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I. Ligand Binding: Definition of Terms

The term ‘ligand’ is a problem because of the range of things 
that must be considered in a unifying theory. ‘Ligands’ include:

 electrons

 metal ions, other ions

 small polar molecules (sugars, nucleotides)

 small nonpolar molecules (lipids, steroids)

 macromolecules (DNA, proteins, RNA)

 ‘transition states’

 water, a ‘special ligand’

Can there be a general theory for such a broad range of 
ligands? Something that works for ‘P’ and ‘L’?



I. Definitions (con’t)

               

units of Ka = liters/mole; units of Kd = moles/liter

for the special case of 1:1 stoichiometry:
P + L   ⇔ [P • L]

where [L] is free L concentration
Fractional occupancy, X is the fraction of total sites occupied by L, and varies with L via a 
hyperbolic relationship:

   and     

X varies 0      1 for any stoichiometry
vs. ‘number moles L bound/mole protein’ which can be > 1 if multiple binding is present.

Ka =
[aAbB]
[A]a[B]b

aA + bB ⇔ aAbB
Kd =

1
Ka

Kd =
[P][L]
[P • L]

X =
[P • L]

[P]+ [P• L]
X =

Ka[L]
1+ Ka[L]



I. Definitions: thermodynamic terms

For Ka =
[aAbB]
[A]a[B]b

ΔGbind = ΔG°+ -RTlnKa = ΔG°+ RTlnKd

Free energy change for moving reagents 
from their standard state to the state of 
comparison; for biochemists, usually pH 
7.0, 37 C, but usually ignored.

R = 1.985 calK-1mol-1 = 0.001985 kcalK-1 mol-1

T= temperature in K
e.g. 
for Kd = 1 micromolar at 37 C, ΔG  =  (0.001985)(310)ln [1X10-6] = -8.49 kcal/mol.
for Kd  = 1 nanomolar at 37 C, ΔG = -12.5 kcal/mol. 
Conversely, 2-fold change in Kd at 37 C is only 0.4 kcal/mol ΔΔG.
BIG change in Kd doesn’t require much change in energy. 



II. Methods- experimental

The useful parameters that describe the equilibrium are Kd, X, and ΔG.
Methods for measuring Kd and X include, but are not limited to:

Partition techniques, in which [L] or [PL] is directly measured (calculate X):

 equilibrium dialysis
 filter binding assays (radiometric)
 gel filtration

Perturbation Methods, in which a fractional response is measured (Calculate [L]):

 absorption, UV-visible spectroscopy
Surface Plasmon Resonance

 fluorescence, CD
 NMR
 titration calorimetry

analytical ultracentrifugation

Analytical methods include, but are not limited to, fitting of the data to functions that express 
X in relation to [L].

 hypberbolic plots,  Scatchard plots,   ‘binding isotherms’,    Hill Plots



II. Methods - Analytical Approaches for simple 1:1 binding:
Hyperbolic Plot

           

Scatchard Plots

X

1.0

0

[L]free

0.5

Kd = 1/Ka

X

X =
Ka[L]

1+ Ka[L]

X =
[P •L]

[P] + [P• L]

X
[L]

= Ka − Ka X

X/[L]

X

Slope = 1/-Kd

1.0

these plots tend to distort 
the data and artificially 
weight data near the 
intercepts. Useful 
qualitatively to seek 
deviation from linearity, 
easier than deviation from 
hyperbola.



II. Methods Analytics 
“Binding Isotherms”

X

-9            -8           -7           -6          -5          -4         -3 

1.0

0

Log Kd

For simple binding, no 
cooperativity, X = 0.1 to 0.9 
spans 1.8 log units.

Preferred method: ΔG is 
directly proportional to Log 
[L].  Free energy of the 
reaction is least ‘sensitive’ to 
[L] near the Kd. Fractional 
occupancy is most sensitive 
in this region,

Log [L]free

Hill Plots
Log [X/(1-X)]

Log [L]free
2 0 -2

Log Ka

Log [X/(1-X)] = nLog [L] + Log Ka

Slope = 1 for simple binding 
where n = 1



II. Methods Analytics: How does X vary with Kd?

X

[L]free
0   5.0         10.0

1.0

0.5

X =
Ka[L]

1+ Ka[L]

Kd = 1.00.1

10.0

100.0

X =

[L]
Kd

1+ [L]Kd  

X depends on accurate measurement of asymptote. Typically have 
known total [P]0 and known total [L]0, we measure X and calculate 
[L]free from [L]0 - X[P]0. Error in [L]free is wholly dependent on 
error in X. Two co-dependent variables used to get Kd. Need to 
plot [L]free is a limitation.

Often assume [L]free = [L]0, ok if [L]0 > [P]0 and [P]0<Kd

For Kd = 100 P0

Distribution of data for 
different [L]free depends on 
the Kd.  eg. [L]free =  1-10 
is only marginally useful 
for Kd between 1-10.



