Members of the herpesvirus family have been identified in more than 80 different animal species.

Eight have been identified as human pathogens.

Herpes viruses are a leading cause of human viral disease, second only to influenza and cold viruses.

Herpes viruses infect most of the human population and persons living past middle age usually have antibodies to many of the human herpesviruses.

The Herpesviridae family comprises large, DNA-containing enveloped viruses.
After the primary infection, herpesviruses establish latency in the infected host.

Once a patient has become infected by herpes virus, the infection remains for life.

Intermittently, the latent genome can become activated, in response to various stimulus, to produce infectious virions.
Herpesviridae - Classification

Herpesviruses are classified into three groups based upon tissue tropism, pathogenicity and behavior.

α herpesviruses

- Fast replicating
- Variable host range
- Typically destroy host cell (lysis)
- Latency established in sensory ganglia

Herpes Simplex virus-1 and 2 (HSV-1/HSV-2)
Varicella-Zoster virus (VZV)

β herpesviruses

- Slowly replicating
- Restricted host range
- Infected cells enlarge (cytomegalias)
- Latency established in secretory glands, lymphoreticular cells, kidneys

Cytomegalovirus (CMV)
Human Herpesvirus-6 and 7 (HHV-6/HHV-7)
Herpesviridae - Classification

γ herpesviruses
- Replicate poorly
- Highly restricted host range
- Latency established in lymphoid tissue (T-cell or B-cell specific)

Epstein-Barr Virus (EBV), a B-cell transforming virus
Human Herpesvirus-8 (HHV-8, KSHV)

Herpesviridae - Replication

ADSORPTION

Envelope glycoproteins (e.g., HSV proteins B and D) are required for binding and penetration.

Cellular receptors recognized by the herpesviruses are unknown:
- EBV → C3d complement receptor
- CMV → Epidermal growth factor receptor
- HSV-1 → Tumor necrosis factor receptor ??
Herpesviridae- Replication

PENETRATION

The nucleocapsid enters the cell by direct membrane fusion with the cell plasma membrane.

Capsids are transported to the nucleus.
DNA passes into the nucleus, probably via nuclear pores.

Herpesviridae- Replication

Adsorption and Penetration
Herpesviridae - Replication

Herpesvirus replication is a carefully regulated, multi-step process.

Virus Assembly

Assembly of the *nucleocapsid* occurs in the nucleus.

The nucleocapsid “buds” through intracellular membranes ultimately taking up tegument proteins beneath the envelope.
Herpesviridae- Infection and Disease

<table>
<thead>
<tr>
<th>Designation</th>
<th>Common Name</th>
<th>Subfamily</th>
<th>Associated Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHV-1</td>
<td>HSV-1</td>
<td>Alpha</td>
<td>Oral Herpes (cold sore), Genital Herpes</td>
</tr>
<tr>
<td>HHV-2</td>
<td>HSV-2</td>
<td>Alpha</td>
<td>Genital Herpes</td>
</tr>
<tr>
<td>HHV-3</td>
<td>VZV</td>
<td>Alpha</td>
<td>Chicken Pox, Shingles</td>
</tr>
<tr>
<td>HHV-4</td>
<td>EBV</td>
<td>Gamma</td>
<td>Mononucleosis, Lymphoma, Carcinoma</td>
</tr>
<tr>
<td>HHV-5</td>
<td>CMV</td>
<td>Beta</td>
<td>Mononucleosis, Retinitis, Transplant Rejection</td>
</tr>
<tr>
<td>HHV-6</td>
<td>HHV-6</td>
<td>Beta</td>
<td>Roseola infantum, Mononucleosis syndrome, Chronic fatigue syndrome, Multiple Sclerosis?</td>
</tr>
<tr>
<td>HHV-7</td>
<td>HHV-7</td>
<td>Beta</td>
<td>Roseola infantum?, Mononucleosis syndrome?</td>
</tr>
<tr>
<td>HHV-8</td>
<td>KSHV</td>
<td>Gamma</td>
<td>Kaposi’s Sarcoma</td>
</tr>
</tbody>
</table>

