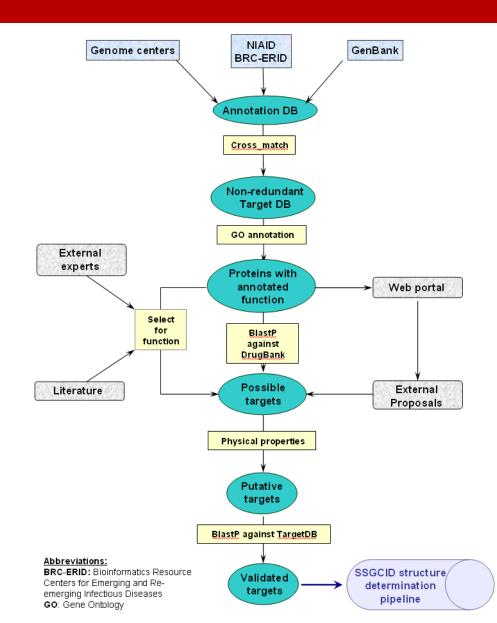
Issue Tracking using JIRA

- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - > Target status tracking/LIMS
 - > Data dissemination/community outreach
 - > Pathway database

Plenty of potential targets

TOTAL STREET	Contract Contract	-	N 10-161	THE PERSON NAMED IN		man towns or	THE REAL PROPERTY AND ADDRESS OF THE PERTY ADDRESS
							1111111
1 2	1	1 8	11	11	11 22 21	27	111 2
111 3	277	111	1	12.00	. 1	. 111	11 111
19 1 199	701 0	122 6	11	2 2 2	T 22 E	172	1 15 1
							121 11
1 4 61		0 10 1	1 0	0 1		1 1 11	1 11

NC_004161 Reston Ebola virus, complete genome 18891 bp	
NC_002549 Zaire ebolavirus, complete genome 18959 bp	
NC_005432 Sudan ebolavirus, complete genome 18875 bd	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


	Genomes sequenced	No. of genes		Datbase entrie	es	NIAID BRC		GC
	·		Nucleotide	Proteins	PDB	PubMed		
Category A								
Bacillus (anthracis)	40(11)	5311	30308(1263)	203617(39957)	1195(55)	16004(1193)	Panthema	ye:
Clostridium (botulinum)	20	2876	6305	74809	262	6073	Panthema	γe
Yersinia (pestis)	21	4364	4303	82122	49	4257	ERIC	no
Francisella (tularensis)	7	1754	966	13853	1	7671	BioHealthBase	γe
Pox virus	24	218	2713	29243	48	4463	VBRC	no
Arenaviruses	13	4	686	756	11	601	VBRC	no
Bunyaviruses	23	3	3459	3830	0	637	VBRC	no
Flaviviruses	35	1	60084	46873	107	4270	VBRC	no
Filoviruses	4	7	213	493	0	590	VBRC	no
Category B								
Burkholderia (mallei & pseudomallei)	39	5728	10499	262707	52	2233	Panthema	ye
Coxiella (burnetti)	7	2052	1705	9986	0	666	PATRIC	no
Brucella (abortus & suis)	5	3085	3434	27355	7	1857	PATRIC	no
Rickettsia (prowazeki and rickettsi)	13	835	2311	22610	0	1385	PATRIC	no
Clostridium (perfringens)							Panthema	ye
Escherichia "	21	5423	38024	163386	3661	76386	ERIC	no
√ibrio	21	3505	11547	112881	121	5926	NMPDR	no
Shigella	10	4497	4231	66696	23	3941	ERIC	no
Salmonella	15	4527	6460	61102	333	14244		
Listeria (monocytogenes)	28	2846	18856	41626	32	4542	NMPDR	no
Campylobacter (jejuni)	19	1629	3447	53428	20	3075	NMPDR	no
Yersina (entericolitica)	see above							
Cryptosporidium (parvum)	2	3396	21897	16186	9	1004	ApiDB	ye
Cyclospora (cayatanensis)	0	?	217	5	0	76		
Giardia (lamblia)	1	6569	10787	14091	5	952	BioHealthBase	
Entamoeba (histolytica)	6	9772	163922	20466	9	763	Panthema	γe
Toxoplasma (gondii)	1		134420	1425	33	1798	ApiDB	,,,
Microspordia	2	1996	5556	4574	7	392	BioHealthBase	γe
Caliciviruses	15	2	4440	5414	11	464	PATRIC	no
Hepatitis A virus	1	3	2874	2396	7	303	PATRIC	no
VEE (Alphaviruses)	14	3	1374	1532	22	1447	VBRC	no
Category C								
nfluenza (Orthomyxoviridae)	69	11	38847	48950	136	1179		
Rabies	1	5	4461	4465	1	143	PATRIC	no
SARS-CoV	1	13	718	1422	46	360	PATRIC	no
	438	70435	568756	1194682	5013	151698		