II. Analytics and Experimental Design: What 
determines the experimental range of [L]free or [L]0?

Solubility: Many ligands/proteins are insoluble even in 
the micromolar range. Limits work at higher 
concentrations. 

Sensitivity: Many techniques are insufficiently sensitive 
to detect low concentrations. Limits work at low 
concentrations.

These experimental considerations often oppose each other. 



II. Methods Analytics: How does X vary with Kd?
Key points:

Experimentally it is critical to use a range of ligand concentrations such that [L]free 
spans at least two orders of magnitude including data on both sides of  Kd, and at 
least some data need to be at [L]free way above Kd, within ~ 95% of X = 1.0.

Error in X leads to error in both axes of a binding curve – calculation of [L]free from 
L0 and [PL] is required for the most commonly used analytical expressions but not 
the most general solution.  Error in X can arise if ‘saturation’ is not clearly 
established – all values on the y-axis are determined by X = 1.0 so if X= 1.0 has 
error, all y-values have error.

Although [L]free is ‘formally’ required to calculate Kd, at [P0]<< Kd, [L] è [L0]. 
Total [L] can be a surrogate for decent approximation.



II. Methods:Analytics- Stoichiometric vs. Equilibrium Binding

Consider Kd in terms of what is more easily measurable or known:
Kd =

(P0 − [PL])(L0 − [PL])
[PL]

0 = [PL]2 − (P0 + L0 + Kd )[PL] + P0L0

( L0
P0
− X)(1− X) = 0

L0
P0

= X

Note symmetrical with respect to L0 and 
P0, so L and P are ‘interchangeable’

When P0 >> Kd, With algebraic tricks, factoring, substitution, 2 solutions apparent:

That is, the fractional saturation is identical to the molar ratio of L0, P0. The 
added L binds completely, no [L]free. Plot of X vs. L0 /P0 is linear with slope = 1.

P0, L0 = total protein and total ligand

L0/P0

X

1.0

1.0

P0 = 0.1 Kd

P0 =10Kd

For n = 1, L0/P0 is a max at 1.0. For n > 1, the 
fraction saturation occurs at L0/P0  = n, the 
‘equivalence point’.

Equivalence point yields stoichiometry (n) of 
binding, but Kd can not be determined directly, 
because there is no free L. No titration 
technique can yield both Kd and n from a single 
experiment. Conditions that yield high precision 
in Kd have great error in n and vice versa.

Don’t need Lfree, 
it’s just 
‘mathematically’ 
convenient



II. Methods - analytics for ‘stoichiometric’ binding conditions.

When Kd <  P0 the formalism dependent on free [L] breaks down.  The full 
‘quadratic equation’ resulting from the use of [P]0 - [PL] and [L]0 - [PL] yields 
the expressions above which when factored yields the new expression for [PL]

Kd =
(P0 − [PL])(L0 − [PL])

[PL]

0 = [PL]2 − (P0 + L0 + Kd )[PL] + P0L0

( L0
P0
− X)(1− X) = 0

L0
P0

= X

This ‘general’ equation should be used to calculate Kd if [P]0 > Kd or if there 
is no way to accurately get [L]free. NOTE: THE QUADRATIC EQUATION 
Still requires data at low and high [L]0, on both side of the equivalence 
point.

[P • L] =
([P]0 +[L]0 + Kd) − ([P]0 + [L]0 +Kd )

2 − 4[P]0[L]0
2  



II. Methods Analytics: Multiple Binding with Independent Sites: Back to 
hyperbolic binding: Low [P]
Consider a protein with n noninteracting sites, e.g. the IgG or other immunoglobulins. The 
‘fractional’ saturation of protein can now be >1. The fractional saturation of protein must 
be distinguished from fractional saturation of ‘sites.’ More clearly, the number of moles 
ligand/protein, υ, can be > 1, but the average number of moles ligand/site can still only 
vary 1 to 0.  This has implications for the various analytical solutions, and the information 
that can be extracted. 

fractionalsaturation = υ = n Xi
i=1

n

∑

υ = nX =
nKa[L]
1 + Ka[L]

But still a hyperbolic equation! Each of plots 
above will have the same ’shape’ - can’t detect 
multiple binding with experiments that measure 
fractional response. Plots of ‘fractional 
saturation’ of sites can not yield n directly, n is 
‘hidden.’ If you have independent measure of n, 
can be included to get the real Ka. 

Average number of ligands bound/protein



II. Methods Analytics - Multiple noninteracting sites

Lets take a closer look at what contributes to ν

P + L  ⇔   PL1

PL1 + L  ⇔   PL2

PLn-1 + L ⇔ PLn

K1 =
[PL1]
[P][l]

K2 =
[PL2 ]
[PL1][L]

Kn =
[PLn ]

[PLn−1][L]

When n sites/protein,  moles L bound/ moles P = ν =

=
n i[PLi]
i=1
∑

[PLi]
i= 0

n

∑

=
[PL1] + 2[PL2 ] + 3[PL3] + •• •n[PLn ]
[P] + [PL1] + [Pl2 ] + [PL3] + •••[PLn ]

=     nKa[L]
        1+Ka[L]



II. Methods- Analytics:Ligand Distribution

When proteins have multiple binding sites, ‘affinity’ or υ are not the 
only determinants of biological responses to ligands. At 
subsaturating concentrations of L, their distribution matters. From 
above we can see that there are multiple ways to distribute, for 
example, 2 ligands:

Two possibilities that contribute equally to ν

[PL]+[LP] vs. [LPL] 

+ +

There are multiple,  energetically 
nondegenerate, ways to distribute a 
fixed number of ligands. But 
proteins control this distribution - 
this is a distinguishing feature of 
biological systems.

