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ABSTRACT

The drug-metabolizing enzymes that contribute to the metabolism
or bioactivation of a drug play a crucial role in defining the
absorption, distribution, metabolism, and excretion properties of
that drug. Although the overall effect of the cytochrome P450 (P450)
family of drug-metabolizing enzymes in this capacity cannot be
understated, advancements in the field of non-P450–mediated me-
tabolism have garnered increasing attention in recent years. This is
perhaps a direct result of our ability to systematically avoid P450
liabilities by introducing chemical moieties that are not susceptible
to P450 metabolism but, as a result, may introduce key pharmaco-
phores for other drug-metabolizing enzymes. Furthermore, the
effects of both P450 and non-P450 metabolism at a drug’s site of
therapeutic action have also been subject to increased scrutiny. To

this end, this Special Section on Emerging Novel Enzyme Pathways
in Drug Metabolism will highlight a number of advancements that
have recently been reported. The included articles support the
important role of non-P450 enzymes in the clearance pathways of
U.S. Food and Drug Administration–approved drugs over the past
10 years. Specific examples will detail recent reports of aldehyde
oxidase, flavin-containing monooxygenase, and other non-P450
pathways that contribute to the metabolic, pharmacokinetic, or
pharmacodynamic properties of xenobiotic compounds. Collec-
tively, this series of articles provides additional support for the role
of non-P450–mediated metabolic pathways that contribute to the
absorption, distribution, metabolism, and excretion properties of
current xenobiotics.

Introduction

The identification of drug metabolism pathways and their relative
importance is a prominent aspect in the determination of the pharma-
cokinetic properties of most xenobiotics (Wienkers and Heath, 2005;
Foti et al., 2012). The scientific basis of these studies resides in multiple
disciplines, including physiology, enzymology, metabolic biotransfor-
mation, in silico modeling and toxicology, among others (Lee et al.,
2003). As such, the characterization of the enzymes involved in the
metabolism of a new compound, the determination of its metabolic
stability and primary biotransformation pathways, and the ability of a
compound to inhibit or induce drug-metabolizing enzymes are all major
facets of the drug discovery and development continuum. Generically
speaking, drug metabolism can be thought of as the biologic conversion

of hydrophobic, drug-like molecules into more polar metabolites that
are then subject to facile excretion. In turn, the plasma and extravascular
exposure of the parent drug and subsequent metabolites is determined,
thus defining the safety and efficacy profile of the drug. Given the
defining role of drug metabolism in safety and efficacy, it becomes no
surprise that regulatory agencies emphasize the importance of charac-
terizing the drug metabolism profile in the development process for new
investigational drugs (Bohnert et al., 2016).
The biotransformation reactions catalyzed by drug-metabolizing

enzymes are generally grouped into phase I (involving oxidation,
reduction, and hydrolysis) or phase II (conjugation-based) reactions
(Williams, 1969). Transporter-based interactions are often referred to as
phase III reactions; although these interactions are outside the scope of
this special section, many thorough reviews are currently available on
the topic (Giacomini et al., 2010; Keogh, 2012). Phase I reactions are
commonly catalyzed by enzymes such as the cytochromes P450 (P450),dx.doi.org/10.1124/dmd.116.071753.

ABBREVIATIONS: ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; AO, aldehyde oxidase; BIBX1382, N8-(3-chloro-4-fluorophenyl)-
N2-(1-methyl-4-piperidinyl)-pyrimido[5,4-d]pyrimidine-2,8-diamine dihydrochloride; CES, carboxylesterase; ER, endoplasmic reticulum; FK3453,
6-(2-amino-4-phenylpyrimidine-5-yl)-2-isopropylpyridazin-3(2H)-one; FMO, flavin-containing monooxygenase; GDC-0834, (R)-N-(3-(6-((4-(1,4-
dimethyl-3-oxopiperazin-2-yl)phenyl)amino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide;
HOIDPN, N-hydroxy-3,39-iminodipropionitrile; IDPN, iminodipropionitrile; JNJ-38877605, 6-[difluoro-[6-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-
3-yl]methyl]quinoline; MAO, monoamine oxidase; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; P450, cytochrome P450; SGX523,
6-[[6-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl]sulfanyl]quinoline; SN-38, 7-ethyl-10-hydroxy-camptothecin; UGT, UDP-
glucuronosyltransferase; XO, xanthine oxidase.
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flavin-containing monooxygenases (FMOs), aldehyde oxidases (AOs),
carboxylesterases (CESs), epoxide hydrolases, alcohol and aldehyde
dehydrogenases (ADHs and ALDHs, respectively), and ketoreductases,
in addition to others (Rendic and Di Carlo, 1997; Satoh and Hosokawa,
2006; Cashman, 2008; Decker et al., 2009; Strolin Benedetti,
2011; Garattini and Terao, 2012). Drug-metabolizing enzymes
responsible for the phase II conjugative pathways include the UDP-
glucuronosyltransferases (UGTs), sulfotransferases, N-acetyltransferases,
glutathione transferases, methyltransferases, and acyl-CoA synthetases.
Examples of phase I and phase II enzymes, along with their respective
cofactors, substrates, inhibitors, and tissue location, are shown in Tables
1 and 2 (Riddle and Jencks, 1971; Trager, 1989; Ghersi-Egea et al., 1993;
Matsui and Homma, 1994; Riley and Hanzlik, 1994; Dutton, 1997; Rendic
and Di Carlo, 1997; Burchell et al., 1998; Halpert et al., 1998; Burchell,
1999; Weinshilboum et al., 1999; Tukey and Strassburg, 2000; Dalvie
et al., 2002; Ortiz deMontellano and DeVoss, 2002; Coughtrie and Fisher,
2003; Ding and Kaminsky, 2003; Nelson and Trager, 2003; Guengerich,
2005; Satoh and Hosokawa, 2006; Cashman, 2008; Dourado et al., 2008;
Nakamura et al., 2008; Decker et al., 2009; Remmel and Zhou, 2009;
Strolin Benedetti, 2011; Fasinu et al., 2012; Foti and Fisher, 2012; Garattini
and Terao, 2012). A number of comprehensive resources detailing the
chemistry and reaction mechanisms for many of the enzymes are readily
available (Trager, 1989; Riley and Hanzlik, 1994; Burchell et al., 1998;
Halpert et al., 1998; Burchell, 1999; Dalvie et al., 2002; Nelson and Trager,
2003; Foti et al., 2012). This special section will aim to highlight the
increasing emphasis placed on non-P450–catalyzed reactions, specifically
those involved in oxidative metabolism.
An additional topic worthy of highlighting in a special section

