FD U.S. Food and Drug Administration

Home > Drugs > Development & Approval Process (Drugs) > Development Resources

Drugs

Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers

- CYP Enzymes
- In vitro
- In vivo
- Examples of in Vivo Substrate, Inhibitor, and Inducer for Specific CYP Enzymes for Study (oral administration)
- Classification of Inhibitors
- Classification of Substrates
- P-gp Transporters
- Major Human Transporters

CYP Enzymes

In vitro

Table 1: Chemical inhibitors for in vitro experiments* (9/25/2006)

СҮР	Inhibitor ⁽¹⁾ Preferred	Ki (μM)	Inhibitor ⁽¹⁾ Acceptable	Κi (μΜ)
1A2	furafylline ⁽²⁾	0.6-0.73	a -naphthoflavone	0.01
2A6	tranylcypromine methoxsalen ⁽²⁾	0.02-0.2 0.01-0.2	pilocarpine tryptamine	4 1.7 ⁽³⁾
2B6			3-isopropenyl-3-methyl diamantane (4) 2-isopropenyl-2-methyl adamantane (4) sertraline phencyclidine triethylenethiophosphoramide (thiotepa) clopidogrel ticlopidine	2.2 5.3 3.2 ⁽⁵⁾ 10 4.8 0.5 0.2
2C8	montelukast quercetin	1.1	trimethoprim gemfibrozil rosiglitazone pioglitazone	32 69-75 5.6 1.7
2C9	sulfaphenazole	0.3	fluconazole fluvoxamine fluoxetine	7 6.4-19 18-41
2C19			ticlopidine nootkatone	1.2 0.5
2D6 2E1	quinidine	0.027-0.4	diethyldithiocarbamate clomethiazole diallyldisulfide	9.8-34 12 150
3A4/5	ketoconazole itraconazole	0.0037- 0.18 0.27, 2.3	azamulin troleandomycin verapamil	⁽⁶⁾ 17 10, 24

* Note that this is not an exhaustive list which was created May 1, 2006.

1. Substrates used for inhibition studies include: **CYP1A2**, phenacetin-o-deethylation, theophylline-N-demethylation; **CYP2A6**, coumarin-7-hydroxylation; **CYP2B6**, 7-pentoxyresorufin-O-depentylation, bupropion hydroxylation, 7-ethoxy-4-(trifluoromethyl)-coumarin O-deethylation, S-mephenytoin-N-demethylation; Bupropion-hydroxylation; **CYP2C8**, taxol 6-alpha-hydroxylation; **CYP2C9**, tolbutamide 4-methylhydroxylation, S-warfarin-7-hydroxylation, phenytoin 4-hydroxylation; **2CYP2C19**, (S)-mephenytoin 4-hydroxylation **CYP2D6**, dextramethorphan O-demethylation, desbrisoquine hyddroxylase; **CYP2E1**, chlorzoxazone 6-hydroxylation, aniline 4-hydroxylase; **CYP3A4/5**, testosterone-6β-hydroxylation, midazolam-1-hydroxylation; cyclosporine hydroxylase; nefedipine dehydrogenation.

- 2. Furafylline and methoxsalen are mechanism-based inhibitors and should be pre-incubated before adding substrate.
- 3. cDNA expressing microsomes from human lymphoblast cells.
- 4. Supersomes, microsomal isolated from insect cells transfected with baculovirus containing CYP2B6.
- 5. IC50 values.
- 6. Specific time-dependent inhibitor.

Table 2. Preferred an	d acceptable chemical	substrates for in vitro	experiments*	(9/25/2006)
-----------------------	-----------------------	-------------------------	--------------	-------------