Herpes Simplex Virus (HSV)

There are two types with very similar characteristics
- HSV-1 (HHV-1)
- HSV-2 (HHV-2)

The genome of HSV encodes a number of enzymes, including
- DNA-dependent DNA polymerase*
- Thymidine kinase*
- Ribonucleotide reductase
- Serine-protease
- Protease, RNase

Since these are viral enzymes, they represent reasonable targets for drug therapy
Herpes Simplex Virus (HSV)

The initial step of the interaction of virus with the cell is binding to heparan sulfate, which is found on many cell types.

Thus, almost any human cell type can be infected by HSV.

In many cells, such as endothelial cells and fibroblasts, infection is lytic.

Neurons normally support a latent infection.

If early and late proteins are made, the cell is set on a route to lysis.

Herpes Simplex Virus (HSV)

HSV-1 and HSV-2 first infect cells of the mucoepithelia, or enter through wounds.

The site of the initial infection depends on the way in which the patient acquires the virus:

• HSV-1 above the waist
• HSV-2 below the waist
HSV- Pathology

The virus replicates in the epithelial tissue yielding a characteristic “fever blister” or “cold sore”

The fluid in this blister is full of infectious virus

The blister ulcerates and forms a crusted lesion that heals without a scar
The virus replicates in the epithelial tissue yielding a characteristic “fever blister” or “cold sore”.

The fluid in this blister is full of infectious virus.

The blister ulcerates and forms a crusted lesion that heals without a scar.

Interferon and natural killer cells are important in limiting the initial infection.

Antibodies are directed against viral glycoproteins.

The virus can also spread from one cell to another without entering the extracellular space.

This means that cell-mediated responses are vital in controlling herpes infections; cytotoxic T cells and macrophages kill infected cells.
HSV- Latency

HSV also infects neurons that innervate the epithelial tissue. The virus travels along the neuron (retrograde transport):
- oral mucosa -> trigeminal ganglia
- genital mucosa -> sacral ganglia

A latent infection is established in the nervous tissue.

HSV- Reactivation

Several agents may trigger recurrence:
- stress
- exposure to strong sunlight
- fever

The virus can travel back down the nerve axon and arrive at the mucosa that was initially infected.

Vesicles containing infectious virus are formed on the mucosa and the virus spreads.

Recurrent infections are usually less pronounced than the primary infection and resolve more rapidly.
HSV Infections

Oral Herpes
Both HSV-1 and HSV-2

Genital Herpes
Primarily HSV-2 (10% cases HSV-1)
Involve a transient viremia (fever, myalgia, glandular inflammation in the groin area)
Secondary infections are frequently less severe

Herpes Keratitis
An infection of the eye
Primarily HSV-1
Sometimes recurrent
Leading cause of corneal blindness in the US

HSV Infections

Herpes gladiatorum
Contracted by wrestlers
Spreads by direct contact from skin lesions
Usually appears in the head and neck region
Also seen in other contact sports such as rugby
(Herpes Rugbeiorum, or scrum pox)

HSV Encephalitis
Typically HSV-1
Most common cause of sporadic viral encephalitis
Relatively rare (1000 cases/yr)
HSV- Treatment

Nucleoside Analogs
- Acyclovir (Zovirax®)
- Valacyclovir (Valtrex®; L-valyl ester of acyclovir)
- Famciclovir (Famvir®; diacetyl ester of 6-deoxy penciclovir)

All suffer from the appearance of resistant HSV mutants

Fortunately, the mutant strains are less virulent

The drugs are ineffective against latent virus

Nucleoside Analogs

![Chemical structures](image)

Valacyclovir → Acyclovir

Famciclovir → Penciclovir
Acyclovir triphosphate is a competitive inhibitor of viral DNA polymerase.

Acyclovir triphosphate is incorporated into viral DNA and acts as a chain terminator.

