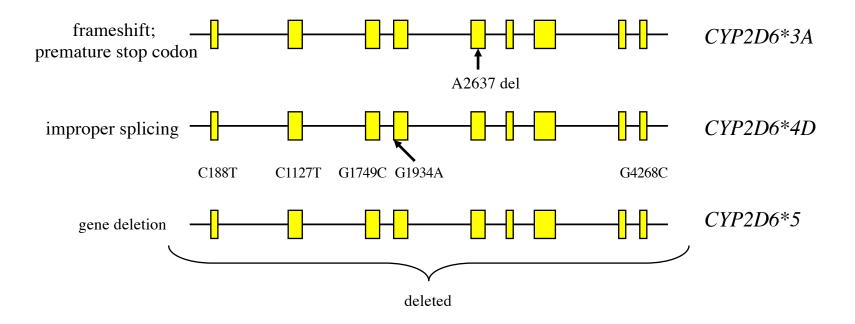

MEDCH 527

Pharmacogenomics of DMEs: PGEN II

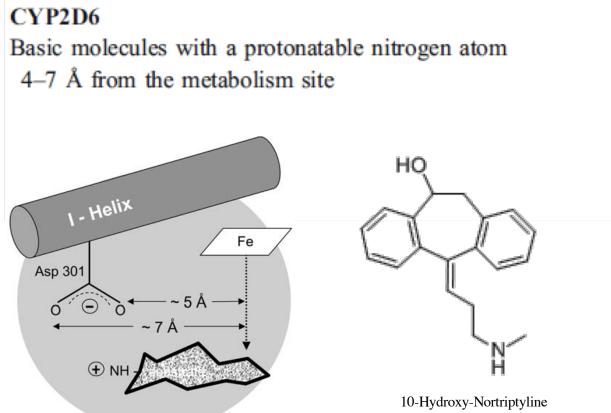
CYP2D6, CYP2C19, CYP2C9

CPIC gene-drug pairs https://cpicpgx.org/genes-drugs/


- CPIC level A denotes a situation where 'genetic information <u>should</u> be used to change prescribing of the affected drug'.
- CPIC level B denotes a situation where 'genetic information <u>could</u> be used to change prescribing of the affected drug because alternative therapies/dosing are extremely likely to be as effective and as safe as nongenetically based dosing'.
- 142 priority (level A or level B) gene-drug pairs, most of which are considered to be 'clinically actionable'.
- ~50 of these gene-drug pairs involve **CYP2D6**, **CYP2C19** or **CYP2C9**!

Selected CPIC drug-gene pairs

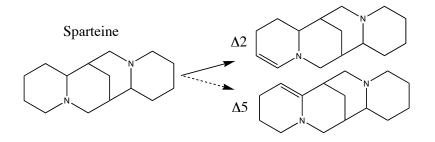
CYP2D6	tamoxifen	Guideline	А	1A	Testing required
CYP2D6	nortriptyline	<u>Guideline</u>	А	1A	Actionable PGx
CYP2D6	codeine	<u>Guideline</u>	А	1A	Actionable PGx
CYP2C19	clopidogrel	Guideline	А	1A	Actionable PGx
CYP2C9	warfarin	Guideline	А	1A	Actionable PGx
VKORC1	warfarin	Guideline	А	1A	Actionable PGx
CYP4F2	warfarin	Guideline	А	1A	


CYP2D6 Polymorphism

• At least 9 null mutations are known, but just three (2D6*3, 2D6*4 and 2D6*5) account for most of the poor metabolizers – PM phenotype (phenotype = observable characteristic).

- 'Wild-type' genotype(s) correspond to extensive metabolizers (EMs).
- Other phenotypes: ultra-rapid metabolizers (UMs), intermediate metabolizers (IMs)

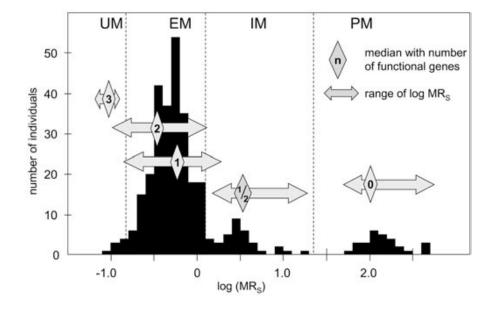
Common CYP2D6 Substrates



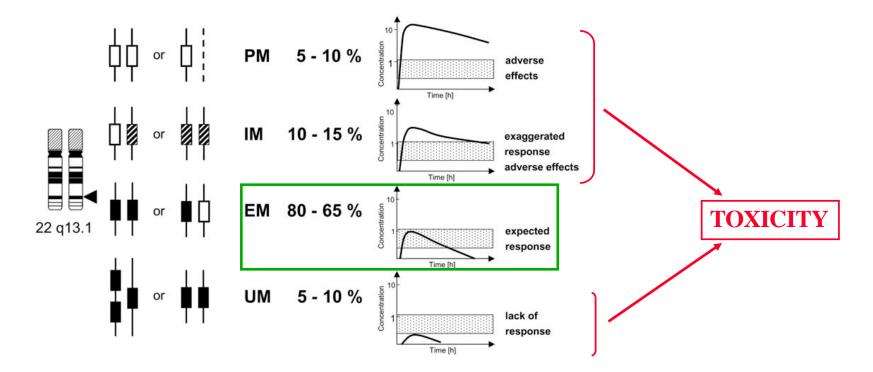
Bufuralol Dextromethorphan Haloperidol Metoprolol Propafenone Risperidone Imipramine