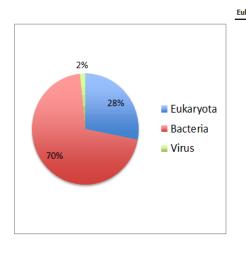
very few structures

SSGCID Target Selection

Target selection criteria

- drug targets
- vaccine candidates
- markers of infection
- proteins involved in cell growth, pathogenesis or drug resistance
- other functionally characterized proteins

Target Selection


- Internal Batches (15)
- Community Request reports (29)

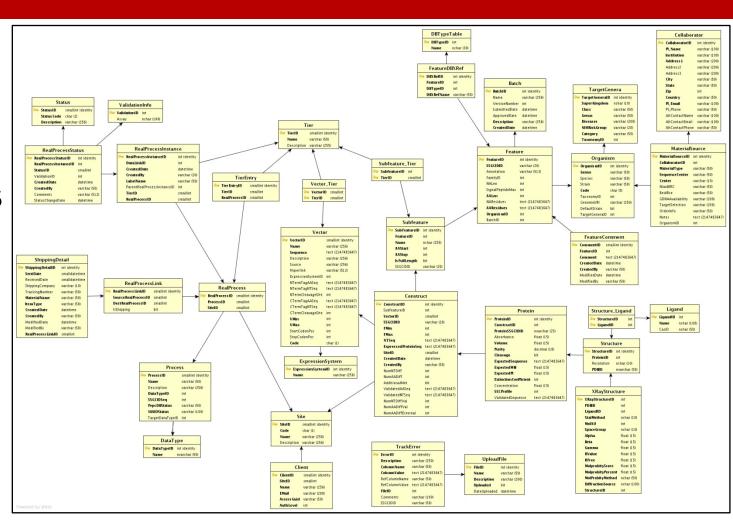
Batch	Description	Submit	ted	Approved	Genera	Species	Targets
						Sum=	7364
Batch_01	DrugBank homologues	1/3/2	2008	1/10/2008	3	11	209
Batch_02	Hand-selected drug targets	3/7/2	2008	4/4/2008	6	6	143
Batch_03	DrugBank homologues	7/22/2	2008	8/7/2008	12	12	1,477
Batch_04	Riboswitches	12/16/2	2008	12/17/2008	6	6	8
Batch_05	Hand-selected drug targets	4/24/2				15	196
Batch_06	Mycobacterium orthologues	12/14/2	2009	12/16/2009	1	9	1,698
Batch_07	MEP pathway	3/5/2	2010	4/7/2010	10	10	31
Batch_07R	Revised Batch_07 to include 3 CSGID IspF proteins	12/10/2	2010	12/10/2010	3	3	3
Batch_08	Bunyaviridae RNPs	9/13/2	2010	9/20/2010	1	18	32
Batch_09	Predicted virulence-associated proteins	9/13/2	2010	9/20/2010	9	9	876
Batch_10	Burkholderia orthologues	12/2/2010 12/6		12/6/2010	1	7	2,246
Batch_11	RNA panhandle	11/9/2	2010	7/12/2010	1	1	1
Batch_12	Paramyxoviridae RNPs	2/1/2	2011	2/4/2011	2	8	30
Batch_13	Rhabdoviridae RNPs	5/16/2	2011	6/2/2011	2	4	6
Batch_14	Rickettsia orthologues	10/4/2	2011	11/14/2011	1	8	408
Batch_15	Membrane proteins	pendin	g				
Role		(Com	nmunity re	equests	Internal	targets
Potentia	l drug target				1340		6412
Target as	ssociated with virulence and/or pathogen	esis			646		952
Marker o	of infection				56		0
Known	Irug target				32		0
Vaccine	candidate				15		0
Drug res	istance				13		0
Target as	ssociated with innate immunity				5		0
Target o	f other biological interest				7		0
Total					2114		7364

Community Requests

- 4499 target requests from 114 different groups
- 2114 new targets approved
- 1257 internal targets converted to CRs
- Work started on 1951 targets
- 114 structures (from 65 targets) in PDB