devoted to emerging and novel drug metabolism pathways is the recent
advancements in mass spectrometry–based proteomics that have
allowed the field to re-evaluate the expression levels of drug-
metabolizing enzymes in the liver and other tissues. In the early years
of characterizing expression patterns of drug-metabolizing enzymes,
determination of P450 protein levels used selective antibodies, whereas

the analysis of non-P450 phase I and phase II drug-metabolizing
enzymes was primarily limited to measuring mRNA expression. Indeed,
the field of proteomics has greatly expanded the tools available to
characterize drug-metabolizing enzyme expression patterns (Ohtsuki
et al., 2012; Schaefer et al., 2012). To highlight the magnitude of these
advancements in recent years, we mined the literature for studies on the
expression levels of drug-metabolizing enzymes that reported protein
expression on a picomole/milligram basis. Reported methods included
Western blot analyses as well as mass spectrometry–based approaches in
various matrices, and the two analytical methods were weighted equally
in terms of calculating the average expression levels for each enzyme.
Averages and standard deviations were weighted based on the number
of individual samples reported in each study. On the basis of an initial
analysis of 25 literature reports, a composite view of drug-metabolizing
enzyme expression is shown in Fig. 1; this allows for a statistically
simplistic comparison of P450 versus non-P450 enzyme expression, as
well as an assessment of the variability observed within the reported
expression levels for each enzyme. It is quite likely that the overall
variability results from a combination of pharmacogenetics, patient
history, and choice of analytical methods, as discussed in recent
literature reports (Tracy et al., 2016).
The overall aim of this special section is to briefly highlight the

emerging contributions of both P450 and non-P450 drug-metabolizing
enzymes, with a specific emphasis on the oxidative pathways catalyzed
by the latter. Table 3 includes examples of the role of non-P450 enzymes
in affecting both the pharmacokinetics and pharmacodynamics of
various xenobiotics (using the University of Washington Drug In-
teraction Database, https://didb.druginteractioninfo.org), and a search of
the recent literature supports these findings (Cerny, 2016). The increase
in the identification of metabolic pathways catalyzed by non-P450
enzymes will be discussed, as will the role of non-P450 enzymes in
phase I functionalization reactions. Novel aspects of phase II enzymes
will also be presented. Ultimately, together with the articles included in
this special section, a case will be made for the effect of these emerging

TABLE 1

Examples of cofactors, substrates, inhibitors, and primary tissue locations for P450 and UGT drug-metabolizing enzymes

Enzyme Cofactor Substrate Inhibitor Tissue Location

CYP1A2 NADPH Phenacetin, caffeine a-Naphthoflavone, furafyllinea Liver
CYP2A6 NADPH Coumarin Liver, lung
CYP2B6 NADPH Bupropion, efavirenz Clotrimazole Liver, lung
CYP2C8 NADPH Montelukast, paclitaxel, amodiaquine Quercetin, montelukast, gemfibrozil glucuronidea Liver
CYP2C9 NADPH (S)-Warfarin, diclofenac, tolbutamide Sulfaphenazole, tienilic acida Liver
CYP2C19 NADPH (S)-Mephenytoin, (6)-omeprazole (+)-N-3-Benzylnirvanol Liver
CYP2D6 NADPH Dextromethorphan, (6)-bufuralol Quinidine, paroxetinea Liver
CYP2E1 NADPH Chlorzoxazone Diethyldithiocarbamate Liver, lung
CYP2J2 NADPH Arachidonic acid, terfenadine, astemizole Ketoconazole Lung
CYP3A4/5 NADPH Midazolam, testosterone, nifedipine Ketoconazole, mibefradil,a mifepristone,a

troleandomycin
Liver, small intestine (3A4),

lung (3A5)
UGT1A1 UDPGA Bilirubin, estradiol, ethynylestradiol Atazanavir, indinavir, ketoconazole, flavones Liver, intestine
UGT1A3 UDPGA F6-1a,23S,25-trihydroxyvitamin-D3, lithocholic acid,

fulvestrant
Buprenorphine, amitriptyline, temazepam Liver

UGT1A4 UDPGA Trifluoperazine, imipramine Hecogenin, lamotrigine Liver, stomach
UGT1A6 UDPGA Serotonin Bisphenol A, troglitazone, rose bengal Liver, brain
UGT1A7 UDPGA Benzo[a]pyrene metabolites Phenylbutazone, quinidine Esophagus, stomach
UGT1A8 UDPGA Benzo[a]pyrene metabolites, dihydrotestosterone

diglucuronide
Emodin Esophagus, intestine

UGT1A9 UDPGA Propofol, entacapone Niflumic acid, diflunisal, ketoconazole Kidney, liver
UGT1A10 UDPGA Dopamine Tacrolimus Kidney, intestine, lung
UGT2B4 UDPGA Hyodeoxycholic acid Diclofenac, laropiprant Liver
UGT2B7 UDPGA Azidothymidine, morphine, codeine Diclofenac, flurbiprofen, mefanemic acid Liver, intestine, kidney
UGT2B10 UDPGA Nicotine Unknown Liver, prostate, breast
UGT2B15 UDPGA (S)-Oxazepam Valproic acid, diclofenac Liver, prostate
UGT2B17 UDPGA Dihydrotestosterone Diclofenac, ibuprofen Liver, prostate

UDPGA, UDP glucuronic acid.
aDenotes time-dependent inhibitor.
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pathways on pharmacokinetics, drug interactions, and safety and
efficacy profiles of novel therapeutics.

Cytochrome P450 Enzymes, UDP-Glucuronosyltransferases, and
Sulfotransferases

Although the main focus of this special section is on emerging metabolic
pathways of a non-P450 nature, no commentary on drug-metabolizing
enzymes would be complete without somemention of P450 enzymology.
P450s are a superfamily of heme-containing enzymes that are responsible
for the oxidation or reduction of the majority of drugs currently in use
(Ortiz de Montellano and De Voss, 2002). Over 57 isoforms are reported
to make up the family, although the number of isoforms directly involved
in the metabolism of xenobiotics is more limited, with CYP1A1,
CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1,
CYP3A4, and CYP3A5 being the P450 isoforms with significant roles in
drug metabolism (Guengerich, 2005). The endoplasmic reticulum (ER)
of the liver, intestine, lung, kidney, brain, and nasal mucosa cells is the
primary site of P450 expression, with the active site of the P450 enzymes
oriented toward the cytosolic side of the ER membrane (Ding and
Kaminsky, 2003). The mechanism of the P450 reaction cycle necessitates
the transfer of electrons from NADPH through various redox partners
such as P450 reductase and cytochrome b5 (Iyanagi and Mason, 1973;
Vermilion and Coon, 1978; Vermilion et al., 1981; Schenkman and
Jansson, 1999). Although limited “novel metabolic pathways” catalyzed
by P450 have been reported in recent years, efforts have focused on the