Nortiptyline- tricyclic
antidepressant
- very low therapeutic index
- coma, convulsions,
cardiotoxicity in overdose

Polymorphism was discovered serendipitously (late 70s) as adverse drug reactions to the antihypertensive, debrisoquine and the oxytocic agent, sparteine.


Relating Genotype to (Metabolic Ratio) Phenotype for CYP2D6

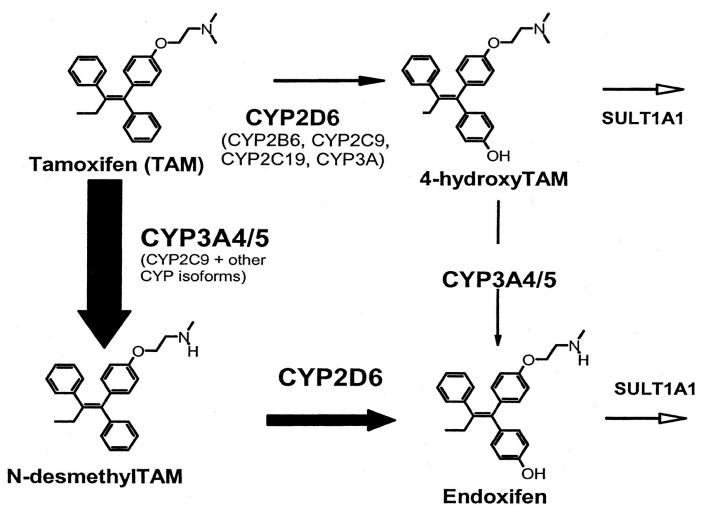
• Sparteine is metabolized by CYP2D6 to the $\Delta 2$ and $\Delta 5$ dehydrosparteine metabolites


- The urinary ratio of parent drug to metabolites provides a quantitative index of CYP2D6 function
- The data in any given population reflects a multimodal distribution of CYP2D6 activity due to the inheritance of 0 - 3+ functional genes.

Sparteine Metabolic Ratio =	Sparteine (in urine)
(MR)	$\Delta 2 + \Delta 5$ metabolites

Zanger et al., Naunyn Schmied. Arch. Pharmacol., (2004)

Predicted Effect of CYP2D6 Allelic Variation on Pharmacodynamics



At 'standard' drug doses (ie those normalized for EMs);

- PMs and IMs might be expected to exhibit exaggerated or toxic drug responses

- UMs might be expected to exhibit loss of therapeutic benefit

Biotransformation of Tamoxifen and its Metabolites

Jin, Y. et al. J. Natl. Cancer Inst. 2005 97:30-39; doi:10.1093/jnci/dji005

• 4-OHT is 30-100-fold more potent than Tamoxifen

• Endoxifen similar in potency to 4-OHT and plasma levels are 6-10x higher

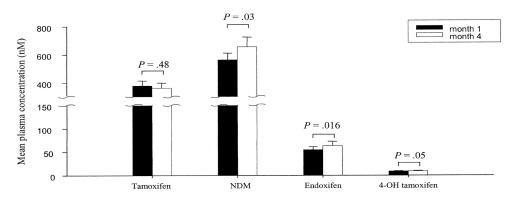
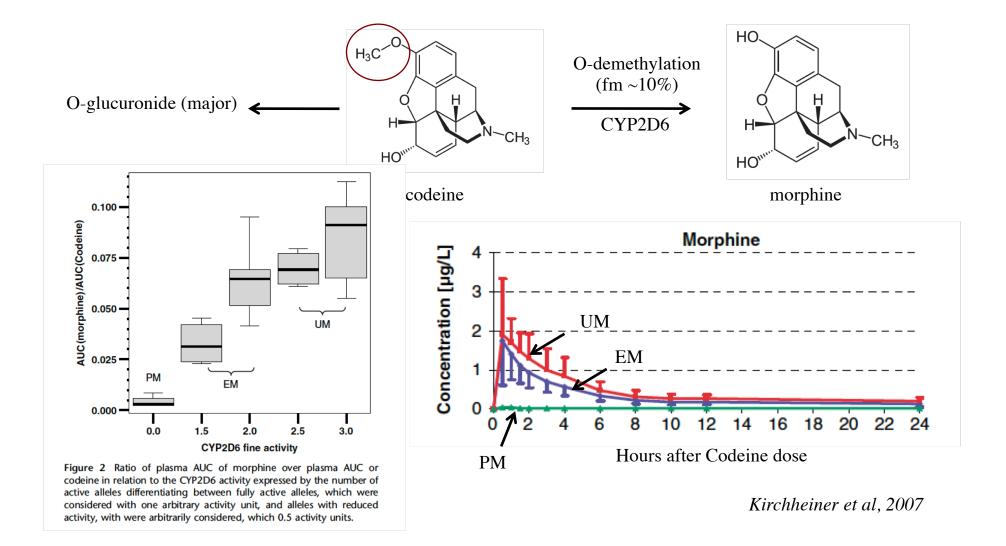