To fully understand ligand distribution we must consider statistical effects, 
and we must distinguish between macroscopic and microscopic equilibrium 
constants.



III. Thermodynamics and Statistical Mechanics of Ligand Distribution

Macroscopic vs. Microscopic Equilibrium Constants

How many ways can we arrange ligands among 
available sites? Consider a protein with 4 identical sites, 
with 2 ligands to ‘distribute.’:

For n = 4, i = 2, there are 6 species that contribute to [PL2]

From the definition of a binomial distribution in 
statistics, the number of ways to partition i outcomes 
with equal probability into n total possible events is: 

Ωn,i =
n(n −1)(n − 2) ••• (n − i + 1)

i!
=

n!
(n − i)!i!



III. Thermodynamics of Ligand Binding: Microscopic vs. 
Macroscopic Binding Equilibria

Consider a diacid, with ionizable groups at either end of an 
‘insulating linker’ - so the ends do not ‘sense’ each other:

O-

O

OH
OO

O-

OH

O

O

O-
O

O-

Ac

O
OH

O

OH

Kd1

Kd2

"A"

"AH"

"AH2"

Macroscopic Kd1 = [A]/[AH]

Macroscopic Kd2 =  [AH]/[AH2]

Two ways to form AH from A, two 
ways to lose AH to form AH2

Consider Kd = koff/kon: then 

Kd1 = koff/2kon and Kd2 = 2koff/kon

Appears like 4Kd1= Kd2 

Statistical effects make Kd1 appear higher 
affinity even though sites are chemically 
identical!!  Apparent negative cooperativity 
with respect to proton binding!!





But . . . In an ensemble of proteins with multiple 
binding sites where we can measure X or ν we 
can’t see this apparent negative cooperativity. 
The macroscopic affinity looks uniform, 
determined by the intrinsic Kd1 = Kd2. Plots are 
hyperbolic.

X or ν
Asymptote 
at 1 or 2

[L]

At low [L] ligands distribute on different P for statistical reasons. 

At higher [L], and hence higher X, there is a 
greater concentration of open sites on P’s already 
with an L bound. The statistical effect eventually 
favors binding to the same protein, rather than 

different proteins.

III. Thermodynamics, Multiple Binding



III. Thermodynamics - Multiple Binding and entropy as an 
introduction to the thermodynamics of ligand binding

This statistical effect is an entropic one. The general relationship 
for n sites is:

Ki =
Ω n ,i−1

Ωn ,i

k

S ∝ lnΩ  

Here K is the macroscopic dissociation constant for 
site i, and k is the intrinsic constant.  HOMEWORK 
#1: Calculate the Ki for the 2nd and 3rd ligands 
binding to a protein with 3 equivalent sites; and for 
the 2nd, 3rd, and 4th ligands for a protein with 4 
equivalent sites. Discuss the result.

Remember that entropy is related to ‘probability.’  
Higher entropy of a system  at subsaturating ligand 
is with ligands distributed over many proteins. 
Entropically unfavorable to ‘park’ many ligands on 
one protein and none on other proteins.

Entropy works against proteins, by counteracting 
their ability to control ligand distribution.

S = entropy here 
(not substrate)



III. Thermodynamics and Ligand Distribution

Consider a ‘ligase’ that joins two substrates, S, into a single larger 
product. At subsaturating concentrations of S the entropy that 
favors binding to different proteins results in wasted binding 
energy. The enzyme population can’t catalyze any reaction if 
individual enzyme molecules are singly-ligated!

E + S + S      [E•S•S]      E + S   S

But [E•S] + [E•S] can’t do this, only [E • S • S] can.  
Much of the binding isotherm below saturation would 
include enzymatically unfunctional complexes. Proteins 
would be victims of chance (statistics) if they couldn’t 
control ligand distribution. 

The enzyme wants to do this:



Summary of key points so far:
•  Parameters needed to describe ligand binding at equilibrium 
are Kd, X, ΔG.

•  For simple 1:1 binding or for multiple binding at 
noninteracting sites, Kd should be measured at [P]0<<Kd, using 
[L]free. Stoichiometry can be measured at [P]0 >> Kd.

•  When [P]0 >> Kd, the Kd must be determined from the 
‘quadratic equation’ because there is no [L]free.

•  For multiple noninteracting sites, there is a statistical bias 
against binding multiple ligands to the same protein molecule, 
at low [L]. This results from a higher entropic cost.