CYP	Substrate	Km	Substrate	Km
	Preferred	(µM)	Acceptable	(µM)
1A2	phenacetin-O-deethylation	1.7-152	7-ethoxyresorufin-O-deethylation	0.18-0.21
			theophylline-N-demethylation	280-1230
			caffeine-3-N-demethylation	220-1565
			tacrine 1-hydroxylation	2.8, 16
2A6	coumarin-7-hydroxylation	0.30-2.3	3	
	nicotine C-oxidation	13-162		
2B6	efavirenz hydroxylase	17-23	propofol hydroxylati on	3.7-94
	bupropion-hydroxylation	67-168	S-mephenytoin-N-demethylation	1910
2C8	Taxol 6-hydroxylation	5.4-19	amodiaquine N-deethylation	2.4,
			rosiglitazone para-hydroxylation	4.3-7.7
2C9	tolbutamide methyl-hydroxylation	67-838	flurbiprofen 4'-hydroxylation	6-42
	S-warfarin 7-hydroxylation	1.5-4.5	phenytoin-4-hydroxylation	11.5-117
	diclofenac 4'-hydroxylation	3.4-52		
2C19	S-mephenytoin 4'-hydroxylation	13-35	omeprazole 5-hydroxylation	17-26
			fluoxetine O-dealkylation	3.7-104
2D6	(±)-bufuralol 1'-hydroxylation	9-15	debrisoquine 4-hydroxylation	5.6
	dextromethorphan O-demethylation	10.44-8.5	5	
2E1	chlorzoxazone 6-hydroxylation	39-157	p-nitrophenol 3-hydroxylation	3.3
			lauric acid 11-hydroxylation	130
			aniline 4-hydroxylation	6.3-24
3A4/5**	*midazolam 1-hydroxylation	1-14	erythromycin N-demethylation	33 - 88
			dextromethorphan N-demethylation	า133-710
			triazolam 4-hydroxylation	234
	testosterone 6 b -hydroxylation	52-94	terfenadine C-hydroxylation	15
			nifedipine oxidation	5.1-47

* Note that this is not an exhaustive list (created May 1, 2006).

** Recommend use of 2 structurally unrelated CYP3A4/5 substrates for evaluation of in vitro CYP3A inhibition. I the drug inhibits at least one CYP3A substrate in vitro, then in vivo evaluation is warranted.

Table 3. Chemical Inducers for In Vitro Experiments* (5/1/2006)

СҮР	Inducer ⁽¹⁾ -Preferred	Inducer Concentrations (µM)	Fold Induction	Inducer ⁽¹⁾ -Acceptable	Inducer Concentrations (µM)	Fold Induction
1A2	omeprazole	25-100	14-24	lansoprazole	10	10
	β-naphthoflavone ⁽²⁾	33-50	4-23			
	3-methylcholanthren	e1,2	6-26			
2A6	dexamethasone	50	9.4	pyrazole	1000	7.7
2B6	phenobarbital	500-1000	5-10	phenytoin	50	5-10
2C8	rifampin	10	2-4	phenobarbital	500	2-3
2C9	rifampin	10	3.7	phenobarbital	100	2.6
2C19	Prifampin	10	20			
2D6	none identified					
2E1	none identified					

3A4 rifampin ⁽³⁾	10-50	4-31	phenobarbital ⁽³⁾ phenytoin rifapentine troglitazone taxol dexamethasone ⁽⁴	100-2000 50 50 10-75 4 4)33-250	3-31 12.5 9.3 7 5.2 2.9- 6.9
-----------------------------	-------	------	--	--	---

- 1. Except for the cases noted below, the following test substrates were used: CYP1A2, 7-ethoxyresorufin; CY 2A6, coumarin; CYP2C9, tolbutamide, CYP2C19, S-mephenytoin; CYP3A4, testosterone.
- 2. CYP1A2: 1 of 4 references for b -naphthoflavone used phenacetin.
- 3. CYP3A4: 2 of 13 references for rifampin and 1 of 3 references for phenobarbital used midazolam.
- 4. CYP3A4: 1 of the 4 references for dexamethasone used nifedipine.

In vivo

Table 4. Examples of in vivo substrate, inhibitor, and inducer for specific CYP enzymes for study (oral administration) $^{(1)}$ * (5/1/2006)

CYP	Substrate	Inhibitor	Inducer
1A2	theophylline, caffeine	fluvoxamine	smokers versus
2B6 2C8 2C9	efavirenz repaglinide, rosiglitazone warfarin, tolbutamide	gemfibrozil fluconazole, amiodarone	non-smokers ⁽²⁾ rifampin rifampin rifampin
	- ,	(use of PM versus EM subjects) ⁽³⁾	- 1-
2C19	omeprazole, esoprazole,	omeprazole, fluvoxamine, moclobemide	rifampin
	lansoprazole, pantoprazole	(use of PM versus EM subjects) ⁽³⁾	
2D6	desipramine,	paroxetine, quinidine, fluoxetine	none identified
	dextromethorphan, atomoxetine	(use of PM versus EM subjects) $^{(3)}$	
2E1	chlorzoxazone	disulfirum	ethanol
3A4/ 3A5	midazolam, buspirone, felodipine, lovastatin, eletriptan, sildenafil,	atazanavir, clarithromycin, indinavir, itraconazole, ketoconazole, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin	rifampin, carbamazepine
	simvastatin, triazolam		

* Note that this is not an exhaustive list (created May 1, 2006).