Table 2. Plasma concentrations of tamoxifen and its metabolites at 4 months of tamoxifen therapy in subjects with CYP2D6, CYP2C9, CYP3A5, and SULT1A1 genotype*

Genotype group	Ν	Endoxifen	4-Hydroxytamoxifen	N-desmethyltamoxifen	Tamoxifen
CYP2D6 Wt/Wt	48	78.0 (65.0 to 00.1)	$0.5(8.4 \pm 0.106)$	(52 4 (562 5 to 744 2)	272 5 (221 2 to 422 8)
Wt/Vt†	48 29	78.0 (65.9 to 90.1) 43.1 (33.3 to 52.9)	9.5 (8.4 to 10.6) 8.3 (6.7 to 9.9)	653.4 (562.5 to 744.3) 687.3 (570.6 to 804.0)	372.5 (321.2 to 423.8) 353.3 (301.2 to 405.4)
Vt/Vt‡	3	20.0 (11.1 to 28.9)	7.1 (1.2 to 13.0)	664.1 (298.7 to 1029.5)	288.9 (172.9 to 404.9)
P	5	<.001	.86	.62	.92
CYP2C9					
Wt/Wt	55	63.4 (52.1 to 74.7)	8.9 (7.8 to 10.0)	648.3 (560.8 to 735.8)	349.8 (257.4 to 442.2)
Vt§	25	62.7 (47.6 to 77.8)	9.2 (7.4 to 11.0)	670.0 (555.7 to 784.3)	391.6 (335.2 to 448.0)
Р		.87	.81	.90	.34
CYP3A5					
*1/**	17	82.0 (56.2 to 107.8)	9.7 (7.3 to 12.1)	655.3 (474.6 to 836.0)	402.3 (290.5 to 514.1)
*3/*3¶	63	58.1 (49.3 to 66.9)	8.7 (7.7 to 9.7)	654.8 (579.8 to 729.8)	352.4 (316.9 to 387.9)
P		.09	.57	.99	.98
SULT1A1					
*1*1	36	59.1 (46.4 to 71.8)	8.9 (7.4 to 10.4)	668.9 (572.2 to 765.6)	360.2 (307.1 to 413.3)
*1*2	38	65.1 (50.9 to 79.3)	8.8 (6.4 to 11.2)	667.6 (558.4 to 776.8)	377.0 (321.8 to 432.2)
*2*2	6	74.9 (47.2 to 102.6)	10.3 (5.7 to 14.9)	493.0 (37.1 to 948.9)	286.7 (177.6 to 395.8)
Р		.73	.83	.58	.98

CYP2D6: Conversion of Codeine to Morphine

Ethnic Variation in CYP2D6 Mutation Frequencies

Variant Mutation F		Phenotype		Allele Frequencies		
			White	Asian	Black African	Ethiopean/ Saudi
2D6*2xN	gene duplication	UM	1-5	0-2	2	10-16
<i>CYP2D6*4</i>	defective splicing	РМ	12-21	1	2	1-4
CYP2D6*5	gene deletion	РМ	2-7	6	4	1-4
CYP2D6*10	P34S, S486T	IM	1-2	51	6	3-9
CYP2D6*17	T107I, R296C, S486T	IM	0	ND	34	3-9

http://www.imm.ki.se/cypalleles/

CYP2C19 Polymorphism

- First detected from unusual response to anti-epileptic drug, mephenytoin (dysphoria/sedation)
- 3-6% of Whites and African Americans, but up to 25% of Chinese/Japanese/Koreans are PMs
- Common true null mutations leading to PM status arise from the *2 (681G>A) and *3 (636G>A) alleles (below)
- *CYP2C19*17* (-806C>T) is a common gain of function allele, associated with increased expression of enzyme

