ANSWERS TO QUESTIONS

Chapter 2: Drug Design and Relationship of Functional Groups to Pharmacologic Activity

Question \#1 Answer:

At pH 2.0 amobarbital is in the acid or unionized form (100\%) since the pH is $6 \log$ units below the pKa of the compound.

At a pH of 5.5 the acid form still predominates (99.7\%).
At a pH of 8.0 there are equal amounts of acid form and conjugate base (or ionized) form:
$8=8+\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$0=\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$10^{0}=1=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$(\% \mathrm{HA}=1 / 2 \times 100=50 \%)$

The trend seen is, that as pH increases, the amount of conjugate base (or ionized form of the drug) increases. The opposite trend would be seen with a basic molecule.

Question \#2 Answer

The acid/base properties of phenylpropanolamine are shown below. At a pH of 2.0 the compound exist in the conjugate acid (ionized) form (>99\%) as shown. At a pH of 5.5 phenylpropanolamine is 99.7% ionized, and at pH 8.0 the conjugate acid form still predominates but it has decreased to 96%.

Base form
Conjugate acid form $\mathrm{pK}_{\mathrm{a}} 9.4$

Question \#3 Answer

Sulfacetamide has the following structure and pKa values:

Calculation of percent ionization in the stomach ($\mathrm{pH} \sim 2$):

Sulfonamide:
$5.4=2+\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$3.4=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$10^{3.4}=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$2512=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$\% \mathrm{HA}=2512 / 2513 \times 100=99.96 \%$
$\% \mathrm{~A}^{-}=0.04 \%$ ionized

Aromatic amine:

$$
1.8=2+\log \left[\mathrm{BH}^{+}\right] /[\mathrm{B}]
$$

$$
-0.2=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]
$$

$$
10^{-0.2}=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]
$$

$$
0.63=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]
$$

$\% \mathrm{BH}^{+}=0.63 / 1.63 \times 100=38.6 \%$

Calculation of percent ionization in the duodenum ($\mathrm{pH} \sim 5.5$):

Sulfonamide:
$5.4=5.5+\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$-0.1=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$10^{-0.1}=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$0.79=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$\% \mathrm{HA}=0.79 / 1.79 \times 100=44 \%$

Aromatic amine:
$1.8=5.5+\log \left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$-3.7=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$10^{-3.7}=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$\sim 0.0002=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$\% \mathrm{BH}^{+}=0.0002 / 1.0002 \times 100=\sim 0.02 \%$
$\% \mathrm{~A}^{-}=56 \%$ ionized

Calculation of percent ionization in the ileum ($\mathrm{pH} \sim 8$):

Sulfonamide:
$5.4=8+\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$-2.6=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$10^{-2.6}=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$0.0025=[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$
$\% \mathrm{HA}=0.0025 / 1.0025 \times 100=0.25 \%$

Aromatic amine:
$1.8=8+\log \left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$-6.2=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$10^{-6.2}=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$6.3 \times 10^{-7}=\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]$
$\% \mathrm{BH}^{+}=6.3 \times 10^{-7} / 1+6.3 \times 10^{-7} \times 100=\sim 0 \%$
$\% \mathrm{~A}^{-}=99.75 \%$ ionized

25\%

99.75\%

Question \#4 Answer:

Ibuprofen

Nadolol

Captopril

Cefaclor

Lovastatin

No ionization until after hydrolysis

Question \#5 Answer:

Alcohol Ketone

Primary amine
Secondary amine
Tertiary amine

Ester

Question \#6 Answer:

Aspirin:
Carboxyl acid

1 Carboxylic acid 3 carbons
1 Ester 3 carbons
Total 6 carbons Insoluble (solubilizing potential less than carbon content, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$)

Chlordiazepoxide:

1 Arylamidine ~ 3 carbons ${ }^{*}$
12^{0} amine 3 carbons
1 N oxide ~ 2 carbons
Total ~ 8 carbons Insoluble (solubilizing potential less than carbon content $\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}\right)$. "Estimate by counting number of potential hydrogen bonds with water for each group.

Codeine phosphate:

Ether Ether

13^{0} amine salt	$20-30$ carbons
12^{0} alcohol	$3-4$ carbons
2 Ethers	4 carbons

Total
27-38 carbons Soluble (solubilizing potential is more than carbon content $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} . \mathrm{H}_{3} \mathrm{PO}_{4}\right)$.

Codeine

Ether Ether

13^{0} amine	3 carbons
12^{0} alcohol	$3-4$ carbons
2 Ethers	4 carbons

Total 4 carbons
10-11 carbons Insoluble (solubilizing potential is less than carbon content $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$.

Haloperidol:

13^{0} alcohol	$3-4$ carbons	
13^{0} amine	3 carbons	
1 Ketone	2 carbons	
Total	$8-9$ carbons	Insoluble (solubilizing potential is less than carbon content
	$\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClFNO}_{2}\right)$.	