- Substrates for any particular CYP enzyme listed in this table are those with plasma AUC values increased by 2-fold or higher when co-administered with inhibitors of that CYP enzyme; for CYP3A, only those with plasma AUC increased by 5-fold or higher are listed. Inhibitors listed are those that increase plasma AUC values of substrates for that CYP enzyme by 2-fold or higher. For CYP3A inhibitors, only those that increase AUC of CYP3A substrates by 5-fold or higher are listed. Inducers listed are those that decrease plasma AU values of substrates for that CYP enzyme by 30% or higher.
- 2. A clinical study can be conducted in smokers as compared to non-smokers (in lieu of an interaction study with an inducer), when appropriate.
- 3. A clinical study can be conducted in poor metabolizers (PM) as compared to extensive metabolizers (EM) for the specific CYP enzyme (in lieu of an interaction study with an inhibitor), when appropriate.

Classification of Inhibitors

Table 5. Classification of CYP3A inhibitors $*^{(1)}$ (5/1/2006)						
Strong CYP3A inhibitors	Moderate CYP3A inhibitors	Weak CYP3A inhibitors				
≥ 5-fold increase in AUC	\geq 2 but <5-fold increase in AUC	≥ 1.25 but <2-fold increase in AUC				
atazanavir, clarithromycin, indinavir, itraconazole, ketoconazole, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin	amprenavir, aprepitant, diltiazem, erythromycin, fluconazole, fosamprenavir, grapefruit juice(a), verapami	cimetidine				

⁽¹⁾ Please note the following:

- A strong inhibitor is one that caused a \geq 5-fold increase in the plasma AUC values or more than 80% decrease in clearance of CYP3A substrates (not limited to midazolam, a sensitive CYP3A substrate) in clinical evaluations
- A moderate inhibitor is one that caused $a \ge 2$ but < 5-fold increase in the AUC values or 50-80% decrease in clearance of sensitive CYP3A substrates when the inhibitor was given at the highest approved dose and the shortest dosing interval in clinical evaluations.
- A weak inhibitor is one that caused a \geq 1.25 but < 2-fold increase in the AUC values or 20-50% decreas in clearance of sensitive CYP3A substrates when the inhibitor was given at the highest approved dose and the shortest dosing interval in clinical evaluations

(1)

(a) The effect of grapefruit juice varies widely.

Table 6. Classification of i	nhibitors of other CYP enzyme	es * (1) (5/1/2006)
Strong CYP1A2	Moderate CYP1A2	Weak CYP1A2
inhibitors	inhibitors	inhibitors
fluvoxamine	ciprofloxacin	acyclovir
	mexiletine	cimetidine
	propafenone	famotidine
	zileuton	norfloxacin
		verapamil
Strong CYP2C8	Moderate CYP2C8	Weak CYP2C8
inhibitors	inhibitors	inhibitors
gemfibrozil		trimethoprim
Strong CYP2C9	Moderate CYP2C9	Weak CYP2C9
inhibitors	inhibitors	inhibitors
	amiodarone, fluconazole, oxa	ndrolonesulfinpyrazone
Strong CYP2C19	Moderate CYP2C19	Weak CYP2C19
inhibitors	inhibitors	inhibitors
omeprazole		
Strong CYP2D6	Moderate CYP2D6	Weak CYP2D6
inhibitors	inhibitors	inhibitors
fluoxetine, paroxetine, quinic	lineduloxetine, terbinafine	amiodarone, sertraline

* Note that this is not an exhaustive list (created May 1, 2006).