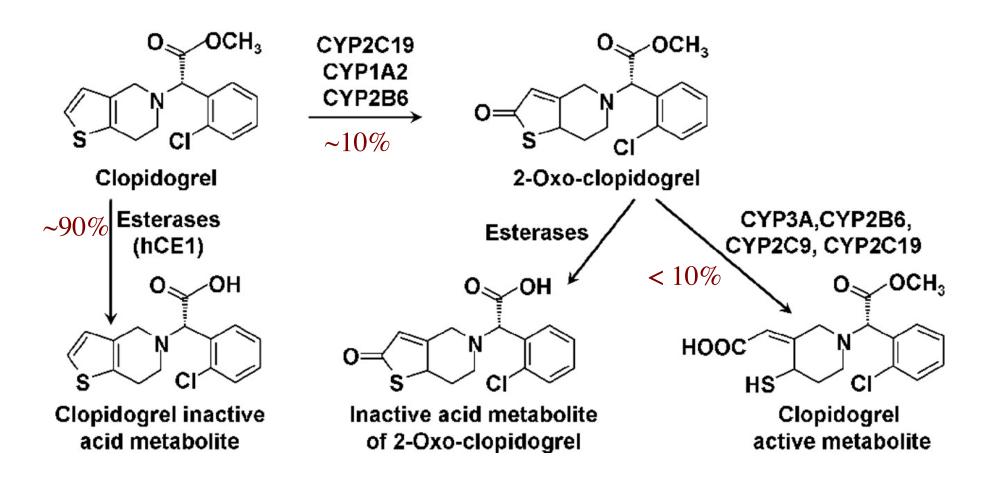
c.G681A	Exon 5	c.G636A	Exon 4
CYP2C19*1	Ile Cys ctt <u>ag</u> ATA TGCGGGAA	CYP2C19*1	Pro Trp Ile Gln CCC TGG ATC CAG gta
CYP2C19*2	Glu cttag atatgc <u>ag</u> GAA	CYP2C19*3	Pro Stop CCC <u>TGA</u> ATC CAG gta
	iding acceptor site creates a 40 bp deletion from premature stop 20 aa downstream in new exon-5)	(Truncation	of protein at aa 211 - loss of heme/substrate binding domains)

CYP2C19 Alleles: Phenotypes and Ethnic Differences

Table 1 Minor allele frequencies of common *CYP2C19* biomarkers (A) and associated metabolic phenotypes defined by Clinical Pharmacogenetics Implementation Consortium guidelines for individuals receiving clopidogrel [8] (B).

.

SNP	Minor allele frequency			
	Caucasian	African	Asian	
CYP2C19*2	0.133	0.169	0.308	
CYP2C19*3	0.00	0.021	0.058	
CYP2C19*17	0.208	0.271	<0.02	
В				
	CYP2C19*1	CYP2C19*2	CYP2C19*3	CYP2C19*17
CYP2C19*1	*1/*1(wt)	*1/*2	*1/*3	*1/*17
	Extensive metabolizer	Intermediate metabolizer	Intermediate metabolizer	Ultra-rapid metabolize
CYP2C19*2		*2/*2	*2/*3	*2/*17
		Poor metabolizer	Poor metabolizer	Unknown metabolizer
CYP2C19*3			*3/*3	*2/*17
			Poor metabolizer	Unknown metabolizer
CYP2C19*17				*17/*17
				Ultra-rapid metabolize

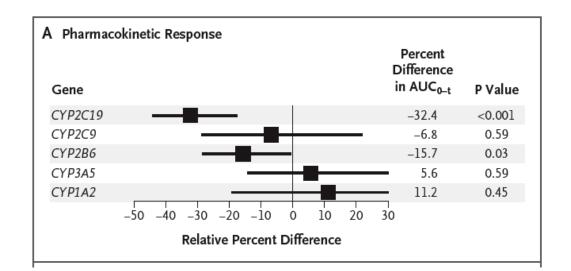

Frequencies are based on the 1000 Genomes Project at http://browser.1000genomes.org or HapMap at http://hapmap.ncbi.nlm.nih.gov/.

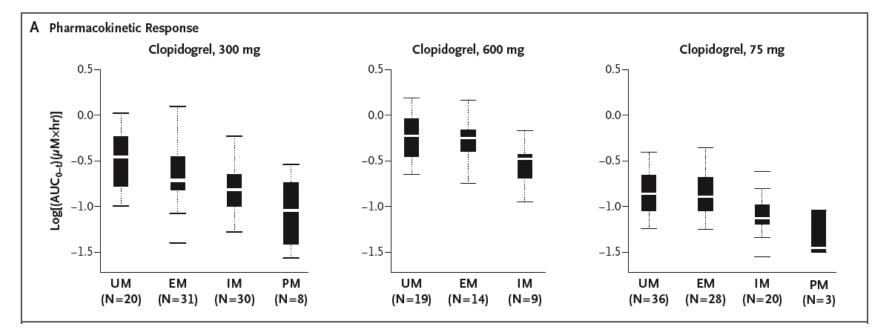
CYP2C19 Substrates

Drug	Drug class and therapeutic effect
Clopidogrel	Antiplatelet
Escitalopram	Antidepressant
Nelfinavir	Antiviral
Mephenytoin	Anticonvulsant (used as probe drug)
Omeprazole Lansoprazole	Proton pump inhibitor; antacid
Cyclophosphamide Teniposide	Cytotoxic agent
Amitriptyline Citalopram Clomipramine Moclobemide sertraline	Antidepressant
Tamoxifen	Anti-oestrogen
Voriconazole	Antifungal
Proguanil	Antimalarial
Propranolol	β-Blocker
Diazepam	Anxiolytic agent