characterization of minor isoforms such as CYP2J2 or the CYP4Fs as
well as the contribution of P450 metabolism at the therapeutic site of
action to the overall efficacy of a given drug (Kirischian and Wilson,
2012; Xu et al., 2013; Eksterowicz et al., 2014; Michaels and Wang,
2014; Foti et al., 2015; Uehara et al., 2015).
Similarly, UGTs and sulfotransferases represent other families of well

studied drug-metabolizing enzymes. The UGTs catalyze the addition
of glucuronic acid from uridine diphosphoglucuronic acid to a multi-
tude of endogenous compounds and xenobiotics (Miners et al., 2004;
Radominska-Pandya et al., 2005). The primary pharmacophore re-
quirement is adequate nucleophilicity to accept transfer of the glucuronic
acid moiety, with functional groups including aliphatic alcohols,
carboxylic acids (resulting in acyl glucuronides), phenols, amines, and
thiols (Tukey and Strassburg, 2000). Well characterized substrates
include bilirubin, estradiol, serotonin, propofol, and morphine. Further-
more, as metabolite contributions to drug–drug interactions have gained
importance since the issuance of new regulatory guidances, examples of
metabolites formed by non-P450s that can contribute to clinically
relevant drug–drug interactions have been identified (VandenBrink and
Isoherranen, 2010; Yeung et al., 2011; Yu and Tweedie, 2013). A few
classic examples exemplify metabolites formed by non-P450 enzymes
in playing a role in inhibiting P450 are gemfibrozil (Backman et al.,
2002; Wang et al., 2002), clopidogrel (Tornio et al., 2014), and, more
recently, deleobuvir (Sane et al., 2016), in which UGT-catalyzed acyl
glucuronide formation is responsible for inactivating CYP2C8 and
resulting in significant drug–drug interactions.

TABLE 2

Cofactors, substrates, inhibitors, and primary tissue locations for additional drug-metabolizing enzymes

Enzyme Cofactor Examples of Substrates Examples of Inhibitors Tissue Location

FMO (FMO1, FMO3, FMO5) NADPH Benzydamine, clozapine,
imipramine, tamoxifen, nicotine,
voriconazole, sulindac sulfide

Methimazole Kidney, intestine, fetal liver
(FMO1); liver, lung, kidney
(FMO3); liver (FMO5)

AO Molybdenum pyanopterin Allopurinol, citalopram carbazeran,
tamoxifen metabolites

Hydralazine, chlorpromazine,
isovanillin

Liver, lung, kidney, small
intestine

XO Molybdenum pyanopterin 1-Methylxanthine, allopurinol FYX-051, febuxostat Liver, heart, lung, adipose,
mammary gland

MAO (MAO-A, MAO-B) FAD 5-Hydroxytryptamine and
epinephrine (MAO-A);
benzylamine and
b-phenylethylamine (MAO-B)

Moclobemide, clorgyline
(MAO-A)

Liver, placenta, brain

Sertraline and clomipramine (both) Deprenyl (MAO-B)
CES None Cocaine, methylphenidate,

meperidine
Benzil, trifluoromethyl ketones,

organophosphorus
compounds

Liver

Epoxide hydrolase (sEH and
mEH)

None Carbamazepine and styrene oxide
(mEH); epoxyeicosatrienoic
acids (sEH)

1,1,1-Trichloropropylene
oxide (mEH)

Liver

Valproic acid
Aldo-ketoreductase (multiple

isoforms)
NADPH Haloperidol, ketotifen, oracin NSAIDs Liver, kidney, brain, blood

Sulfotransferase (multiple
isoforms)

PAPS Acetaminophen and troglitazone
(1A1); salbutamol and
dobutamine (1A3);
ethynylestradiol (1E1);
budenoside (2A1)

Pentachlorophenol Liver, intestine, platelets, brain,
kidney, endometrium, skin,
prostate, placenta

glutathione transferase
(multiple isoforms)

Glutathione 1-Chloro-2,4-dinitrobenzene,
chlorambucil, melphalan

Ethacrynic acid, piriprost,
indomethacin

Liver, kidney, lung, brain,
skeletal muscle, heart, small
intestine, spleen

N-Acetyltransferase (NAT1,
NAT2)

Acetyl CoA p-Aminobenzoic acid and p-
aminophenol (NAT1); dapsone,
sulfamethazine, procainamide
(NAT2)

Acetaminophen, 5-iodosalicylic
acid

Liver, esophagus, small
intestine, stomach, colon,
bladder, lung

Acyl-CoA synthetase ATP, CoA Ibuprofen, flunoxaprofen, clofibrate Triacsin C, rosiglitazone Liver, heart, adipose tissue
Methyltransferase (structure-

dependent isoforms)
S-Adenosyl methionine 6-Mercaptopurine, 6-thioguanine,

azathioprine, dopamine, captopril
Entacapone, tolcapone Liver (adult and fetal), lung,

kidney, small intestine

FAD, flavin adenine dinucleotide; FYX-051, 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl)pyridine-2-carbonitrile; mEH, microsomal epoxide hydrolase; NAT, N-acetyltransferase; NSAID, nonsteroidal
anti-inflammatory drug; PAPS, 39-phosphoadenosine-59-phosphosulfate; sEH, soluble epoxide hydrolase.
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Conversely, the addition of a sulfate group to a nucleophilic ligand is
catalyzed by sulfotransferases. The enzymes use 39-phosphoadenosine
59-phosphosulfate as the sulfate donor; although the primary outcome
of the sulfation reaction is a molecule with increased hydrophilicity
and decreased pharmacological activity, a number of reports of
sulfotransferase-catalyzed bioactivation have been noted, as in the case of
3-n-butylphthalide (Chou et al., 1995a,b, 1998; Gamage et al., 2006;
Diao et al., 2014). The main pharmacophores for the sulfotransferases
are aliphatic and aromatic hydroxyl groups, in addition to N-substituted

hydroxylamines (Klaassen and Boles, 1997). In general, P450-, UGT-,
and sulfotransferase-catalyzed metabolic pathways have been well
covered in the literature and will not be discussed in detail in this
collection of work on emerging pathways.

Flavin-Containing Monooxygenases

FMOs are involved in the metabolism of a wide array of xenobiotics,
owing in part to the fact that a soft nucleophile such as a sulfur or
nitrogen heteroatom is all that is necessary to convey the structural
requirements to render the compound a substrate of FMOs (Ziegler,
1990). In addition to nucleophilicity, the size and charge state of a
compound as well as the active site topography of the FMO active sites
are important determinants of FMO-catalyzed metabolic profiles
(Ziegler, 1990; Riley and Hanzlik, 1994; Rettie et al., 1995; Krueger
et al., 2009). Although most readers will be familiar with FMO-
catalyzed reactions such as benzydamine N-oxidation, recent efforts
have focused on the role of FMOs in drug clearance, drug–drug
interactions, and even in homeostatic roles such as the regulation of
glucose and lipid metabolism and subsequent onset of atherosclerosis
through the formation of metabolites such as trimethylamine-N-oxide
(Bennett et al., 2013; Shih et al., 2015; Shimizu et al., 2015). Well
known inhibitors of FMOs include indole-3-carbinol and methimazole.
The role of FMOs in the conversion of a thiocarbonyl functionality to
a reactive metabolite is well known (Ji et al., 2007).
Other examples in which FMO-mediated metabolism leads to

formation of reactive metabolites include the oral antifungal agent
ketoconazole and the synthetic neurotoxicant iminodipropionitrile
(IDPN). Administration of ketoconazole has led to hepatic damage in
the clinic on several occasions (Rodriguez and Buckholz, 2003). In
addition, significant covalent binding is observed when [3H]-ketoconazole
is incubated with NADPH-fortified rat liver microsomes, an observation
that is abrogated after incubation of ketoconazole in heat-inactivated
microsomes and suggests the involvement of FMOs. Deacetyl ketoco-
nazole is the primary metabolite of ketoconazole and has been im-
plicated in the hepatotoxicity of ketoconazole (Whitehouse et al., 1990).

TABLE 3

Examples (nonexhaustive) of xenobiotic compounds from the University of Washington Drug Interaction Database
whose pharmacokinetics or pharmacodynamics have been reported to be affected by non-P450 oxidative enzymes

since 2010

Enzyme Affected Drug Affected Property Overall Effect

ALDH Acetaldehyde PK ↑ AUC, Cmax

Ethanol PD ↑ Facial skin blood flow, heart rate
AO XK-469 PK ↓ Clearance
CES (CES1 or CES2) Clopidogrel PK ↑ AUC, Cmax; ↓ metabolite/parent

Enalaprilat PD ↓ Maximum platelet aggregation
Oseltamivir PK ↓ AUC

PK ↑ AUC, Cmax; ↓ metabolite/parent
Carbonyl reductase Daunorubicin PK ↑ AUC; ↓ clearance
Catechol-O-methyltransferase MDMA PD ↓ Blood pressure

Paliperidone PK ↓ AUC
Epoxide hydrolase Carbamazepine PK ↑ Dose

Warfarin PK ↓ Dose
FMO Danusertib PK ↑ Clearance

Itopride PK ↑ AUC, Cmax; ↓ clearance
Sulindac sulfide PK ↑ AUC

N-Acetyltransferase N-Acetylretigabine PK ↓ AUC
Sulfapyridine PK ↑ AUC
Sulfamethoxazole PK ↑ AUC
Isoniazid PK ↑ AUC
Phenytoin PK ↑ AUC, Cmax; ↓ clearance

The University of Washington Drug Interaction Database is available at https://didb.druginteractioninfo.org (accessed May 10, 2016).
AUC, area under the curve; MDMA, 3,4-methylenedioxymethamphetamine; PD, pharmacodynamics; PK, pharmacokinetics; UDPGA,
UDP glucuronic acid; XK-469, 2-(4-((7-chloro-2-quinoxalinyl)oxy)phenoxy)propionic acid. Increases and decreases in overall effect
parameters are indicated by up and down arrows, respectively.

Fig. 1. Estimated expression levels of hepatic drug-metabolizing enzymes as
described in multiple literature reports. Protein data were included from both
Western blot and mass spectrometry–based methods (Shimada et al., 1994; Overby
et al., 1997; Richardson et al., 1997; Lasker et al., 1998; Zanger et al., 2001; Coller
et al., 2002; Lin et al., 2002; Lamba et al., 2003; Westlind-Johnsson et al., 2003;
Koukouritaki et al., 2004; Rettie and Jones, 2005; Hofmann et al., 2008; Langenfeld
et al., 2009; Klein et al., 2010; Naraharisetti et al., 2010; Kawakami et al., 2011;
Ohtsuki et al., 2012; Schaefer et al., 2012; Barr et al., 2013; Fu et al., 2013; Zanger
and Schwab, 2013; Achour et al., 2014; Michaels and Wang, 2014; Song et al.,
2015; Chen et al., 2016).
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Rodriguez et al. proposed that deacetyl ketoconazole is converted to
a secondary hydroxylamine metabolite, which in turn is oxidized to
potentially reactive nitrone and/or dialdehyde metabolites (Fig. 2A)
(Rodriguez and Acosta, 1997a; Rodriguez and Buckholz, 2003). Al-
though there is no direct evidence that supports the formation or reactivity
of the nitrone or dialdehyde intermediate, the proposal is consistent with
the results from studies in rat hepatocyte culture systems that indicated
the deacetyl ketoconazole metabolite to be more hepatotoxic than the
parent (Rodriguez and Acosta, 1997b).
The vestibular and auditory neurotoxicities that result after administra-

tion of IDPN are also attributed to FMO-catalyzed conversion of the
compound to the putativeN-hydroxy-3,39-iminodipropionitrile (HOIDPN;
Fig. 2B) (Jacobson et al., 1987; Morandi et al., 1987; Nace et al., 1997).
This proposal is based on the fact that coadministration of methimazole,

an FMO1/FMO3 inhibitor, with IDPN prevents these IDPN-mediated
adverse events. Furthermore, neurotoxic events observed after admini-
stration of HOIDPN are 2- to 8-fold greater than those observed after
administration of the parent compound (Crofton et al., 1996). It was
suggested that one possible pathway could involve conversion of
HOIDPN to cyanoacetaldehyde via the putative nitrone intermediate,
which can transform protein-based amino groups to cyanoenamine
adducts (Jacobson et al., 1987).
FMO has also been reported to play a major role in the conversion

of the parent drug to active metabolites. Ethionamide, thiacetazone,
albendazole, and fenbendazole represent examples of conversion of
parent to an active metabolite by FMO. As noted above, the
antituberculosis drug ethionamide is converted to ethionamide S-oxide
by FMO, which is then further oxidized to the sulfinic acid derivative

Fig. 2. FMO-mediated bioactivation of secondary amines in ketoconazole (A) and IDPB (B) via a hydroxylamine intermediate.