•  Without a mechanism to control the statistical bias, proteins 
would be victims of chance at low [L].



III.  Thermodynamics, Coupling Free Energy
 Consider two distinct ligands L1, L2 with free energy of binding to P, ΔG1 
and ΔG2. P can form a ternary complex, and ΔG3 is the free energy of binding 
L2 to the complex [PL•1] and ΔG4 is the free energy for L1 binding to the 
complex [PL•2]. We can express this pictorially on a free energy diagram.

P+L1+L2

[P • L1 • L2]

[P•L1]+L2
[P•L2]+L1

ΔG1
ΔG2

ΔG3
ΔG4

ΔG1non+ΔG2non

ΔΔG12

ΔG1+ΔG3 = ΔG2+ΔG4 but no requirement that ΔG1 = ΔG2 or ΔG3 = ΔG4

Required: ΔG4 - ΔG1 = ΔG3 - ΔG2  = ΔΔG12, the coupling free energy

Coupling free energy is the effect that the binding of L1 has on the binding of L2 
which must equal the effect that the binding of L2 has on the binding of L1.

P+L1+L2

[P • L1 • L2]

ΔG



III. Thermodynamics, coupling free energy

ΔΔG12

If ΔΔG12 = 0, ligands have no effect on each other, no cooperativity

If ΔΔG12 < 0 , then ΔG of binding two ligands simultaneously is more negative, 
more favorable, than individual ligands, positive cooperativity.

If ΔΔG12 > 0, then ΔG of binding individual ligands is more positive, less 
favorable, than binding two ligands simultaneously, negative cooperativity.

P+L1+L2

[P • L1 • L2]

[P•L1]+L2
[P•L2]+L1

ΔG1
ΔG2

ΔG3
ΔG4

ΔG1+ΔG2

P+L1+L2

[P • L1 • L2]



III. Thermodynamics, Coupling
The coupling free energy is critically important in biology - it determines ligand 
distribution and biological response. It can be considered in another thermodynamic 
context. The ΔΔG12 is equal to the ΔG for the disproportionation reaction:

[P • L1]  + [P • L2]           P + [L1 • P • L2]  where   Keq =
[P • L1 •L2][P]
[L1 •P][P • L2 ]  

Consider the case when [L1] and [L2] are adjusted to X1 = X2 = 1/2

If 
X 1 =

[P• L1] +[P • L1 •L2]
P0  

X 2 =
[P• L2] + [L1 •P • L2]

P0  
X 1,2 =

[P • L1 • L2]
P0  

Then at X 1 = X 2 = 1/2  Keq =
[X 1,2 ]2

(1/ 2 − [X 1, 2]) 2

 
and X 1,2 =

1/ 2 Keq

(1+ Keq )  

Knowing that ΔΔG12 = -RTlnKeq we can 
solve for ΔΔG12 in terms of X12

€ 

ΔΔG12 = −RT ln
2X 1,2

[1− 2X 1,2]



III. Thermodynamics, coupling

      for  [P • L1]  + [P • L2]           P + [L1 • P • L2] 

A few special features: when ΔΔG12 = 0, no coupling, half the ligands L1 are in 
[L1P] or [L1PL2] and half the L2 ligands are in [PL2] or [L1PL2], so X1,2 = 0.25 at 
zero coupling.  Note, as coupling is favorable (more negative ΔΔG12) there is an 
increase in X1,2, the fraction of protein with two ligands bound, and vice versa. Also, 
using known values of RT, ~90% of  P is P or [L1PL2] at -2.75 kcal/mol and 90% is 
[L1P + PL2] for ΔΔG12 +2.75 kcal/mol.

  X1,2
0 0.5

ΔΔG12

(kcal/mol)

-2.75

0

+2.75

This plot tells us that very good 
coupling (90% toward one side) 
can be obtained for small 
ΔΔG12, on the order of 3 kcal/
mol or - 3 kcal/mol. For the 
price of a hydrogen bond 
proteins can get very good 
control of ligand distribution. 
On the other hand, due to the 
asymptotic nature of the plot, 
with respect to ΔΔG12 = 0 and 
ΔΔG1,2 = 0.5, it is very 
expensive to get perfect control.

€ 

ΔΔG12 = −RT ln
2X 1,2

[1− 2X 1,2]

0.05 0.45



III. Thermodynamics, coupling

Of course there can be homotropic cooperativity as well, 
directly analogous to the heterotropic case above.

P+L1+L1

[P • L1 • L1]

[P•L1]+L1
ΔG1

ΔG2

ΔG1+ΔG2

P+L1+L1

[P • L1 • L1]
[P • L1 • L1]ΔG2

Positive cooperativity: 
ΔG1+ΔG2< 2ΔG1

Negative cooperativity:

ΔG1 +ΔG2 > 2ΔG1

No cooperativity:

ΔG1+ΔG2 = 2ΔG1



III. Thermodynamics, cooperativity and linkage
The previous free energy diagrams emphasize the path-independent nature of the 
state function ΔG, and hence of binding affinity. They can be recast in the 
framework of a thermodynamic box.