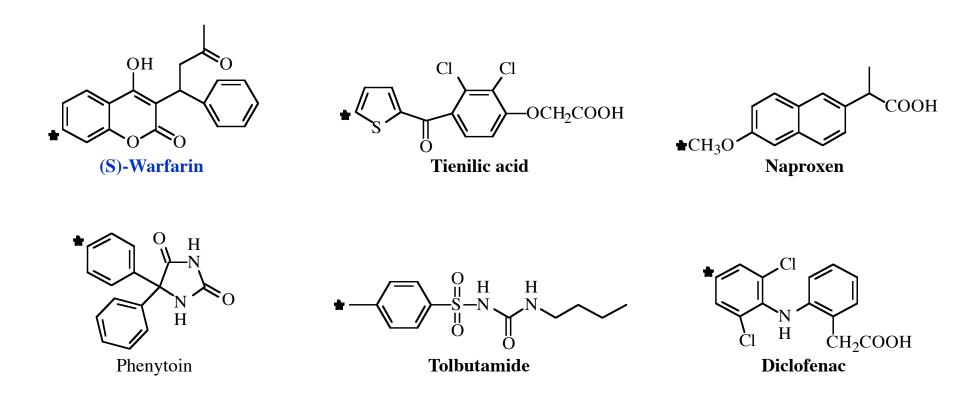
Other enzymes may be more important than CYP2C19 in the metabolism of these substrates (e.g. CYP2D6 for tamoxifen).

Li-Wan-Po et a/. *BJCP* 69:222-230 (2010)




• Clopidogrel is well-absorbed, but undergoes extensive first-pass metabolism; primarily in the liver and the "inactivation pathway dominates.

Farid et al, J Clin Pharmacol, 2010


Strong association with between clopidogrel response and CYP2C19 polymorphisms plus graded response to gene-dose of inactivating alleles.

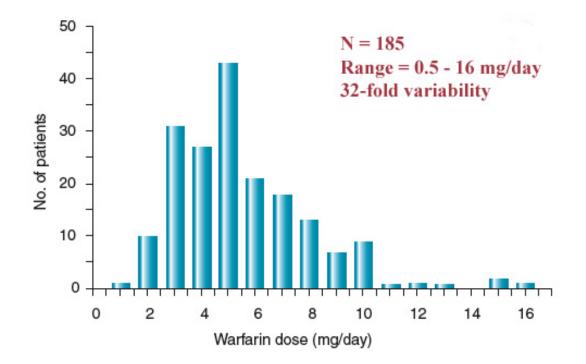
Mega et al. *NEJM* (2009)

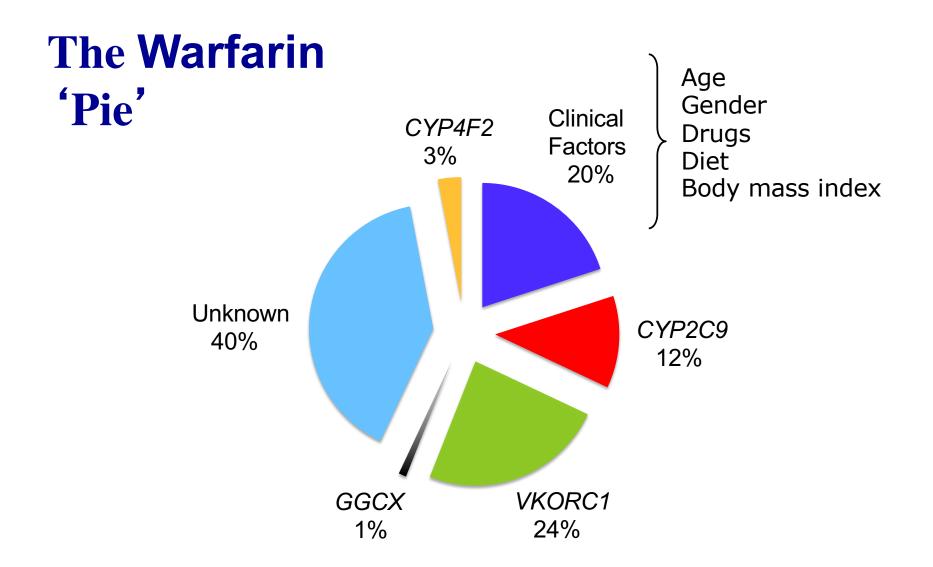
Common CYP2C9 Substrates

★ Position metabolized

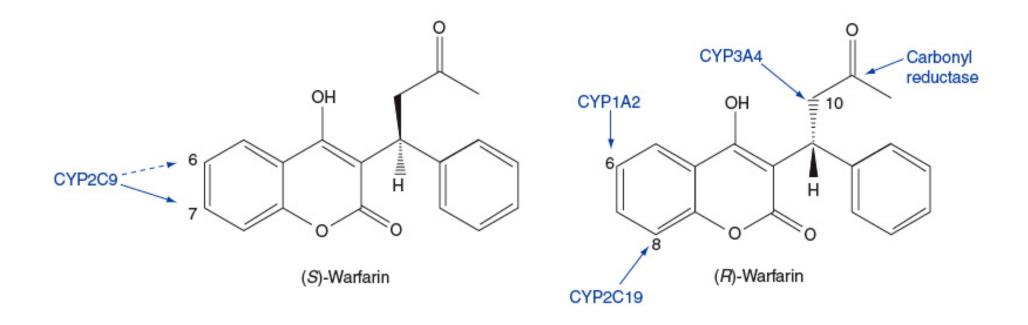
CYP2C9 Alleles

• Currently, >30 coding-region variants of CYP2C9 are listed on the P450 Allele Website, about half of which appear to be functionally defective.


• In Caucasians, the most common functionally defective alleles are CYP2C9*2 (R144C) and CYP2C9*3 (I359L), with allele frequencies of ~ 12% and 8%, respectively.

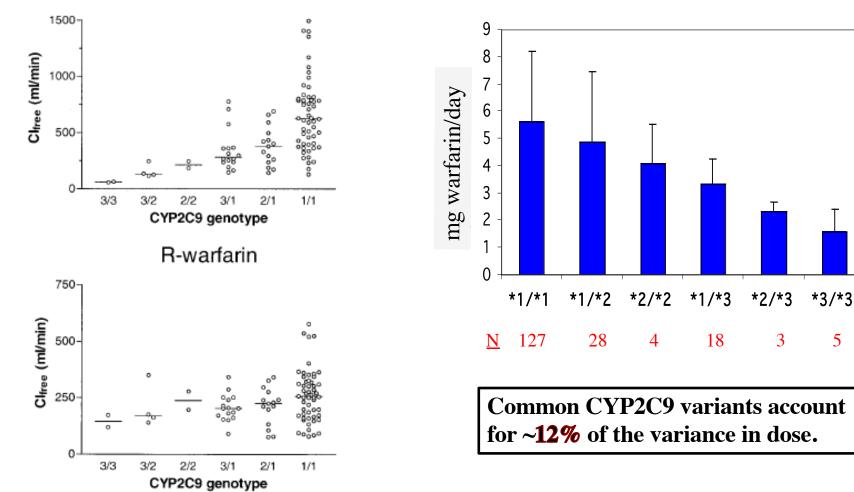

• In African-Americans, *CYP2C9*5* (D360E) and *CYP2C9*11* (R335W) are the main functionally defective coding-region variants (2-3%), although both *2 and *3 are also found.

• In Asians, *CYP2C9*3* and *CYP2C9*13* are functionally defective coding-region variants (2-3%) and <u>*CYP2C9*2* is absent</u>.


Warfarin Therapy can be Difficult to Manage

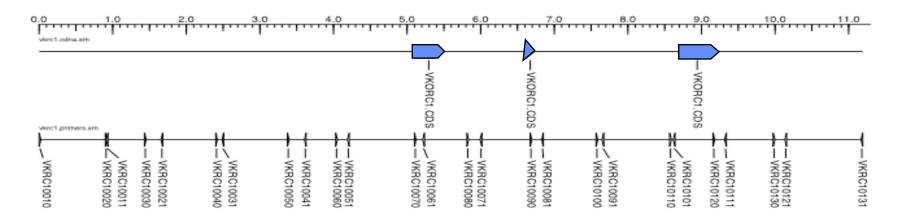
- Black Box warning: Warfarin can cause major or fatal bleeding.
- Narrow therapeutic range: INR > 4 vs INR 2-3
- Warfarin was the 'Culprit' in 43,000 ER visits in US in 2004-05
- Drug-drug and drug-diet interactions
- Wide inter-individual variability in response

Enzymes Involved in the Metabolic Clearance of Warfarin



Thijjsen et al., 1988, Rettie et al., (1992), Kunze et al., 1996, Wienkers et al., 1996

Effect of CYP2C9 Genotype on Warfarin Dose and Clearance

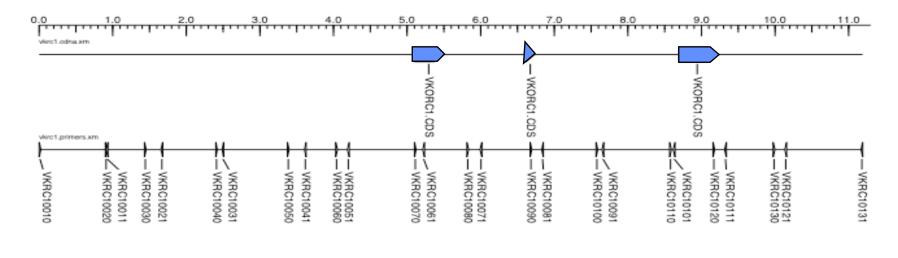

Scordo et al., Clin.Pharm.Ther (2002), Higashi et al., JAMA (2002)