P450 and Non-P450 Oxidative Metabolism 1233

 at A
SPE

T
 Journals on January 16, 2017

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


and ultimately to the 2-ethyl-4-carboxamidopyridine metabolite (Fig.
3A) (Vannelli et al., 2002). Assessment of biologic activity of the
S-oxide metabolites showed that this metabolite retained full activity of
ethionamide against Mycobacterium tuberculosis (Johnston et al.,
1967). Similarly, human FMO1 and FMO3 have been shown to catalyze
the oxidative activation of thiacetazone to isolable sulfinic acid and
carbodiimide metabolites (Fig. 3B), the latter of which readily reacts
with glutathione (Qian and Ortiz de Montellano, 2006). Albendazole
and fenbendazole represent interesting examples that undergo enantio-
selective sulfoxidation of the prochiral sulfide moiety, yielding active
sulfoxide metabolites albendazole sulfoxide (Hennessy et al., 1989) and
fenbendazole sulfoxide or oxfendazole (Fig. 3C) (Marriner and Bogan,
1981). Although the involvement of both P450 and FMO systems in the
sulfoxidation has been demonstrated in various species including
humans, FMO specifically catalyzed the formation of (+)-albendazole
sulfoxide and oxfendazole, whereas the P450 catalyzed the formation of
the (2)-enantiomer (Virkel et al., 2004).

Aldehyde Oxidases and Xanthine Oxidases

AO and xanthine oxidase (XO) belong to the molybdenum hydrolase
family and are involved in the oxidation of aldehydes and heterocycles.

The effects of a concerted effort to reduce P450-mediated metabolism in
xenobiotics by incorporating additional heterocycles in new chemical
entities may have directly affected the role of AO in drug metabolism,
because the effort indirectly resulted in an increase in the number of
compounds containing an AO pharmacophore (Obach, 2004; Obach
et al., 2004). The predominant site of metabolism is most often oxidation
of a carbon atom that is next to the heteroatom of an aromatic ring
system. A crystal structure of a mouse AO isoform (AOX3) was recently
solved, with additional computational approaches being used to
characterize the active site binding properties of human AO (Coelho
et al., 2012, 2015). Recently, a significant amount of research has been
geared toward increasing the field of knowledge around substrates and
inhibitors of AOs. Traditionally, compounds such as isovanillin,
hydralazine, and chlorpromazine have been used as selective inhibitors
to characterize the contributions of AO to a compound’s metabolism
(Obach, 2004). More recently, examples of the use of selective probe
substrates of AO in hepatocytes such as carbazeran have also been
reported (Hutzler et al., 2012). Examples of novel AO-catalyzed
metabolic pathways also exist, as in the case of the AO-catalyzed
amide hydrolysis exhibited with GDC-0834 [(R)-N-(3-(6-((4-(1,
4-dimethyl-3-oxopiperazin-2-yl)phenyl)amino)-4-methyl-5-oxo-4,

Fig. 3. Metabolism of ethionamide (A), thiacetazone (B), and oxidation of albendazole and fenbendazole (C) to their respective S-oxide metabolites by FMO.
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5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]-
thiophene-2-carboxamide], an inhibitor of Bruton’s tyrosine kinase
(Sodhi et al., 2015).
Recent evidence has also suggested a role for AOs metabolism in

species-dependent metabolic profiles, as observed with methotrexate,
GDC-0834, or ripasudil, an inhibitor of Rho-associated coiled coil-
containing protein kinase (Liu et al., 2011; Choughule et al., 2015; Isobe
et al., 2016). In certain cases, specific arguments have been made for the

use of higher preclinical species being more relevant to predict human
AO metabolism, as in the case of the epidermal growth factor receptor
inhibitor BIBX1382 [N8-(3-chloro-4-fluorophenyl)-N2-(1-methyl-4-
piperidinyl)-pyrimido[5,4-d]pyrimidine-2,8-diamine dihydrochloride]
(Fig. 4A) (Hutzler et al., 2014). Like P450, the contribution of non-
P450 enzymes to drug metabolism can be significant and affect the
overall development of the drug, including instances in which extensive
metabolism by AO has led to clinical failures due to high clearance

Fig. 5. AO-mediated metabolism of c-Met inhibitors JNJ38877605
and SGX-523 to their respective insoluble quinolone metabolites.

Fig. 4. (A) Metabolism of BIBX1382, FK3453, and idelalisib by
non-P450 enzymes. (B) Structures of carbazeran and RO-1, two
compounds discontinued after initiation of clinical trials as a result
of poor oral exposure attributed to non-P450 enzymes.
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leading to unacceptable PK properties or due to safety-related issues. For
instance, development of BIBX1382 and FK3453 [6-(2-amino-4-
phenylpyrimidine-5-yl)-2-isopropylpyridazin-3(2H)-one] was discon-
tinued because of their rapid AO-mediated elimination and resulting
poor bioavailability in humans (Dittrich et al., 2002; Akabane et al.,
2011). BIBX1382 (Fig. 4A) is a pyrimido-pyrimidine derivative that
was selected for further development based on its preclinical profile
and excellent pharmacokinetic properties in rats and mice (absolute
bioavailability between 50% and 100%). However, pharmacokinetic
studies in the clinic after single oral dosing showed a very poor
bioavailability of approximately 5% (Dittrich et al., 2002). The poor
exposure of BIBX1382 was attributed to conversion of the molecule to
its inactive C, which significantly exceeded the plasma concentrations of
the parent. Similarly, for FK3453 (Fig. 4A), despite favorable results
in the preclinical species, the circulating concentrations of FK3453 in
humans were extremely low as a result of AO-mediated oxidation of
the pyrimidine moiety to the corresponding hydroxylated metabolite
(Akabane et al., 2011). Other examples of AO-related clinical failures
include carbazeran (a cardiac stimulant) and RO-1 (a p38 kinase inhibitor)
that have been discontinued because of unexpectedly poor exposure in
humans (Fig. 4B) (Kaye et al., 1984, 1985; Zhang et al., 2011).
These species-dependent metabolic profiles can also manifest

themselves in terms of a drug’s safety profile. From a clinical safety
standpoint, the onset of renal toxicity has been attributed to the
generation of insoluble metabolites by AOs in a number of cases. For
example, development of JNJ-38877605 (6-[difluoro-[6-(1-methylpyrazol-
4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl]methyl]quinoline) was halted
because of clinically observed renal toxicity, caused by the AO-catalyzed
formation of insoluble metabolites in a species-dependent manner
(Lolkema et al., 2015). A similar scenario was reported for SGX523
(6-[[6-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-
yl]sulfanyl]quinoline), a small molecule inhibitor of Met, a tyrosine
kinase inhibitor involved in tumor angiogenesis (Fig. 5) (Infante
et al., 2013). Both of these c-Met inhibitors are substrates of AO and

are converted to their respective quinolone metabolites via oxida-
tion of the carbon atom adjacent to the nitrogen atom in the
quinoline ring (Diamond et al., 2010; Lolkema et al., 2015). Poor
solubility of the quinolone metabolite leads to its crystallization in
the kidney, subsequently resulting in the observed renal toxicity in
some species and humans.
Although the role of AO in drug interactions is fairly limited to date, it

is quite plausible that this could change in the near future as a result of the
increasing number of xenobiotics cleared by AO. For example, zaleplon,
idelalisib (Fig. 4A), and lenvatinib are all reported to have a significant
portion of the metabolism dependent on AO (Zientek et al., 2010;
Robeson et al., 2013; Inoue et al., 2014). Indeed, the inhibition of
both the AO- and CYP3A-dependent metabolic pathways of zaleplon
by cimetidine has been noted (Renwick et al., 2002). Furthermore,
regularly consumed AO inhibitors such as epicatechin gallate and
epigallocatechin gallate, which are found in green tea, may have the
potential to cause clinically relevant drug interactions (Barr et al.,
2015). Recent reports have also shown an AO-catalyzed metabolite of
phosphoinositide 3-kinase d inhibitor idelalisib to play an inhibitory
role in the drug–drug interaction observed after administration of
idelalisib with midazolam, which resulted in significant increases
in midazolam exposures of 138%, 355%, and 437% for the Cmax,
the area under the plasma concentration-time curve from time 0 to the
time of the last quantifiable concentration, and the area under the
plasma concentration-time curve from time 0 extrapolated to infinity,
respectively (Jin et al., 2015). In vitro studies show that the oxo-
metabolite is a time-dependent inhibitor of CYP3A4, with an inhibition
constant of 0.2mMand a rate of inactivation of 0.033min21. In addition,
circulating concentrations of this metabolite are approximately 60%
greater than the parent drug in humans.
On a positive note, non-P450–mediated drug oxidation or reductions

can also lead to pharmacologically active metabolites that can signifi-
cantly or entirely contribute to the overall therapeutic effect of a parent
drug. The role of AO/XO in the conversion of drugs and or prodrugs

Fig. 6. Metabolism of famciclovir to penciclovir by AO (A)
and metabolism of 6-deoxyacyclovir to acyclovir by XO
(B).
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into active metabolites has been well documented. Classic examples in
this category include non-P450–catalyzed activation of antiviral guanine
derivatives famciclovir (used in the treatment of herpes) and deoxy-
acyclovir, which are converted to their active entities penciclovir and
acyclovir (Krenitsky et al., 1984; Pue et al., 1994; Clarke et al., 1995;
Rashidi et al., 1997). Famciclovir is first deacetylated via rapid esterase-
mediated hydrolysis to a penultimate metabolite, 6-deoxypenciclovir,
which is subsequently oxidized to penciclovir (Fig. 6A). Studies by
Clarke et al. (1995) and Rashidi et al. (1997) indicate that the oxidation
of 6-deoxypenciclovir to penciclovir is catalyzed by AO. Similarly, the
acyclic guanine analog 6-deoxyacyclovir, a widely used antiherpetic
agent, is readily oxidized to the active acyclovir by XO (Fig. 6B). It is
important to note that although deoxyacyclovir is also metabolized by
AO, these metabolites lack activity (Krenitsky et al., 1984). Conversion
of allopurinol, an XO inhibitor used in the treatment of gout and
hyperuricemia, to oxypurinol is another example in which the oxidized
product is active (Fig. 7) (Tamta et al., 2006). Although the metabolite is
less potent than the parent (approximately 10-fold lower potency than
the parent), it has a longer half-life and higher circulating concentrations

compared with the parent, allowing the metabolite to contribute to the
overall activity of the parent (Day et al., 2007).

Carboxylesterases

CESs are primarily responsible for the metabolism of ester moieties in
both endogenous and exogenous substrates (Lotti et al., 1983; Munger
et al., 1991; Kaphalia et al., 2004). The enzymes are also capable of
hydrolyzing amides and thioesters and are shown to be involved in the
transesterification of multiple compounds (Boyer and Petersen, 1992;
Bourland et al., 1997; Humerickhouse et al., 2000; Nishi et al., 2006).
Among drug-metabolizing enzymes, CESs display one of the greater
disparities in terms of activity between humans and preclinical species
(Lotti et al., 1983; Takai et al., 1997). Much of the recent work on
CESs has focused on the expression and regulation of the enzymes
(CES1 and CES2). In terms of drug metabolism, efforts to characterize
the CES-dependent pathways of compounds such as dabigatran etexilate,
sacubitril, cabazitaxel, and angiotensin-converting enzyme inhibitors
(e.g., ramipril and trandolapril) have been reported in recent years
(Laizure et al., 2014; Thomsen et al., 2014; Tang et al., 2015; Shi et al.,
2016) Furthermore, in vitro methods aimed at identifying selective CES
inhibitors to use for human esterase phenotyping efforts and those to
compare CES activity in immortalized cell lines from liver, intestine, and
kidney sources have been undertaken (Lamego et al., 2015; Umehara
et al., 2016).
Esters and carbamates of carboxylic acid and hydroxyl functionalities

are generally converted back to their respective active acids or alcohol by
CESs (Beaumont et al., 2003; Ettmayer et al., 2004; Rautio et al., 2008).

Fig. 8. Hydrolysis of irinotecan (A) and dabigatran etexilate
(B) to their pharmacologically active forms by CES.

Fig. 7. Metabolism of allopurinol to oxypurinol by AO.
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Thus, ester derivatives are routinely designed by medicinal chemists to
enhance oral absorption of drugs or to overcome obstacles that hinder the
exposure of a parent drug and therefore its efficacy. Irinotecan represents
a classic example of a prodrug that is activated by CESs (Khanna et al.,
2000). Irinotecan is composed of a topoisomerase I–binding moiety
[SN-38 (7-ethyl-10-hydroxy-camptothecin)], coupled to a piperidino-
piperidine moiety via a carbamoyl link (Fig. 8A). Hydrolysis of the
carbamoyl group by carboxyesterase 2 in the human liver releases the
active moiety SN-38 (Ahmed et al., 1999; Xu et al., 2002). The
anticoagulant dabigatran etexilate is a direct thrombin inhibitor and is
among the more recent examples of approved ester prodrugs (Stangier
et al., 2007). The drug is absorbed as an ester and then the ester and
carbamoyloxy functionality is hydrolyzed to afford the active moiety
dagabitran (Fig. 8B) (Blech et al., 2008; Stangier, 2008).
Prasugrel (Fig. 9A) represents an excellent example that utilizes the