What are the requirements for DNA synthesis by DNA polymerase enzymes?
Foscarnet

Analog of Inorganic Pyrophosphate
Binds to phosphate binding site in DNAP

Varicella-Zoster Virus (VZV)

Initial infection usually in childhood with Varicella virus (HHV-3)
-> Chicken Pox

It is spread by respiratory aerosols or direct contact with lesions

The virus establishes latency within the dorsal root ganglia

Years or decades later, the virus (Herpes zoster) may reactivate -> Shingles
Varicella-Zoster Virus (VZV)

Zoster means girdle, from the characteristic rash that forms a belt around the thorax

Rash along dermatomes

VZV- Pathology

Trigeminal nerve reactivation
• uveitis, keratitis, conjunctivitis

Cranial nerve reactivation
• Bells palsy: a condition that causes the facial muscles to weaken or become paralyzed. It's caused by trauma to the 7th cranial nerve and is not permanent.

• Ramsay-Hunt syndrome: virus spread to facial nerves. Characterized by intense ear pain, a rash around the ear, mouth, face, neck, and scalp, and paralysis of facial nerves. Symptoms may include hearing loss, vertigo, and tinnitus.
Post-herpetic neuralgia: chronic burning or itching pain; hyperesthesia (increased sensitivity to touch)

Acyclovir, valacyclovir, and famciclovir are approved for the treatment of VZV

EBV (HHV-4) is responsible for infectious mononucleosis

The primary infection is often asymptomatic, but the patient may shed infectious virus for many years

Some patients develop symptoms after 1-2 months
 • malaise
 • lymphadenopathy
 • tonsilitis
 • enlarged spleen and liver
 • fever
 • occasional rash

The severity of disease often depends on age, but usually resolves in 1 to 4 weeks

EBV may be transmitted by blood transfusion
The virus uses the C3d complement receptor for entry and thus infects only a small number of cell types
- oro- and naso-pharynx
- B lymphocytes

Lytic Infection

The ZEBRA protein is expressed in epithelial cells
This transcription factor promotes the expression of early genes -> active virus replication and lytic infection

Latency

B lymphocytes are only semi-permissive for replication and EBV infection is often latent

The infected B-lymphocyte contains a few *episomes*

Only a few genes are expressed from the episome, including two membrane proteins that are *oncogenic*
- Burkitt's lymphoma
- nasal pharyngeal carcinoma

In addition:
- infectious mononucleosis?
- chronic fatigue syndrome?
Cytomegalovirus (CMV)

CMV (HHV-5) derives its name from the fact that it can form multinucleated cells (syncytia).

Some cells such as macrophages and fibroblasts support a productive infection.

Other cells such as T lymphocytes and stromal cells of the bone marrow set up latent infection.

The virus is spread via most secretions, particularly saliva, urine, vaginal secretions and semen.

CMV may also be spread by blood transfusion and organ transplant.

CMV causes no symptoms in children and mild disease in adults.

The virus elicits both humoral and cell-mediated immunity but the infection is not cleared.

The virus may reactivate, particularly in cases of immunosuppression:

- Organ transplant patients
- Immunosuppressive disease

(CMV-retinitis occurs in up to 15% of all AIDS patients; also pneumonia, colitis, esophagitis and encephalitis).

Gancyclovir may be used, especially to treat retinitis in the immunosuppressed.
Human Herpesvirus 8

Human Herpesvirus 8 (HHV-8), or Kaposi Sarcoma Herpes Virus (KSHV), is associated with the development of Kaposi’s Sarcoma in AIDS patients.

Kaposi’s sarcoma is a type of cancer that affects men and is rarely seen in women.

Although KS mainly affects the skin, the mouth, and the lymph nodes, it can also involve the bowels and lungs.

HHV 8 is sexually transmitted.

Phosphorylated Interferes with RNA synthesis/
Phosphorylated Inhibits hepatitis B DNAP
Phosphorylated Inhibits HIV RT
Phosphorylated Opthalmic Ointment

Phosphorylated
Inhibits hepatitis B DNAP
Inhibits HIV RT