MEDCH 528 ~ Biophysical Enzymology and Biopharmaceuticals Winter Quarter, 2018

Lectures Wednesday, Friday 3:00 pm – 4:30 pm South Campus Center 308

Instructors: Atkins, Nath, Lee, Sumida, Lyon, Guttman, Hill, Conner

Bill Atkins, Ph.D. Room: H172Q Phone: 206/685-0379 winky@u.washington.edu

Course Information. This course consists of approximately seventeen 60-90 minute lectures and three 1.5 hr classes for student presentations. The first part of the course includes indepth treatment of thermodynamics and kinetics of protein-ligand interactions and protein-protein-interactions. This section also includes an introduction to the structure and function of therapeutic antibodies. The second part of the course includes theoretical and practical aspects of biophysical methods not covered in most other courses, including surface plasmon resonance, scanning and titrating calorimetry, cryoEM, H/D exchange Mass spectrometry and other specialized methods with particular utility in modern drug discovery. The third part of this course provides examples of theory and methods from the first two parts, with particular emphasis on therapeutic proteins discussed, including viruses, therapeutic antibodies, bispecific antibodies,Fc-fusion proteins, and drug targets. Students are responsible for all of the material presented in the lecture notes, the classroom lectures and, in addition, any reading material assigned by the instructors. Students will directly interact with industry scientists with expertise in biophysical analyses.

The students will understand the theoretical basis of protein-ligand interactions and current methods for their characterization. Students will be knowledgeable about current topics in the biopharmaceutical industry and the role of kinetic and thermodynamic information in the drug design process. Students will be able to critique current literature concerning therapeutically relevant proteins.

The class will be limited to 20 students.

Grading: will be based on a combination of take home problem sets (30%), student presentations (50%), and in-class participation (20%).

Tentative	Lecture	Schedule
------------------	---------	----------

Lecture	Instructor	Date	Lecture Topic			
Part I: Protein-Ligand Interactions						
1	Atkins	January 5	Ligand Binding at Equilibrium			
2	Atkins	January 10	Ligand Binding at Equilibrium/Regulation			
3	Atkins	January 12	Ligand Binding Dynamics/Allostery			
4	Guttman	January 17	Antibody Structure/Function			
5	Atkins		Engineered Antibody Platforms: Bispecific, ADCs, others			
Part II: Methods						
6	Nath	January 19	UV-Vis, CD, Fluorescence, Light Scattering			
7	Nath	January 24	Optical Methods, Single Molecule			
8	Sumida	January 26	Calorimetry (ITC/Thermodynamics and Drug Design)			

9	Lee	January 31	Structural Analysis: SAXS, EM		
10	Sumida	February 2	Calorimetry (DSC, protein stability)		
11	Guttman	February 7	H/DX MS Protein Dynamics		
12	Sumida	February 9	Surface Plasmon Resonance		
Part III: Applications in Biopharmaceuticals					
13	Lyon (Seattle Genetics)	February 14	Antibody Drug Conjugates		
14	Conner (Amgen)	February 16	Antibody Clearance and Disposition		
15	Hill (Biotech Consultant)	February 21	Examples from Protein Therapeutic Development		
16	-	February 23	Student presentations		
17	-	February 28	Student presentations		
18	-	March 2	Student presentations		