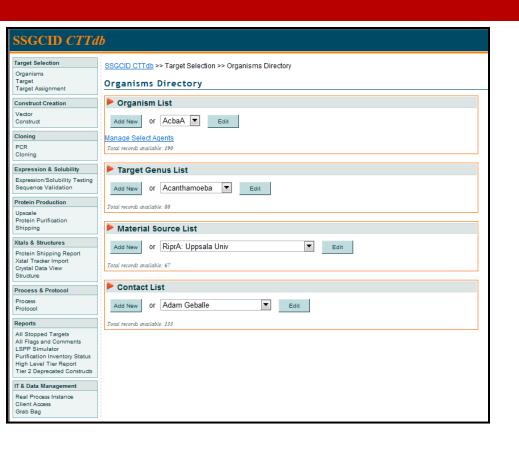
3	Genus	Total	Bacteria	Genus	Total	Virus	Genus	Total
	Acanthamoeba	2		Acinetobacter	1		Alphavirus	2
	Ajellomyces	1		Anaplasma	14		Arenavirus	2
	Aspergillus	3		Bartonella	411		Cytomegalovirus	1
	Babesia	124		Borrelia	6		Ebola-like viruses	13
	Brugia	91		Brucella	396		Hantavirus	7
	Candida	3		Burkholderia	1793		Hepacivirus	3
	Coccidioides	18		Clostridium	2		Influenzavirus A	27
	Cryptococcus	2		Ehrlichia	10		Lentivirus	1
	Cryptosporidium	132		Escherichia	3		Lyssavirus	2
	Cunninghamella	1		Helicobacter	2		Marburgvirus	7
	Encephalitozoon	15		Klebsiella	3		Nairovirus	4
	Entamoeba	89		Mycobacterium	478		Phlebovirus	4
	Giardia	9		Pseudomonas	2			73
	Homo	5		Rickettsia	27			
	Issatchenkia	1		Staphylococcus	1			
	Leishmania	81		Treponema	12		Eukaryota	1263
	Mus	1		Vibrio	2		Bacteria	3163
	Neospora	28		•	3163		Virus	73
	Plasmodium	86					Total	4499
	Pneumocystis	1						
	Saccharomyces	1						
	Toxoplasma	313						
	Trynanasama	256						

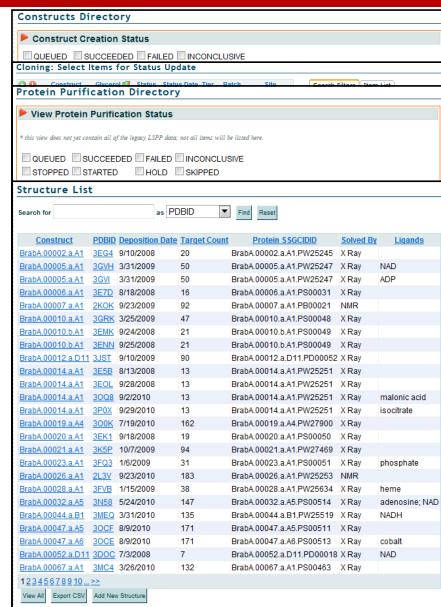
1263



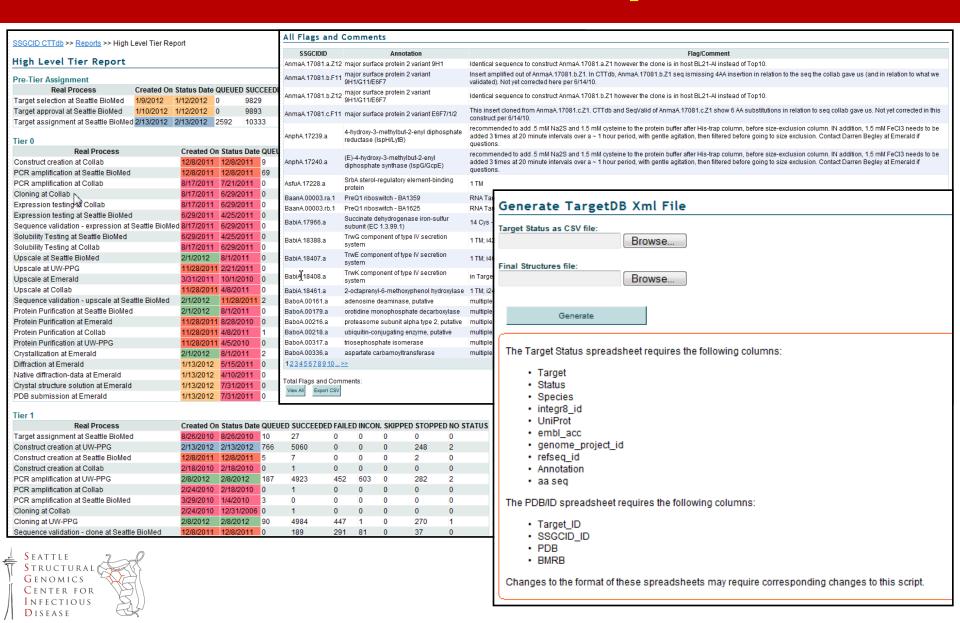
- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - Target status tracking/LIMS
 - > Data dissemination/community outreach
 - Pathway database