⁽¹⁾ Please note the following:

- A strong inhibitor is one that caused a > 5-fold increase in the plasma AUC values or more than 80% decrease in clearance of CYP substrates (not limited to sensitive CYP substrate) in clinical evaluations
- A moderate inhibitor is one that caused a > 2- but < 5-fold increase in the AUC values or 50-80% decrease in clearance of sensitive CYP substrates when the inhibitor was given at the highest approved dose and the shortest dosing interval in clinical evaluations.
- A weak inhibitor is one that caused a > 1.25 but < 2-fold increase in the AUC values or 20-50% decreas in clearance of sensitive CYP substrates when the inhibitor was given at the highest approved dose and the shortest dosing interval in clinical evaluations

Classification of Substrates

Table 7. Examples ⁽¹⁾ of sensitive CYP3A substrates or CYP3A substrates with narrow therapeutic range *(5/1/2006)

Sensitive

CYP3A substrates ⁽¹⁾

CYP3A Substrates with

Narrow therapeutic range ⁽²⁾ alfentanil, astemizole(a), cisapride(a),

fentanyl, pimozide, quinidine, sirolimus,

budesonide, buspirone, eplerenone, eletriptan, felodipine, fluticasone, lovastatin, cyclosporine, diergotamine, ergotamine, midazolam, saguinavir, sildenafil, simvastatin, triazolam, vardenafil

* Note that this is not an exhaustive list (created May 1, 2006).

1. Sensitive CYP3A substrates refers to drugs whose plasma AUC values have been shown to increase 5-fold or higher when co-administered with a known CYP3A inhibitor.

tacrolimus, terfenadine(a)

2. CYP3A *substrates with narrow therapeutic range* refers to drugs whose exposure-response indicates that increases in their exposure levels by the concomitant use of CYP3A inhibitors may lead to serious safety concerns (e.g., Torsades de Pointes).

(a) Not available in the United States.

Table 8. Examples sensitive CYP substrates or CYP substrates with narrow therapeutic range *(5/1/2006)

Sensitive CYP1A2 substrates ⁽¹⁾	CYP1A2 substrates with
duloxetine alosetron	narrow therapeutic range ⁽²⁾
	(2)
repaglinide	paclitaxel
Sensitive CYP2C9 substrates ⁽¹⁾	CYP2C9 substrates with narrow therapeutic range ⁽²⁾ warfarin, phenytoin
Sensitive CYP2C19 substrates ⁽¹⁾ omeprazole	CYP2C19 substrates with narrow therapeutic range ⁽²⁾ s-mephenytoin
Sensitive CYP2D6 substrates ⁽¹⁾ desipramine	CYP2D6 substrates with narrow therapeutic range ⁽²⁾ thioridazine
SERIE I FILLE FILL	

* Note that this is not an exhaustive list (created May 1, 2006).

- 1. *Sensitive CYP substrates* refers to drugs whose plasma AUC values have been shown to increase 5-fold or higher when co-administered with a known CYP inhibitor.
- 2. CYP *substrates with narrow therapeutic range* refers to drugs whose exposure-response indicates that increases in their exposure levels by the concomitant use of CYP inhibitors may lead to serious safety concerns (e.g., Torsades de Pointes).

P-gp Transporters

Table 9. Acceptable In Vitro P-gp Substrates * (5/1/2006)

			Ratio*	*
Drug	Conc. Use	dCaco-2	2 MDR1-	MDR1-
	(µM)		MDCK***	*LLCPK***
Digoxin	0.01-10	4-14	4	4
Loperamide	1-10	2-5		3.4
Quinidine	0.05	3		5
Vinblastine	a0.004-10	2-18	> 9 ^b	3
Talinolol	30	26		

* Note that this is not an exhaustive list (created May 1, 2006).

** P $_{app, B-A}$ / P $_{app, A-B}$; P $_{app}$ = apparent permeability

*** Data for MDR1-MDCK and MDR1-LLCPK are the ratio observed in transfected cells relative to the ratio observed in respective wild-type cells.

^a Vinblastine is also a substrate for MRP2 that is constitutively expressed in Caco-2, and wild type MDCK and LL-CPK1 cells.

^b Data are derived from net B to A flux in the absence of GF120918, a potent P-gp inhibitor, relative to that observed in the presence of GF120918.

Table 10. In Vitro P-gp Inhibitors * (5/1/2006)

	Кі (µМ)			
Inhibitor	^{IC50 (µM)} Сасо-2*	Caco-2*	MDCK- MDR1*	LLC-PK1 MDR1**
Cyclosporine A ^a Ketoconazole ^a	1.3 1.2	0.5	2.2	1.3 5.3

LY335979 Nelfinavir ^a	0.024 1.4			
Quinidine ^b	2.2	3.2	8.6	
Ritonavir ^a	3.8			
Saquinavir ^a	6.5			
Tacrolimus	0.74			
Valspodar (PSC833))0.11			
Verapamil	2.1	8	15	23
Elacridar		0.4	0.4	
(GF120918)				
(GG 918)				
Reserpine		1.4	11.5	