5

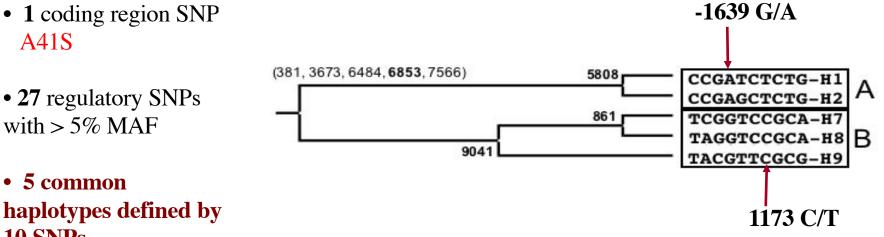
S-warfarin

VKORC1 Re-Sequencing

• 27 regulatory SNPs > 5% MAF

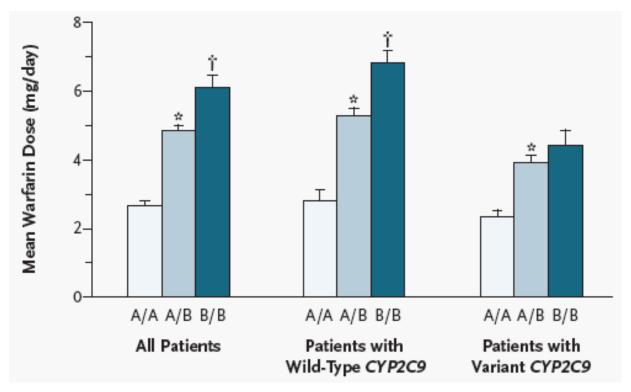

5 common haplotypes defined by 10 SNPs

Rieder et al., NEJM (2005)


Rieder	Alleles	Standard-	Genome	rs# (dbSNP)	Gene
-	(Rieder)	coordinate	Coordinate		location
coord.			(hg17-chr16)		
381*	T/C	-4931	31018482	rs7196161	5' Flanking
861	C/A	-4451	31018002	rs17880887	5' Flanking
2653	G/C	-2659	31016210	rs17881535	5' Flanking
3673*	G/A	-1639	31015190	rs9923231	5' Flanking
5808	T/G	497	31013055	rs2884737	Intron 1
6009	C/T	698	31012854	rs17708472	Intron 1
6484*	C/T	1173	31012379	rs9934438	Intron 1
6853*	G/C	1542	31012010	rs8050894 (TaqMan-ABI)	Intron 2
7566*	C/T	2255	31011297	rs2359612 (TaqMan-ABI)	Intron 2
9041	G/A	3730	31009822	rs7294 (TaqMan-ABI)	3' UTR

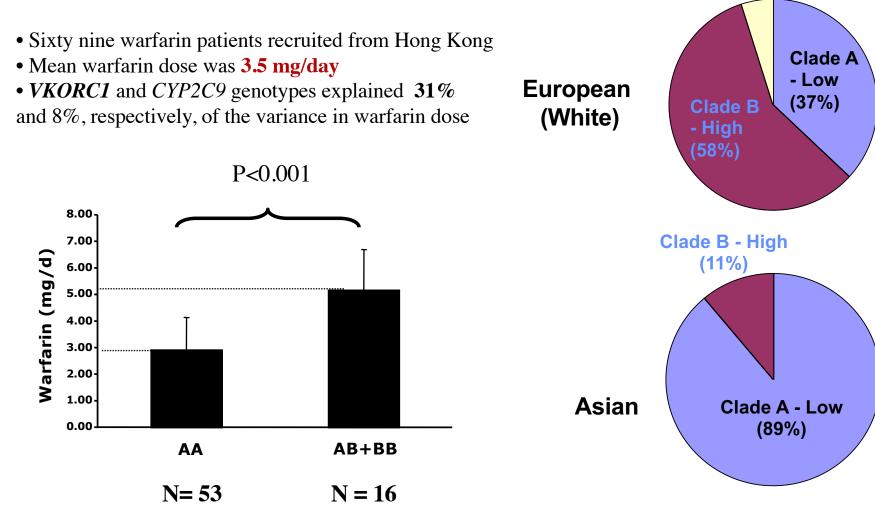
* All in strong LD (r2 > 0.9) – These SNPs are the most important SNPs to test

• 1 coding region SNP A41S



• 5 common haplotypes defined by

with > 5% MAF

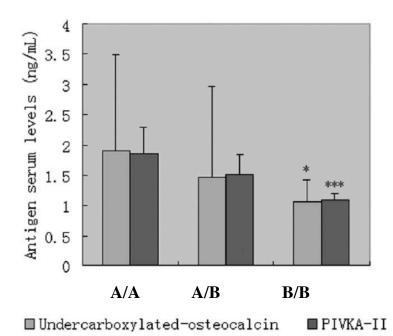

10 SNPs

VKORC1 Genotype Shows a Strong Association with Warfarin Dose

- Virtually identical data obtained in a replication cohort of European descent (n = 340)
- *VKORC1* genotype accounts for $\sim 25\%$ of the variance in warfarin dose
- NB much less of the variance accounted for in African-Americans by *VKORC1* (4-5%) Schelleman et al., (2007); Limdi et al., (2008).