Carphenazine maleate:

23^{0} amine salts 40-60 carbons
13^{0} amine 3 carbons
1 Ketone 2 carbons
11^{0} alcohol 3-4 carbons
Total 48-69 carbons Soluble (solubilizing potential is more than carbon content $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2} .2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$.

Cyproheptadine hydrochloride:

3^{0} amine cation
13^{0} amine salt 20-30 carbons Soluble (solubilizing potential is more than carbon content $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N} . \mathrm{HCl}\right)$.

Phenytoin

2 Amides 4-6 carbons or 1 Amide 2-3 carbons
$\begin{array}{ll}1 \text { Urea } & 2 \text { carbons } \\ \text { Total } & 4-5 \text { carbons }\end{array}$ Insoluble (solubilizing potential is less than carbon content $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$.

Question \#7 Answer:

Aspirin:

1 Phenyl	+2.0
1 Carboxyl	-0.7
1 Ester	-0.7
1 Aliphatic C	+0.5
logP	+1.1

Carphenazine:

2 Phenyls $\quad+4.0$
11 Aliphatic C +5.5
3 Amines -3.0
1 Alcohol -1.0
1 Ketone -0.7
1 Sulfur $\quad 0.0$
$\log \mathrm{P} \quad+4.8$ (Found 3.847 ± 0.426)

Codeine:

(Uncircled carbons = aliphatic C)

1 Phenyl	+2.0
10 Aliphatic $\mathrm{C}+5.0$	
2 Alkene C	$+1.0-+0.66^{*}$
2 Ethers	-2.0
1 Alcohol	-1.0
1 Amines	-1.0
$\log \mathrm{P}$	$+4.0-+3.66$ (Found 2.04 ± 0.661)

*Estimation based upon $-\mathrm{CH}=$ being equivalent to +0.33

Cyproheptadine

2 Phenyls	+4.0
5 Aliphatic C	+2.5
4 Alkene C	$+1.32^{*}$
1 Amine	-1.0
logP	+6.82 (Found $6.62 \pm 0.359)$

*Estimation based upon $-\mathrm{CH}=$ being equivalent to +0.33

Haloperidol:

2 Phenyls	+4.0	
1 Chlorine	+0.5	
8 Aliphatic C	+4.0	
1 Ketone	-0.7	
1 Alcohol	-1.0	
1 Amines	-1.0	
logP	+5.8	
(Found $4.063 \pm 4.446)$		

Chlordiazepoxide:

2 Phenyls	+4.0
1 Chlorine	+0.5
2 Aliphatic C	+1.0
2 Alkene C	$+1.0-+0.66$
3 Amines	-3.0^{*}
1 N oxide	-1.0^{*}
$\log \mathrm{P}$	$+2.5-+2.16$ (Found 2.49 ± 0.895)

Phenytoin:

2 Phenyls $\quad+4.0$
1 Aliphatic C +0.5
2 Amides -1.5 $\log \mathrm{P} \quad+3.0$ (Found 2.53 ± 0.383)

Question \#8 Answer:

Example of answers: $\quad \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$

1,3-Butylene Glycol:

MW 90.12
$\mathrm{bp}=207.5^{0}$
Viscous liquid
Soluble in water and ethanol
Insoluble in aliphatic hydrocarbons
Dielectric constant 28.8 @ 25°

1,2-Dimethoxyethane

MW 90.12
$\mathrm{bp}=82-83^{0}$
Liquid
Miscible with water, alcohol
Soluble in hydrocarbon solvents

2-Ethoxyethanol

MW 90.12

$$
b p=135^{\circ}
$$

Liquid
Miscible with water, alcohol, ether

2,3-Butylene Glycol:

MW 90.12
3 isomer forms: meso -form(erythro-form)

$$
m p=34.4
$$

DL-threo-form
$\mathrm{mp}=7.6^{0}$
D(-)threo-form $\mathrm{mp}=19.7^{0}$
L(+)-threo-form

$$
\mathrm{bp}=179-182^{0}
$$

Dimethylacetal

MW 90.12
bp $=64.5$
Liquid
Miscible with water, alcohol, chloroform, ether
tert-Butyl Hydroperoxide

MW 90.12
$m p=-8^{0}$
Liquid
Soluble in organic solvents

Question \#9 Answer:

Question \#10 Answer:

Isomethadol

Morphine

Chloramphenicol

Labetalol

Enalapril

Question \#11 Answer:

Chloramphenicol

Enalapril

S, R, R
S, R, S

S, S, R

R,R,S

R, R, R

Question \#12 Answer:

Due to the symmetry of the methyl group, rotation around the $\mathrm{N}-\mathrm{CH}_{3}$ bond does not alter the 3D relationship of the atoms (left figure). The same hold true when viewing along the $\mathrm{N}-\mathrm{CH}_{2}$ bond (right figure). Conformational isomers therefore do not exist along these bonds.

Question \#13 Answer:

Norepinephrine

Both the far left and middle rotamers (trans and gauche rotamers) could be stabilized by an H -bond between the amine and hydroxyl groups.