* Digoxin as a P-gp substrate

** Vinblastine as a P-gp substrate

^a also CYP3A inhibitor

^b also CYP2D6 inhibitor

Major Human Transporters

Table 11. Major human transporters $*^{(1)}(5/1/2006)$

TUDIC 1.	ri Piajor II	annan transporters	(3/1/2000)		
Gene	Aliases	Tissue	Substrate	Inhibitor	Inducer
ABCB1	P-gp,	intestine, liver,	digoxin, fexofenadine,	ritonavir,	rifampin,
	MDR1	kidney, brain,	indinavir, vincristine,	cyclosporine,	St John's
		placenta, adrenal,	colchicine. topotecan,	verapamil, erythromycin,	Wort
		testes	paclitaxel	ketocoanzole, itraconazole,	
				quinidine, elacridar (GF120918)	
40004				LY335979, valspodar (PSC 833)	
ABCB4	MDR3	liver	digoxin, paciitaxei,		
	DCED	liver	VINDIASTINE		
ABCBII	DSEP MDD1	liver	vindiasune		
ADCCI	MKP1	kidney brain	aderovii, indinavii		
ABCC2	MDD2	intestine liver	indinavir cisplatin	cyclosporipe	
ADCC2	CMOAT	kidnev brain	mamavii, cispiatiii,	cyclosponne	
ABCC3	MRP3.	intestine, liver,	etoposide, methotrexate		
	CMOAT2	kidnev, placenta,	tenoposide	1	
		adrenal	·		
ABCC4	MRP4				
ABCC5	MRP5				
ABCC6	MRP6	liver, kidney	cisplatin, daunorubicin		
ABCG2	BCRP	intestine, liver,	daunorubicin,	elacridar (GF120918)	
		breast, placenta	doxorubicin,		
			topotecan, rosuvastatin,		
SI CO1P		livor	sullasalazine	cyclosporipo	
SLCUIDI	OATPIDI,	livei	methotrevate	rifampin	
	OATP2		pravastatin thyroxine	mampin	
SLCO1B3	30ATP1B3.	liver	digoxin, methotrexate,		
	OATP8,		rifampin,		
SLCO2B1SLC21A9,		intestine, liver,	pravastatin		
	OATP-B	kidney, brain			
SLC10A1 NTCP		liver, pancreas	rosuvastatin		
SLC10A2 ASBT		ileum, kidney, biliary			
		tract			
SLC15A1 PEPT1		intestine, kidney	ampicillin, amoxicillin,		
SICIEAT		kidnov			
SLCISAZ	FEFIZ	кипеу	ampiciiiii, amoxiciiiii,		
			captopin, valacyciovil		

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/Deve...

<i>SLC22A1</i> OCT-1	liver	acyclovir, amantadine, desipramine, ganciclovir metformin	disopyramide, midazolam, phenformin, phenoxy-benzamine quinidine, quinine, ritonavir, verapamil
<i>SLC22A2</i> OCT2	kidney, brain	amantadine, cimetidine, memantine	desipramine, phenoxy- benzamine quinine
<i>SLC22A3</i> OCT3	skeletal muscle, liver, placenta, kidney, heart	cimetidine	desipramine, prazosin, phenoxy- benzamine
SLC22A4 OCTN1	kidney, skeletal muscle, placenta, prostate, heart	quinidine, verapamil	
<i>SLC22A5</i> OCTN2	kidney, skeletal muscle, prostate, lung, pancreas, heart small intestine, liver	quinidien, verapamil ,	
<i>SLC22A6</i> 0AT1	kidney, brain	acyclovir, adefovir, methotrexate, zidovudine	probenecid, cefadroxil, cefamandole, cefazolin,
<i>SLC22A7</i> OAT2	liver, kidney	zidovudine	
<i>SLC22A8</i> 0AT3	kidney, brain	cimetidine, methotrexate, zidovudine	probenecid, cefadroxil, cefamandole, cefazolin,

1. ABC:ATP-binding cassette transporter superfamily; SLC: solute-linked carrier transporter family; SLCO: solute-linked carrier organic anion transporter family; MDR1: multi-drug resistance; MRP: multi-drug resistance related protein; BSEP:bile salt export pump; BCRP: breast cancer resistance protein; OAT: organic anion transporter; OCT: organic cation transporter; NTCP: sodium taurocholate co-transporting polypeptide; ASBT: apical sodium-dependent bile salt transporter.

Links on this page: