ANSWERS TO QUESTIONS Chapter 2: Drug Design and Relationship of Functional Groups to Pharmacologic Activity

Question #1 Answer:

At pH 2.0 amobarbital is in the acid or unionized form (100%) since the pH is 6 log units below the pKa of the compound.

At a pH of 5.5 the acid form still predominates (99.7%).

At a pH of 8.0 there are equal amounts of acid form and conjugate base (or ionized) form:

$$\begin{split} 8 &= 8 + \log \, [\text{HA}] / [\text{A}^{-}] \\ 0 &= \log \, [\text{HA}] / [\text{A}^{-}] \\ 10^{0} &= 1 = [\text{HA}] / [\text{A}^{-}] \\ (\% \, \text{HA} &= 1/2 \, \text{x} \, 100 = 50\%) \end{split}$$

The trend seen is, that as pH increases, the amount of conjugate base (or ionized form of drug) increases. The opposite trend would be seen with a basic molecule.

Question #2 Answer

The acid/base properties of phenylpropanolamine are shown below. At a pH of 2.0 the compound exist in the conjugate acid (ionized) form (>99%) as shown. At a pH of 5.5 phenylpropanolamine is 99.7% ionized, and at pH 8.0 the conjugate acid form still predominates but it has decreased to 96%.

Question #3 Answer

Sulfacetamide has the following structure and pKa values:

$$pKa = 1.8 (HB^{+})$$

Calculation of percent ionization in the stomach ($pH \sim 2$):

Sulfonamide:

Aromatic amine:

 $5.4 = 2 + \log [HA]/[A^-]$ $3.4 = [HA]/[A^-]$ $10^{3.4} = [HA]/[A^-]$ $2512 = [HA]/[A^-]$

% HA = 2512/2513 x 100 = 99.96% % A⁻ = 0.04% ionized $1.8 = 2 + \log [BH^+]/[B]$ -0.2 = [BH^+]/[B] $10^{-0.2} = [BH^+]/[B]$ $0.63 = [BH^+]/[B]$

% BH⁺ = 0.63/1.63 x 100 = 38.6%

Calculation of percent ionization in the duodenum (pH ~5.5):

Sulfonamide:

Aromatic amine:

$5.4 = 5.5 + \log [HA]/[A^-]$	$1.8 = 5.5 + \log [BH^+]/[B]$
$-0.1 = [HA]/[A^-]$	$-3.7 = [BH^+]/[B]$
$10^{-0.1} = [HA]/[A^-]$	$10^{-3.7} = [BH^+]/[B]$
$0.79 = [HA]/[A^-]$	$\sim 0.0002 = [BH^+]/[B]$
% HA = 0.79/1.79 x 100 = 44%	% BH ⁺ = 0.0002 /1.0002 x 100 = $\sim 0.02\%$

% $A^- = 56\%$ ionized

44%

56%

Calculation of percent ionization in the ileum (pH ~8):

Sulfonamide:

Aromatic amine:

5.4 = 8 + log [HA]/[A⁻] -2.6 = [HA]/[A⁻] 10^{-2.6}= [HA]/[A⁻] 0.0025 = [HA]/[A⁻] % HA = 0.0025/1.0025 x 100 = 0.25% $1.8 = 8 + \log [BH^{+}]/[B]$ -6.2 = [BH^{+}]/[B] 10^{-6.2} = [BH^{+}]/[B] 6.3 x 10⁻⁷ = [BH^{+}]/[B] % BH^{+} = 6.3 x 10⁻⁷ / 1+ 6.3 x 10⁻⁷ x 100 =~0%

% A⁻ = 99.75% ionized

.25%

99.75%

Question #4 Answer:

Ibuprofen

Captopril

Nadolol

Cefaclor

No ionization until after hydrolysis

Question #5 Answer:

Question #6 Answer:

Aspirin:

1 Carboxylic acid	3 carbons
<u>1 Ester</u>	3 carbons
Total	6 carbons

Insoluble (solubilizing potential less than carbon content, $C_9H_8O_4$)

Chlordiazepoxide:

1 Arylamidine	~3 carbons [*]
$1 2^{\circ}$ amine	3 carbons
1 N oxide	~2 carbons
Total	~8 carbons

bons Insoluble (solubilizing potential less than carbon content $(C_{16}H_{14}ClN_3O)$. *Estimate by counting number of potential hydrogen bonds with water for each group.