Because of the path independence, and in relation to the coupling free 
energy, it is obvious that any effect that L2 has on the binding of L1 must be 
equal to the effect that L1 has on the binding of L2. This reciprocity was first 
discussed in the context of hemoglobin, O2, and CO by Hendersen, and 
Wyman elaborated a theory of thermodynamic ‘linkage’  based on chemical 
potential (rather than ΔG).

δ(lnX2)/ δX1 =  δ(lnX1)/ δX2

L1+P+L2 [L1•P]

[P • L2] [L1 • P • L2]

Kd1

Kd2

Kd3 Kd4

Kd1Kd4 = Kd2Kd3



III. Thermodynamics - Cooperativity, Multiple Binding and Binding 
Curves- Homotropic Effects

When ligand interactions take place, they result in changes in the appearance of 
the analytical plots discussed above.

ν

[L]

hyperbolic
Negative 
cooperativity -
biphasic or multiple 
classes of sites

ν/[L]

ν

Scatchard

2 classes of sites or 
negative cooperativity

Positive 
cooperativity

ν

Log [L]

Positive 
cooperativity

Negative cooperativity or 
multiple classes of sites

Isotherms

Log[ν/(1- ν)]

Log [L]

Positive 
cooperativity

Hill
Negative 
cooperativity



III. Thermodynamics and intra-ligand cooperativity: the basis for 
specificity.

Consider two parts of a single ligand, rather than two separate ligands. Binding 
of each part is ‘coupled’ to the other parts, and hence binding of the parts is 
cooperative.

ligand

enzyme
ΔG1

ΔG2

ΔG3

ΔG4

ΔG2’ ΔG1’

ΔG1+ΔG3 = ΔG2+ΔG4 < ΔG2’ + ΔG1’ due to lower 
entropy cost, once part of a molecule is bound.

Unfavorable 
entropy of 
binding already 
paid when the 
first part binds.



III. Thermodynamics, coupling:  An example of a 
therapeutic protein

Enbrel marketed first by Immunex (Seattle) in 1998 is an example of the use of 
coupling free energy, via bivalency. TNF mediates rheumatoid arthritis. A 
strategy to reduce systemic TNF was to ‘sponge’ it up with a soluble TNF 
receptor construct. TNF is a trimer of identical subunits and the TNF receptor 
(TNFR) was known to bind at a subunit-subunit interface of the trimer. 
Immunex fused a soluble fragment of TNFR to the Fc region of an IgG, thus 
resulting in a ‘bivalent’ TNFR. A blockbuster drug!

sTNFR

Fc TNF

Kd = 5 nM

Kd = 45 nM



TNF and Enbrel, structures

enbrel

sTNFR

Fc

Trimeric TNF

sTNFR

Mukai et al, 
Science Signaling 
vol 3, 143, 2010



III. Thermodynamics, coupling: Enbrel as an example of bivalency.

   ΔG1
Kd = 45 nM

Kd = 

5 nM

ΔG2

45nM

  ΔG2
Kd = 45 nM

ΔG1

ΔΔG12

TNF + sTNFR TNF + Enbrel

ΔG3

ΔG1+ΔG2 > ΔG1+ΔG3, positive cooperativity 
between 2 sTNFR Kd = 45 nM: ΔG = -10.4 kcal/mol

Kd = 5 nM; 

ΔG = -11.7 kcal/mol   and ΔΔG = - 1.3 kcal/mol



III. Thermodynamics, coupling - bivalent inhibitors
While the concept of ‘multivalency’ has been appreciated in drug design circles for a long 
time, recent advances in high throughput NMR and computational methods have brought into 
focus as ‘fragment-based drug discovery.’

FBDD uses NMR/computation to screen libraries of ‘small fragments’ that bind 
simultaneously to a target. Lead Fragments with the best ‘ligand efficiency’ are linked 
together to create a ‘multivalent’ lead compound. This is exploitation of coupling free energy. 

Bcl-xl



III. Thermodynamics, bivalent inhibitors, linker considerations

The ‘entropic advantage’ of multivalency is only realized if the linker is 
entropically neutral. Both the binding elements (fragments) and linker forfeit 
conformational, rotational, translational, vibrational degrees of freedom when they 
bind.  If the linker is long and flexible, the entropic cost of binding the linker 
offsets any advantage from the multivalency. Best linkers are short. For long 
flexible linkers, their conformational distribution becomes an important design 
element, and they also contribute directly to enthalpic interactions with the protein.



III. Thermodynamics, Multiple Binding and Avidity. 

For multivalent  interactions with antibodies, the term ‘avidity’ is commonly 
used, maybe paradoxical. There is not a clear consensus on the definition of 
‘avidity’ but people use it to acknowledge that antibodies are bivalent and 
therefore there is intrinsic cooperativity between binding sites, when the ligand 
is multivalent in solution or when monovalent ligands are ‘clustered’ on 
surfaces.  The avidity seems to acknowledge effects on ‘ligand distribution’ in 
regard to antibody-receptor interactions on surfaces or with multivalent ligands 
in solution. Here the receptor density has an effect on the ‘apparent’ affinity for 
antibody due to avidity effects.  Avidity is a special type of coupling, between 
antigens at high density or covalently connected.  The resulting proximity of 
antigens leads to coupling.

Remember - 

vs.

Higher entropy, 
favored

Statistical effects favor low occupancy with 
monovalent antigens



III. Thermodynamics of ‘Avidity’
On Surfaces

KdApp  = Kd' X Kd"

Kd' = s'k Kd" = s"k

surface bound antigens

if antigen density is appropriate KdApp < Kd' or Kd"

In Solution

KdApp  = Kd' X Kd"

n-2
n-2

n-2

if antigen antigen density is appropriate KdApp < Kd' or Kd"

With antigens immobilized on surfaces, such as on 
cells (receptors) or on SPR chips, the antigens now 
‘appear’ multivalent.  In effect the cell surface or the 
SPR chip surface is the ‘linker.’   The properties of 
the surface and the density of antigens can result in 
apparent increases in affinity (avidity).  Thus the 
measurement of antibody affinity on cells and in 
SPR experiments can be  tricky.  

Each part of the step-wise binding process has 
statistical effects (‘s’ terms) that vary with antigen 
density. Unlike statistical effects in multivalent 
proteins with monovalent ligands, the statistical 
effects can now cause ‘apparent positive 
cooperativity’ which is conceptually analogous to 
the multivalent examples above (FBDD).

Similar considerations in solution if antigen is 
multivalent, as with Enbrel above.  

Read: Mack et al.  (2012) Thermodynamic Analysis 
to Assist in the Design of Recombinant Antibodies.
Crit Rev Immun 32: 503-527.



IV. Allostery - ‘other site’ 
Allostery is the useful exploitation of control of ligand distribution for some biological 
advantage. Although we are now comfortable with the concept of allostery, it was controversial 
when first proposed in the early 1960’s. A ‘traditional’ analytical approach  is the application of 
the Hill plot, as described above. Whereas we already considered the ‘’stepwise’ nature of 
multiple ligand binding, Hill considered multiple ligand binding as a two state process, in 
distinct contrast to all the examples above which explicitly recognize intermediate states of 
ligation. 

P + nL↔ P •nL  Ka =
[P •nL]
[P][L]n  

X =
[P •nL]
[P]total

=
[L]n

[L]n + Kd

log X 
(1− X )
" 

# 
$ % 

& 
' = logKd + n log[L]

 

Hill considered the slope, n, as the cooperativity index - a perfectly cooperative system 
with stoichiometry n would yield a line of slope n. As a result, n, has often mistakenly 
been used as a measure of stoichiometry. The Hill model is physically unreasonable 
and no ‘physical’ meaning can be applied to the Hill coefficient. It is however a useful 
comparator of the degree of cooperativity for a system with known or fixed ‘n’.

Log[X/(1-X)]

Log [L]

Slope n
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IV. Allostery
Two observations initiated the development of allosteric models: 1) for some systems 
non-hyperbolic binding curves were observed; 2) Some pairs of ligands of Aspartate 
transcarbamoylase (ATC) acted ‘noncompetitively’ as inhibitors or as activators of one 
another.

The two most thoroughly studied allosteric systems are Hemoglobin and ATC, which 
fostered the ‘textbook’ models. These models remain extremely useful although we 
now know they are imperfect.

Because these models exemplify possible mechanisms by which proteins control ligand 
distribution and the resulting biological utility, it is useful to briefly review them.

In particular, these models emphasize that ligand binding is coupled to conformational 
change in the same way multiple ligand binding is coupled. Conformational change 
provides the coupling free energy that ligands exhibit.



IV. Allostery - Hemoglobin and the Monod-Wyman-Changeux 
Model

Assumptions of the MWC model:

•  Binding sites are distributed symmetrically, they have equivalent 
positions within the protein structure.

•  each subunit has separate binding sites for different ligands.

• Protein has two conformational ‘states’ in equilibrium, and ligands 
have a greater affinity for one state.

•  macroscopic affinity of ligands is a function of the conformational 
equilibrium.

L L = [T0]

[R0]

Apologize - here L is an equilibrium constant, X is a ligand 
- the formalism in textbooks is often this way.

R0        T0



L L = [T0]

[R0]

kr =

kr1 = kr2= kr3 = kr4

kt =

kt1 = kt2= kt3 = kt4

R0+X          RX1

RX1+X          RX2

RX2+X       RX3

RX3+X       RX4

T0+X          TX1

TX1+X          TX2

TX2+X       TX3

TX3+X       TX4

IV. Allostery, hemoglobin and the MWC model, for n = 4

kr ≠ kt, but define ‘c’, ckt = kr, so when c< 1, X binds R0 more tightly than T0

The degree of cooperativity is determined by c, L, n 

Intrinsic 
dissociation 
constants

High affinity          Low affinity

R1        T1

R2        T2

etc

Don’t need to explicitly consider these equilibria, 
they are defined by c, L in a ‘thermodynamic box 
sense.’



X =
i(Ri ) + i(Ti )

i =1

n

∑
i =1

n

∑

n i(Ri) + i(Ti)
i =1

n

∑
i =1

n

∑
" 

# $ 
% 

& '  

α =
[X]
kr  

X =
α(1+α)n−1 + Lcα(1+ cα )n−1

(1+α )n + L(1+ cα )n  

and define

When α <<1 X is below 
Kd, when α >> 1 X is 
saturating Substituting [Ri] and [Ti] 

with c, L, α

X

[X]

c < 1, R 
binds tightly

L≤1
L=10,000

L >1, 
mostly T 

C     1

C     0

IV. Allostery, Hemoglobin and MWC



IV. Allostery- effects of L and c on response

X =
α(1+α)n−1 + Lcα(1+ cα )n−1

(1+α )n + L(1+ cα )n  
α =

[X]
kr  

ckt = kr ;  L = [T0]/[R0]

X

[X]
X =

α (1+α)3

(1+α )4 + L  

Note: when L = 0, X = α
(1 +α)  

A hyperbola, when only 1 conformation!

Consider, n = 4, c = 0, L>>1, nearly all T state, 
which doesn’t bind X:

Case 1: For this case, when α<<1, X approaches 
α/L, a line of slope 1/L. 

Case 2: For the case α ≈ 1<<L, 

X =
α + 3α 2 + 3α 3 + α4

L  

Case 3: For the case α = L>>1 

X = (L4)/(L+L4)       1

1.0

Greatest sigmoidicity when L>>1, c<<1, low 
X and mid X depend on L

      α(1+α)3



IV. Allostery, the MWC model

Note that cooperativity is observed even though no ligand affects the 
affinity (Kd) of any subsequent ligands.  kr and kt are constant!

Where is the coupling free energy?

The cooperativity arises because addition of ligand, ‘pulls’ the 

R ⇔  T equilibrium towards R, the high affinity state - this increases the 
concentration of high affinity sites, it doesn’t change their affinity. The 
coupling energy comes from the linkage between ligand binding and the 
conformational equilibrium defined by L. For any concentration ratio 
[T]/[R] along the way the distribution of ligands among the R population 
and separately among the T population is determined by statistical 
effects. 



IV. Allostery, Limitation of the MWC model

A major shortcoming of the MWC  model is its thermodynamic incompatibility with 
negative homotropic cooperativity.

Any binding of a ligand must result in a greater population of the high affinity form, at 
the expense of the low affinity form. How could this lead to negative cooperativity? 

If kr < kt, Lx must be < L because  Lkr = ktLx

Negative cooperativity not possible!

L L = [T0]

[R0]

kr kt
If c = .1, ligand 10 
times more likely to 
bind R. In order to  
maintain L, more R 
must be generated - 
more high affinity 
sites available.Lx

R0        T0



IV. Allostery, an alternative model: Adair, Koshland, Nemethy, 
Filmer or the ‘Koshland Model’
A less restrictive model is the ‘Koshland’ model or the ‘sequential’ model of 
allostery, which allows for sequential conformational changes in individual 
subunits rather than concerted conformational change. No assumptions regarding 
symmetry are included - negative homotropic cooperativity is allowed.

K1 K2 K3 K4

K1<K2<K3<K4, pure positive homotropic cooperativity

K1>K2>K3>K4, pure negative homotropic cooperativity

Other combinations, mixed cooperativity

All allowed because each state is different from those states on either side.

Note however, that each subunit only exists in two states (pure induced fit).



IV. Allostery, A completely general model: Nested allostery
A more general model  allows for multiple subunit conformations in each ligand state. 
This is particularly relevant for large multisubunit complexes with multiple types of 
subunits. Ligand binding is coupled to conformational change - this is the entire basis of 
cooperativity and allostery.

MWC

Koshland



IV. Allostery: Hemoglobin (Hb) as an example of optimized 
control of ligand distribution.

X

pO2

Tetramer 
with DPG

dimer

Hb exists as an α2β2 tetramer,  of αβ dimers

Dimers have reduced cooperativity, but bind O2 more 
tightly than tetramers

O2 induced dissociation of Tetramers into αβ dimers 
in vitro

X-ray structures of oxy vs deoxy Hb reveal 2 
quaternary states, R and T with major differences at 
the α1β1/α2β2  interface

Despite lots of structural info about Hb allostery, the 
energetics remained uncertain through 1970’s – 80’s.

stripped 
tetramer

 



IV. Allostery, Hb as an example: The Symmetry Rule for Hb
Through heroic efforts by Ackers et al. and Edelstein et al. combined with x-ray structures 
the intermediate states of ligation of Hb have been characterized structurally and 
energetically (thermodynamically). Much of this analysis has exploited the fact that αβ 
dimers of Hb can be isolated and studied, and exploiting the fact that tetramer dissociation 
into dimers is coupled to oxygen (ligand) binding.
Strategy of calculating ligand binding coupling energy from subunit association data:
Take a step back, and consider ligand binding to a homodimer of monomers M: 
cooperativity of ligand binding to the dimer (ΔG21 - ΔG22) can be obtained from the 
difference in subunit affinities in the absence and presence of ligand X (ΔG2-ΔG1)