Central Target Tracking Database


- Targets
- Constructs
- Pipelines
- Processes



CTTdb schema (SQL Server)


Web-based interface

Customized Reports

- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - Target status tracking/LIMS
 - > Data dissemination/community outreach
 - Pathway database

SSGCID web-site

- http://www.ssgcid.org
- Project management
 - Project teams
 - Participating institutions
 - Production pipeline
 - Target Selection
- Target status
 - Summary of progressal Structural
 - **Browse by genus**
 - Search for specific targets
 - **Structures**
- Community requests
 - Webform or e-mail

PROJECT MANAGEMENT

Ouick Links

SSGCID Home

Featured Structures

NIAID Emerging and Re-emerging Diseases

Genomics website

Center for Structural

Genomics of Infectious

Contact Us

Publications

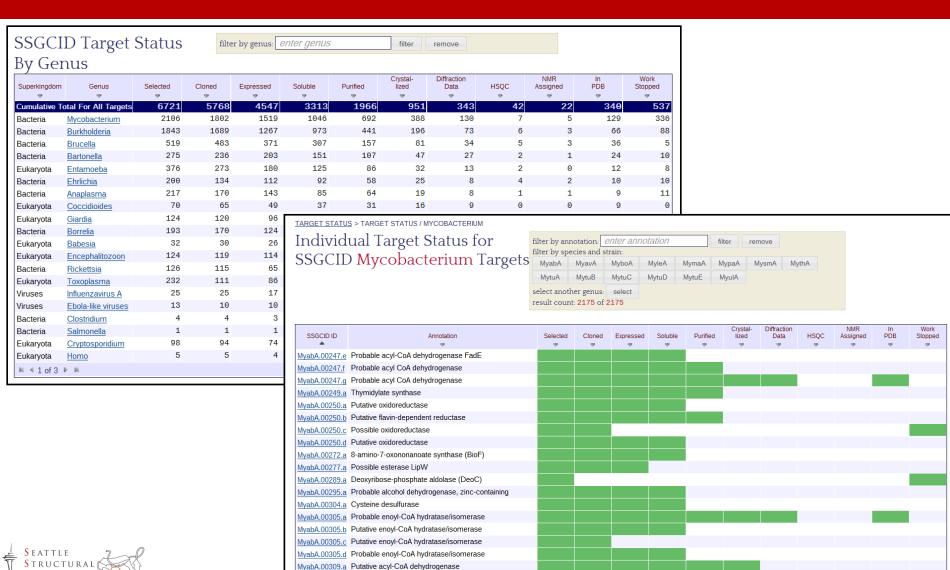
News

TARGET STATUS

COMMUNITY REQUESTS

SSGCID is one of two Centers recently funded by NIAID in response to RFP-NIH-NIAID-DMID-07-19 and is a consortium of four Pacific Northwest institutions (SeattleBiomed, Emerald BioStructures, UW, and Pacific Northwest National Laboratory). The other funded center (CSGID) is based on the East Coast. SSGCID's primary mission is to determine the structure of 75-100 protein targets from NIAID Category A-C agents, as well as emerging and reemerging infectious disease organisms, each year for a period of five years.

Submit Targets for structure determination


Choose an organis

Organisms Studied

- Bacteria
 - Actinobacteria Mycobacterium
 - Alpha-proteobacteria Anaplasma Bartonella Brucella Ehrlichia Rickettsia
 - Bacilli Bacillus anthracis Listeria Staphylococcus Streptococcus
 - Beta-proteobacteria Burkholderia
 - Chlamydiae Chlamydia
 - Clostridia Clostridium
 - · Epsilon-proteobacteria Campylobacter Helicobacter
 - Gamma-proteobacteria Coxiella Escherichia Francisella Salmonella Shigella
 - Vibrio Yersinia
 - Spirochaetes Borrelia
- Eukaryota
 - Eukaryotic pathogens Acanthamoeba Babesia Coccidioides Cryptosporidium
- Cyclospora Encephalitozoon Entamoeba Giardia
- Viruses
 - dsDNA viruses Orthopoxvirus Rhadinovirus Roseolovirus
 - ssDNA virus Erythrovirus
 - ssRNA negative-strand viruses Arenavirus Ebola-like viruses Hantavirus Henipavirus Influenzavirus A Influenzavirus B Influenzavirus C Lyssavirus A Marburgvirus Nairovirus Orthobunyavirus Phlebovirus Rubulavirus
 - ssRNA positive-strand viruses Alphavirus Enterovirus Flavivirus Hepacivirus Hepatovirus Hepevirus Lagovirus Norovirus SARS coronavirus Sapovirus Vesivirus