Codeine phosphate:

1	3^{0}	amine salt	20-30 carbons
	0		

1.2° alcohol	3-4 carbons

<u>2 Ethers</u> 4 carbons

Total

27-38 carbons Soluble (solubilizing potential is more than carbon content $(C_{18}H_{21}NO_3, H_3PO_4)$.

Codeine

1 3° amine	3 carbons	
1 2 [°] alcohol	3-4 carbons	
2 Ethers	4 carbons	
Total	10-11 carbons	Insoluble (solubilizing potential is less than carbon content
		$(C_{18}H_{21}NO_3).$

Haloperidol:

$1 3^{\circ}$ alcohol $3-4$ carbons
J = J = - Car U U U

1 3° amine 3 carbons

1 Ketone 2 carbons

Total8-9 carbonsInsoluble (solubilizing potential is less than carbon content
 $(C_{21}H_{23}ClFNO_2).$

Carphenazine maleate:

- 2 3^0 amine salts 40-60 carbons
- 1 3° amine 3 carbons
- 1 Ketone 2 carbons
- <u>1 1º alcohol</u> 3-4 carbons

Total 48-69 carbons Soluble (solubilizing potential is more than carbon content $(C_{24}H_{31}N_3O_2. 2C_4H_4O_4).$

Cyproheptadine hydrochloride:

3⁰ amine cation

1 3^0 amine salt

20-30 carbons Soluble (solubilizing potential is more than carbon content $(C_{21}H_{21}N.$ HCl).

Phenytoin

Question #7 Answer:

Aspirin:

Carphenazine:

2 Phenyls	+4.0
11 Aliphatic	C +5.5
3 Amines	-3.0
1 Alcohol	-1.0
1 Ketone	-0.7
<u>1 Sulfur</u>	0.0
logP	+4.8 (Found 3.847 <u>+</u> 0.426)

Codeine:

*Estimation based upon -CH= being equivalent to +0.33

Cyproheptadine

*Estimation based upon -CH= being equivalent to +0.33

Haloperidol:

Chlordiazepoxide:

+4.0
+0.5
+1.0
+1.0 - +0.66
-3.0*
-1.0*
$+2.5 - +2.16$ (Found 2.49 ± 0.895)

Phenytoin:

2 Phenyls +4.0 1 Aliphatic C +0.5 2 Amides -1.5 $\log P$ +3.0 (Found 2.53 \pm 0.383)

Question #8 Answer:

Example of answers: $C_4H_{10}O_2$ 1,3-Butylene Glycol:

MW 90.12

 $bp = 207.5^{\circ}$

Viscous liquid Soluble in water and ethanol Insoluble in aliphatic hydrocarbons Dielectric constant 28.8 @ 25⁰ 2,3-Butylene Glycol:

он он

MW 90.12

3 isomer forms: meso -form(erythro-form) mp = 34.4DL-threo-form $mp = 7.6^{0}$ D(-)threo-form $mp = 19.7^{0}$ L(+)-threo-form $bp = 179-182^{0}$

1,2-Dimethoxyethane

OCH₃

MW 90.12

$$bp = 82 - 83^{\circ}$$

Liquid Miscible with water, alcohol Soluble in hydrocarbon solvents Dimethylacetal

ОСН₃ H₃C^{.CH} ОСН₃

MW 90.12

bp = 64.5

Liquid Miscible with water, alcohol, chloroform, ether

2-Ethoxyethanol

MW 90.12

 $bp = 135^{0}$

Liquid Miscible with water, alcohol, ether

tert-Butyl Hydroperoxide

MW 90.12

$$mp = -8^{0}$$

Liquid Soluble in organic solvents

Question #9 Answer:

Ephedrine

Pseudoephedrine

Question #10 Answer:

Isomethadol

Morphine

Labetalol

Enalapril

Question #11 Answer:

Chloramphenicol

 O_2N

R,S

R,R

HCOCH₂CI

₂OH

S,S,S

R,S,R

S,S,R

OEt ∕H₃C_H Η, ö ő `ОН

R,R,R

Due to the symmetry of the methyl group, rotation around the $N-CH_3$ bond does not alter the 3D relationship of the atoms (left figure). The same hold true when viewing along the $N-CH_2$ bond (right figure). Conformational isomers therefore do not exist along these bonds.

Question #13 Answer:

Both the far left and middle rotamers (trans and gauche rotamers) could be stabilized by an H-bond between the amine and hydroxyl groups.