2M + 2X

M2 + 2X

MX + M + X

MX + XM 

Li
ga

nd
 b

in
di

ng
 to

 m
on

om
er

s

Ligand binding to dim
ers

M2X + X

M2X2

ΔG11

ΔG11

ΔG0

ΔG1

ΔG2

ΔG0 = energy for monomer association in the 
absence of X; ΔG21-ΔG11 = energy for monomer 
association with one X bound; ΔG22-ΔG11 = 
energy for monomer association with two X 
bound. ΔG2 - ΔG0  = ΔG21 – ΔG22 – coupling free energy 

of ligand binding is equal to coupling free energy of 
monomer association in the absence vs presence of 
ligand.

Remember, experimentally difficult to isolate M2X 
and add X, therefore difficult to measure coupling 
free energy between ligand binding with ligand 
titrations.  But may be experimentally easy to 
measure  ΔG0 and ΔG2.

ΔG21

ΔG22



This strategy was used by Ackers et al for the heterodimers in tetrameric 
hemoglobin. Obviously this is even more complicated with heterodimers. They 
could isolate αβ dimers with either α or β subunits substituted with 
metalloporphyrins that don’t bind ligand, and they use CN- ion as a tight binding 
surrogate for oxygen that didn’t rearrange or redistribute.  Together this allowed 
them to know which subunit in the dimer or tetramer was binding ligand (-CN) and 
to assume that the ligand didn’t ‘hop’ around (no ligand redistribution).

 

IV. Allostery, Hb as an example: The Symmetry Rule for Hb

heme

α Subunit

β subunit

ligand

ΔGα

ΔGβ

0ΔGa

2ΔGa

ΔGα + ΔGβ + ΔΔG12

Similarly for other 
arrangements of ligands 
and: ΔG for 
dimerization of doubly 
ligated states differed 
with distribution of 
ligands 



IV. Allostery, Hb as an example: The Symmetry Rule for Hb
Collectively the data suggested a model of nested allostery where individual monomers can 
undergo tertiary rearrangement without global quaternary switching. Global T  R switching 
occurs only after 1 subunit in each αβ dimer binds oxygen. Therefore, Hb does not strictly 
satisfy the MWC model.  In the mid 1990’s, Ackers proposed this symmetry rule. Think about 
the implications of the nested vs  MWC model.

α1    β2

β1    α2
T, low 
affinity

R, high 
affinity

The cooperativity is not ‘symmetrical. 
Cooperativity is greater between 2nd 
and 3rd and 3rd and 4th binding events, 
than between 1st and 2nd. The first and 
second binding events are subject to 
‘statistical’ effects, whereas the protein 
controls later stages of binding via 
cooperativity. 

1st binding event does not 
change dimer interface and 
hence does not change 
quaternary structure.

2nd binding event changes 
quaternary structure if and 
only if it includes 
occupancy by at least 1 
subunit in each dimer. 
Statistics control that, 
including chance of 
binding to other tetramers.



IV. Allostery, Hb and asymmetric cooperativity: the latest model

Through additional efforts in 2003-2005 Ackers et al revised the symmetry rule. 
In fact there is positive intradimer cooperativity - the tetramer does not rely on 
statistical effects other than in the very first binding step.

Cooperativity is symmetric with respect 
to ligation state- not the caseAsymmetric cooperativity

Homework.  Read and summarize (2 pages) the experimental strategy and important results in: 
Ackers et al. SCIENCE 255: 54-63 (1992)
Ackers and Holt, JBC 281: 11441-11443 (2006)



IV. Allostery, Hb cooperativity is asymmetric
The physiologic implications of this remain unclear, other than minor tweeking. 

1. The significance of the overall cooperativity is obvious - more efficient unloading of O2 at the 
O2 concentrations in tissue, after loading in the lungs. Hb has evolved to optimize loading of O2 
at its ambient pressure in the lungs and unload it at only a modestly lower (2.5-fold) pO2 in 
tissue. Compare to a hyperbolic binding curve, wherein a 6-8-fold decrease in [L] to achieve a  
2.5-fold decrease in X.  ALSO, The asymmetry may promote interactions with other effectors??

2. Indeed as a result of the asymmetric cooperativity,  binding curves for Hb are asymmetric. 
The asymmetry further enhances ability of Hb to ‘unload’ O2 from its saturated state even with 
only a small drop in ‘ligand concentration’ (pO2). The binding curve is slightly steeper on the 
high saturation side than on the low saturation side. Hb control of the sequence of events is 
more subtle, clever,  than the symmetry rule implies.

http://www.youtube.com/watch?v=2L1UJgYH6bU

‘A molecular dance in the blood, observed’