VKORC1 Effect on Warfarin Response in Asians

Veenstra et al., Clin. Pharm. Ther. (2005)

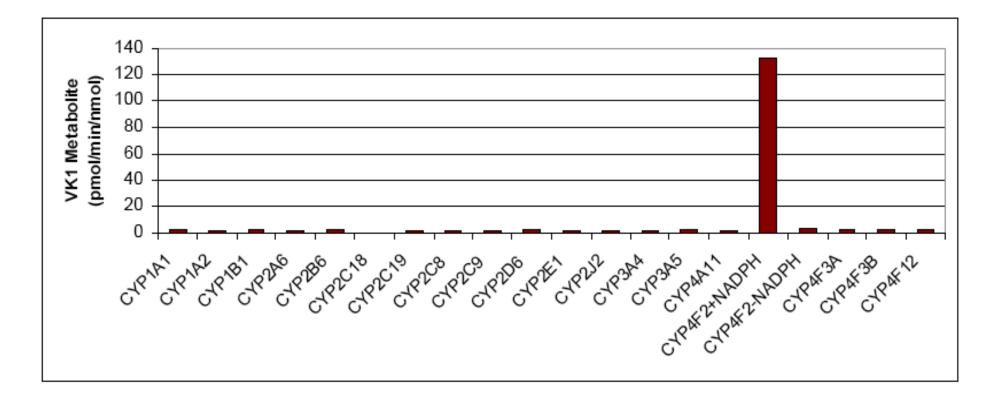

Other

* P<0.05 for comparison between A/A and B/B groups

Correlation between VKORC1 Genotype and UC-Osteocalcin

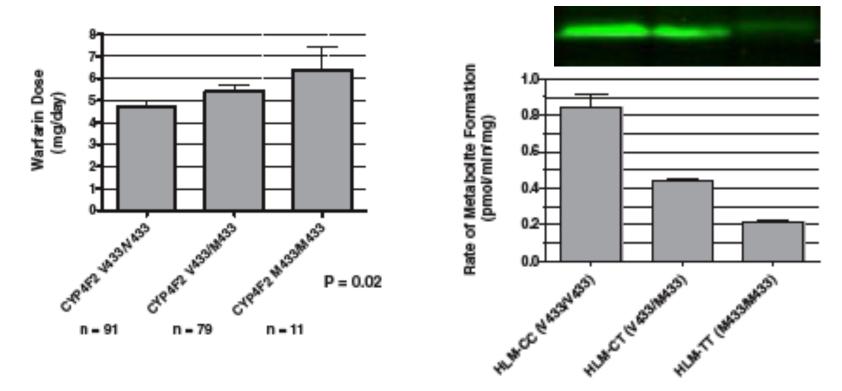
* P<0.05 for comparison between A/A and B/B groups

 VKORC1 haplotypes control mRNA expression of the warfarin target protein and correlate with the extent of Gla modification.


Rieder et al., NEJM (2005); Wang et al., Circulation (2005)

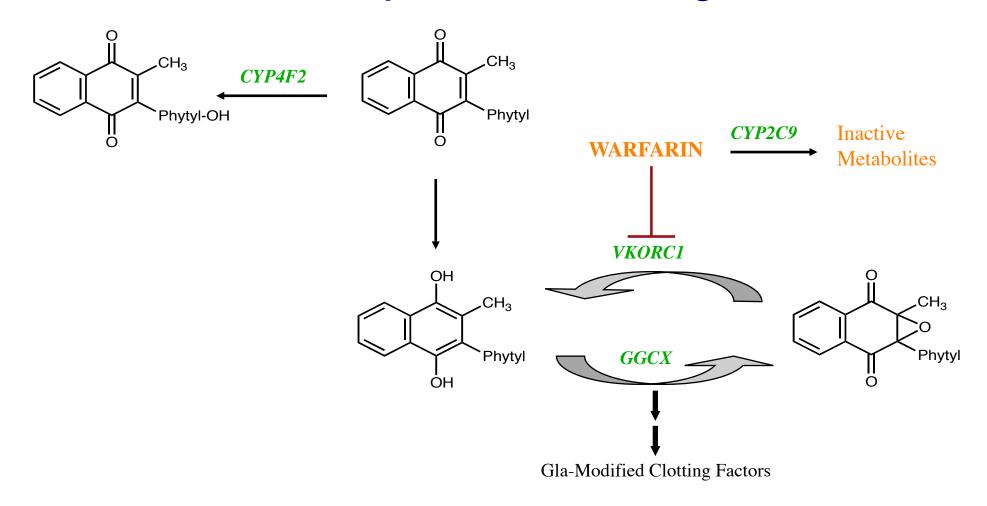
Genome Wide Association Studies Identify only VKORC1, CYP2C9 and CYP4F2 as Significant Contributors to Variability in Warfarin Dose

Takeuchi et al., PLoS Genet. (2009)


CYP4F2 Hydroxylates Vitamin K1

CYP4F11 is a second P450 that can metabolize vitamin K

McDonald et al., Mol. Pharmacol. (2009), Edson et al., unpublished


Effect of CYP4F2 V433M on Warfarin Dose, Microsomal Activity and Protein Expression

• The 433M allele increases warfarin dose by reducing microsomal vitamin K catabolism 2° to altered protein stability.

McDonald et al., Mol. Pharmacol. (2009)

Vitamin K Cycle-Associated Genes that Impact Warfarin Dosing