Target status by genus

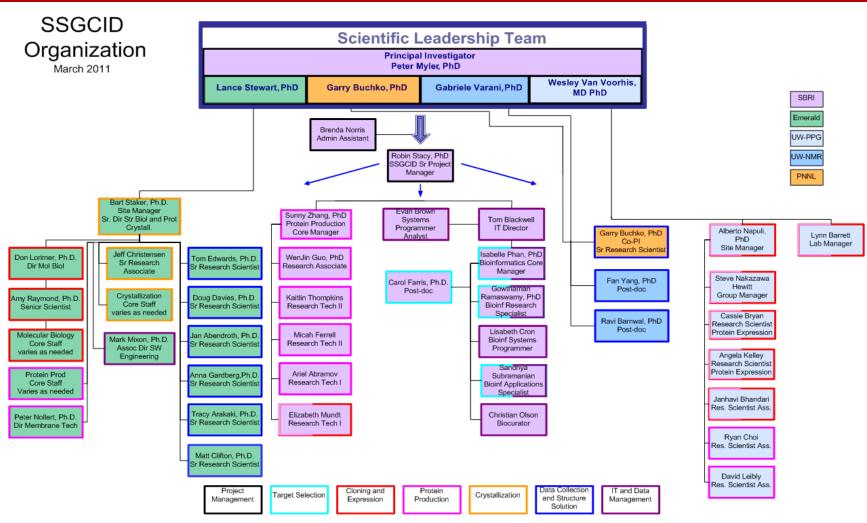
Total Records: 2175

MyabA.00309.b Putative acyl-CoA dehydrogenase
MyabA.00309.c Probable acyl-CoA dehydrogenase FadE

N 4 2 of 109 ▷ N

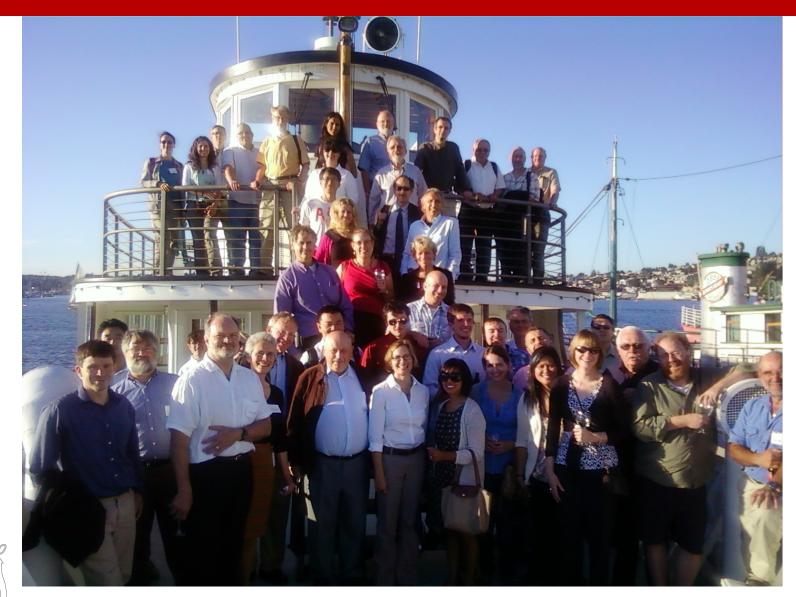

INFECTIOUS

DISEASE


- What is structural genomics?
- NIAID contract
- Progress to-date
- Informatics challenges
 - > Project management
 - > Target selection
 - > Target status tracking/LIMS
 - > Data dissemination/community outreach
 - Pathway database

Pathways

SSGCID team members



SSGCID Informatics Team

- Isabelle Phan (Bifx Core Manager)
- Lisabeth Cron (Bifx Systems Programmer)
- Gowthaman Ramasamy (Bifx Research Specialist)
- Wonjong Moon (Bifx Research Specialist)
- Sandhya Subramanian (Senior Bifx Apps Specialist)
- Christian Olsen (Biocurator)
- Dhileep Sivam (BHI Grad student)
- Eithon Cadag (BHI Grad student)
- Several BHI SURP under-grad students

Annual Programmatic Meeting (2011)