capability of carboxyesterase to hydrolyze esters and to overcome the
obstacle of variability in the pharmacokinetics and clinical response of
its predecessor clopidogrel (Fig. 9B). Both of these drugs are members
of the thienopyridine class of ADP receptor inhibitors that irreversibly
bind to P2Y12 receptors and prevent platelet aggregation (Bernlochner
and Sibbing, 2012). Although both compounds require activation to be
effective, clopidogrel is converted to its thiolactone (the precursor to its
active metabolite) by CYP2C19 in the liver, whereas prasugrel is
converted to its thiolactone via CES2-catalyzed hydrolysis of the acetyl
ester in the intestine (Farid et al., 2010). Furthermore, approximately
85% of clopidogrel is susceptible to hydrolytic cleavage by CES1 in the
liver that converts it to an inactive acid metabolite (Tang et al., 2006;
Farid et al., 2010). The variability observed in the pharmacokinetics of
clopidogrel is therefore attributed to the genetic polymorphism of
CYP2C19 (Farid et al., 2010; Giorgi et al., 2011). The varying efficiency

in the formation of the active metabolite influences the extent of
inhibition of platelet aggregation by clopidogrel and results in ischemic
events in at least 25% of patients despite clopidogrel treatment (Hulot
et al., 2006; Giorgi et al., 2011). In contrast, the 2-oxo-metabolite of
prasugrel is formed via hydrolysis of the acetyl group by carboxyesterase
(CES2) in the intestine. This general non-P450–mediated pathway is less
susceptible to pharmacogenetic variability and drug–drug interactions
that are observed in the case of clopidogrel coadministration with proton
pump inhibitors such as omeprazole (Gilard et al., 2008). Furthermore, a
fraction of the active metabolite of prasugrel resulting from oxidation of

Fig. 10. MAO-catalyzed metabolic activation of sumatriptan (A) or MPTP (B). MPDP+,
1-methyl-4-phenyl-2,3-dihydropyridinium; MPP+, 1-methyl-4-phenylpyridinium

Fig. 9. Metabolism of prasugrel (A) and clopidogrel (B) to their
pharmacologically active metabolites.
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its thiolactone metabolite is formed in the intestine, which leads to rapid
onset of action (Farid et al., 2010).

Monoamine Oxidases

The oxidative metabolism of amine functional groups to aldehydes is
catalyzed by flavin-containing monoamine oxidases (MAOs) (Greenawalt
and Schnaitman, 1970; Kanazawa, 1994). The primary site of metabolism
for MAOs is the brain, where a significant role exists for the enzymes
in the regulation of neurotransmitters (Thorpe et al., 1987). Additional
sites of metabolism include the liver and placenta. Two members of
the family have been characterized (MAO-A and MAO-B), with the
observed substrate and inhibitor pharmacophores differing between the
two enzymes (Youdim et al., 2006). Well characterizedMAO-A ligands
include epinephrine, 5-hydroxytrypamine, and clorgyline (Johnston,
1968). Selective MAO-B ligands include b-phenylethylamine, benzyl
amine, and deprenyl (Cesura et al., 1988). Likewise, sumatriptan (Fig.
10A), a drug used in the treatment ofmigraines, exhibits a bioavailability
of only 14% in humans, which is attributable in part to presystemic

metabolism of the drug by MAO-A (Dixon et al., 1994; Scott, 1994).
Given the predominance of the MAO-A–mediated pathway, the
potential exists for MAO-A inhibitors such as moclobemide to inhibit
sumatriptan metabolism and lead to clinically significant drug–drug
interactions. Attempts have been made to mitigate the MAO-A metab-
olism by designing and developing the next-generation triptans that have
very little contribution of MAO in their elimination (Jhee et al., 2001).
MAO also provides an additional example of an enzyme other than

P450 that has the propensity to catalyze the activation of drugs and
xenobiotics to metabolites that can elicit safety concerns. 1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), the anti-HIV drug abacavir,
and the anticonvulsant drug felbamate represent classic examples in
which metabolism by non-P450 enzymes resulted in severe adverse
reactions. MPTP is formed as an impurity during synthesis of an opioid
analog, 1-methyl-4-phenyl-4-propionoxypiperidine, and has effects similar
to those of morphine. The pathway of metabolic activation involves
MAO-B–mediated oxidation of MPTP into a potent neurotoxin, 1-methyl-
4-phenylpyridinium, via a 1-methyl-4-phenyl-2,3-dihydropyridinium
intermediate (Fig. 10B) (Castagnoli et al., 1985; Chiba et al., 1985a).

Fig. 11. ADH-mediated bioactivation of abacavir (A) and felbamate (B). MCF, monocarbamate felbamate.
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The metabolite is selectively taken up into the dopaminergic cells by a
dopamine uptake transporter, where it accumulates and inhibits mito-
chondrial respiration and destroys dopaminergic neurons, leading to
Parkinson-like symptoms (Chiba et al., 1985b; Maret et al., 1990;
Gerlach et al., 1991).

Alcohol and Aldehyde Dehydrogenases

The family of ADHs encompasses a number of enzymes that
metabolize primary and secondary alcohols to aldehydes and ketones,
whereas ALDHs are a family of enzymes that catalyze the NADP-
dependent oxidation of aldehydes to carboxylic acids (Marchitti et al.,
2008). Perhaps the most well known function of the ADHs is their role
in the metabolism of ethanol, with alterations in the functions of the
enzymes being linked to various physiologic ramifications of alcohol-
ism. From an endogenous standpoint, two key roles for ALDHs are the
conversion of retinaldehyde to retinoic acid, a metabolic conversion that
is involved in the regulation of a host of homeostatic functions, as well as
the metabolism of acetaldehyde, a by-product of ethanol metabolism
(Stagos et al., 2010; Singh et al., 2013). One of the key xenobiotic roles
for ALDH is the bioactivation of nitroglycerin to nitric oxide, resulting
in the drug’s vasodilatory effects (Chen et al., 2002; Wenzl et al., 2011).
Abacavir is a nucleoside reverse transcriptase inhibitor used to

prevent and treat HIV/AIDS. Although abacavir is tolerated in most
patients, hypersensitivity is the main side effect in approximately
4% and is sometimes severe enough to result in death (Hetherington
et al., 2001). Although the primary metabolic routes of abacavir are
O-glucuronidation and formation of an unsaturated carboxylic acid,
the allergic reactions caused by this drug are ascribed to the formation
of a,b-unsaturated aldehyde intermediate, which is formed by ADH-
catalyzed oxidation of the primary alcohol followed by isomerization of
the double bond (Fig. 11A) (Walsh et al., 2002). This can react with
proteins and other macromolecules in a Michael-type mechanism to
form adducts that are possibly immunogenic (Grilo et al., 2013, 2014).

The formation of the aldehyde intermediate was confirmed by trapping it
as an oxime, through the addition of methoxylamine into the incubation
mixture, whereas the role of ADH in the aldehyde formation was con-
firmed when the covalent adducts were blocked by the ADH inhibitor
4-methylpyrazole (Walsh et al., 2002).

Fig. 13. (A) Structures of bupropion and its carbonyl reductase–catalyzed
metabolites. (B) Structure of haloperidol, a substrate of aldo-keto reductase.

Fig. 12. Metabolism of loxoprofen, acetohexamide
and befunolol by carbonyl reductases (A). Stereo-
selective formation of pentoxyfylline metabolites
by carbonyl reductase (B).
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Felbamate, an antiepileptic drug approved in 1993, causes aplastic
anemia and possibly liver toxicity (Pellock, 1999; Pellock et al., 2006).
The adverse event is attributed to the formation of a 2-phenylpropenal
intermediate that can covalently bind to proteins (Dieckhaus et al., 2002;
Kapetanovic et al., 2002; Roller et al., 2002). The bioactivation pathway
leading to this intermediate involves several non-P450 enzymes (Fig.
11B). The first step is the conversion of felbamate to a primary alcohol
(monocarbamate felbamate) intermediate that is formed by esterase- or
amidase-mediated hydrolysis of the carbamate moiety. This undergoes
ADH-catalyzed oxidation to the corresponding aldehyde, followed by
b-elimination of the carbamoyloxy group to afford the offending moiety
(2-phenylpropenal) (Dieckhaus et al., 2000; Kapetanovic et al., 2002).

Epoxide Hydrolases

Epoxide hydrolases are classified into two classes, soluble epoxide
hydrolase and microsomal epoxide hydrolase, and are involved in the
metabolism of epoxides to diols (Harris and Hammock, 2013;
Václavíková et al., 2015). The enzymes are primarily expressed in the
liver, although they can be found in many other tissues throughout the
body (Pacifici et al., 1988; Coller et al., 2001). Microsomal epoxide
hydrolase plays a more prominent role in drug metabolism, whereas
soluble epoxide hydrolase generally regulates the concentrations of
endogenous fatty acid epoxides in the cytosol (McKay et al., 1995).
Furthermore, evidence of microsomal epoxide hydrolase activity at or
near the blood–brain barrier has been reported (Ghersi-Egea et al.,
1994). Carbamazepine, phenobarbital, and phenytoin are three xeno-
biotics with well characterized metabolic pathways involving epoxide
hydrolase, with recent evidence suggesting that single nucleotide
polymorphisms in the microsomal epoxide hydrolase gene EPHX1
influence carbamazepine exposure in vivo (El-Sherbeni and El-Kadi,
2014; Zhu et al., 2014; Daci et al., 2015).

Carbonyl Reductases/Aldo-Keto Reductases

The reduction of carbonyl moieties found in xenobiotics can be
catalyzed by a number of different enzymes, with the carbonyl and
aldo-keto reductases being two of the primary enzyme families involved.
Of key importance is the biologic or pharmacological activity often
conferred by the presence of a carbonyl moiety in a molecule; as such,
the reductases can play a key role in regulating the pharmacological
activity of such molecules (Oppermann, 2007). Carbonyl reductases are
cytosolic enzymes that claim primarily ketone- and quinone-containing
molecules as their substrates (Ris and von Wartburg, 1973). Primary
sites of expression include the liver, central nervous system, and placenta
(Wirth and Wermuth, 1992). Examples of carbonyl reductase substrates
include menadione, doxorubicin, and daunorubicin.
As mentioned above, carbonyl reductase–catalyzed reduction of an

active carbonyl group yields alcohol metabolites that may also
contribute to the overall efficacy of the parent (Malátková and Wsól,
2014). Some examples are loxoprofen (Tanaka et al., 1983; Noguchi
et al., 2005), befunolol (Tohno et al., 1979), and acetohexamide (Fig.
12A) (McMahon et al., 1965). Since reduction is the primary pathway
for these drugs, their potency in humans is related to their respective
alcohol metabolite (Ohara et al., 1995). Pentoxifylline (Fig. 12B) is
another example in which reduction of the keto group in the molecule
leads to a mixture of secondary alcohol metabolites (R- and S-
enantiomers) (Lillibridge et al., 1996). The S-enantiomer is the major
circulating metabolite and exhibits pharmacological activity that is
similar to that of the parent; in contrast, the R-isomer (also called
lisofylline) has completely distinct pharmacological properties (Yang
et al., 2005).

Similar to what was noted for acyl glucuronide inhibitors of CYP2C8,
other non-P450s that play a role in catalyzing functionalization reactions
(phase I reactions) have also produced metabolites that inhibit P450.
For instance, inhibition of CYP2D6 by bupropion in the clinic and
in vitro is partially attributed to threo-hydrobupropion and erythro-
hydrobupropionmetabolites (Fig. 13A) formed from carbonyl reductase–
catalyzed reduction of the keto group (Reese et al., 2008). These reduced
products have 4- and 12-fold lower inhibition constant values for
CYP2D6, respectively, compared with the parent bupropion. Similarly,
Shin et al. (2001) have shown that a reduced haloperidol metabolite
(a carbonyl reductase mediated metabolite of haloperidol) is a more
potent inhibitor of CYP2D6 compared with haloperidol (Fig. 13B).
In an analogous fashion, the aldo-keto reductase family utilizes

NADPH in the metabolism of aldehydes and ketones to the resulting
alcohol derivative, which can subsequently undergo phase II metabolism
to facilitate elimination. Well known substrates of aldo-keto reductases
include 4-hydroxynonenal, oracin, metyrapone, haloperidol, and war-
farin (Barski et al., 2008). A significant number of crystal structures for
this family of enzymes have been solved, allowing for an in-depth
understanding of the structural features that confer their ligand binding
properties.

Conclusions

The characterization of the metabolic pathways for a given drug is a
cornerstone in the discovery and development process of pharmaceutical
compounds. A number of key historical and recent examples, primarily
of a non-P450 nature, were presented in this commentary as a backdrop
to the research included in this special section. Moving forward, an
increased understanding of P450 and non-P450 enzymology, together
with the development of new in vitro and in vivo tools to characterize
these pathways, should allow for more complete assessments of the
metabolic pathways of novel therapeutics at earlier stages of their
development process. The likely outcome of such an assessment may be
themitigation of some of the late-stage drug interactions or toxicological
findings that occur as a result of non-P450 metabolism. Ultimately, the
expanded knowledge base should serve to provide more efficient and
scientifically robust approaches to the rational design of safer and more
efficacious drugs.
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