

Dept. Pharmacokinetics & Drug Metabolism Amgen, South S.F.

OBJECTIVES

- I. <u>Brief</u> introduction to pharmacokinetic parameters important in the discovery and development of monoclonal antibody (mAb) therapeutics
- II. Overview of the properties and processes that govern mAb disposition
- III. Discuss and provide examples of the role biophysical characterization has in understanding mAb disposition and engineering of molecules

2

INTEGRATIVE PHARMACOLOGY

Time

Conc.

PK – what the body does to the drug

Pharmacokinetics Pharmacodynamics Concentration vs.Time Concentration vs. Effect Effect Conc (log) PK/PD Effect vs. Time Effect

PD – what the drug does to the body

- Pharmacokinetics (PK): the study of the time course of drug concentration in different body spaces & the relationship between concentration and the time course of drug action.
- Pharmacodynamics (PD): the study of the time course of the biological effects of drugs.

3

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements. actual results may vary materially; Amgen disclaims any duty to update

PK DESCRIBES THE KINETICS OF DRUG ABSORPTION AND DISPOSITION

Understanding the PK of a therapeutic allows for predicting how changes in dosing variables (e.g. ≻ dose amount, route, frequency, etc.) or how altering the molecular characteristics of a therapeutic will impact the concentration versus time profile and therefore the therapeutic profile.

4

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

PK, PHARMACOLOGY, & BIOLOGY GUIDE DOSING

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially. Amgen disclaims any duty to update.

CHARACTERIZATION OF DRUG DISPOSITION & PK/PD

6

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

PRIMARY PK PARAMETERS: CLEARANCE & VOLUME

7

8

Clearance (CL):

The volume of blood that is cleared of its content of drug per unit time (mL/min, L/hr, mL/day, etc.)

 Describes the capacity of irreversible <u>elimination of a</u> <u>compound from blood</u> and is a consequence of perfusion, diffusion, filtration, metabolism and transport

Volume of distribution (V):

The apparent volume into which drug distributes to account for measured compartment concentration at a given dose

 Describes the relationship between the drug concentration in the accessible body fluid (blood) and the drug in the tissues of the body at the site of action(s)

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

Figure 2.3 Schematic illustration of the volume of distribution, V. A dose of 100 units of drug is dissolved in each of the buckets, resulting in a concentration C of 10 and 1 unit-L⁻¹ since the apparent bucket volumes are 10 and 100 L, respectively. The greyish area at the bottom of the right hand bucket represents active charcoal.

Gabrielsson & Weiner Pharmacokinetic & Pharmacodynamic Data Analysis 4th Ed.

SECONDARY PARAMETERS

Elimination rate constant (k_{el} or K) :

- Fractional rate constant relating amount of drug in the body which is eliminated per unit time
- Half-life (t_{1/2}):
 - Expresses the period of time required for the amount or concentration of drug to decrease by one-half.
 - $t_{1/2} = \ln 2/k_{el}$
- Area under the concentration-time curve (AUC):
 - Relates to the amount of drug absorbed systemically
 - Units: unit material * volume⁻¹ * time; e.g. µg*hr/L

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

INTEGRATION OF VOLUME & CLEARANCE

Provided University of Washington SOP, 2018, as part of an oral

presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

FACTORS INFLUENCING DISPOSITION & PK OF <u>PROTEIN</u> THERAPEUTICS

10

9

- Administration route and target access
 - Parenteral dosage forms: Intravenous (i.v.), sub-cutaneous (s.c.), intramuscular (i.m.)
 - Extent of biodistribution limited by size and/or physicochemical properties

Size of molecule/composition/charge

- Addition of Fc units Enbrel, Orencia (CTLA4-Ig)
- Addition of carbohydrate moieties Epogen® vs. Aranesp®
- PEGylation/other modifications -Neupogen® vs. Neulasta®, Cimzia®
- Target
 - Regulation/Distribution of target protein
 - Circulating versus cell surface bound

Immunogenic Response Neutralizing vs. Non-neutralizing responses

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

AMGEN

Multival ent binding to d from Bruhn ot al. (2).

1+ 10 At-12 for

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements actual results may vary materially; Amgen disclaims any duty to update

Vidarsson, G., Dekkers, G., and Rispens, T. (2014) IgG Subclasses and Allotypes: From Structure to Effector Functions, Frontiers in Immunology 5, 520. 11

AMGEN

ANTIBODY ENGINEERING – TECHNOLOGIES

IMMUNOCYTOKINES, BISPECIFICS AND FUSION PROTEINS: EXAMPLES OF NEXT GENERATION SCAFFOLDS

Examples of immunocytokines & fusions

J. Kiefer. & D. Neri Immunol Rev. 2016 Mar; 270(1): 178–192. doi: <u>10.1111/imr.12391</u>

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

ELIMINATION OF MONOCLONAL ANTIBODIES (mAbs)

Two primary elimination routes :

- 1. 'Nonspecific' elimination via phagocytic and endothelial cells of the reticuloendothelial system (RES)
 - RES clears both antigen-bound and free (unbound) mAbs, is <u>not saturable</u> and thus follows linear kinetics
- 2. Antigen specific target-mediated disposition (TMD)
 - Because target-mediated disposition is dependent on binding to antigen (target) this is usually a saturable process for membrane associated antigens and therefore may follow nonlinear kinetics
- Depending on the antibody isoform and target, the relative contribution to mAb clearance from these elimination routes will vary

14

ENGINEERING CAN ALTER THE PRIMARY SITES OF UPTAKE & CATABOLISM

- mAb fusion demonstrates minimal to no tumor accumulation.
- We must characterize the biodistribution to guide engineering strategies and rationalize pharmacology of antibody-derived drugs

16

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

mAb therapeutic functions

NEXT GENERATION PROTEIN THERAPEUTICS: ADDING FUNCTIONALITY FOR IMPROVED SELECTIVITY THROUGH TARGETING OR FOR NOVEL MECHANISM OF ACTION

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

18

SELECT IGG ISOFORM AND MODIFICATIONS BASED ON THERAPEUTIC NEED; IMPACTS MAB DISPOSITION

Protein strategies for modifying interactions	Potential impact of modifying interaction
Mutate V domain sequences using display libraries and/or rationale design	Altered binding affinity or specificity
Mutate Fc sequence using display libraries and/or rationale design; select IgG Isotype	↑ or ↓ ADCC ↑ or ↓ ADCP ↑ or ↓ CDC
Mutate Fc sequence using display libraries and/or rationale design	↑ or ↓ half-life
Antibody fragment lacking Fc	↓ Half-life, ↓ CDC, ↓ ADCC and ↓ ADCP
Glycosylation strategies for modifying FcyR and complement interactions	
Aglycosylation	\downarrow ADCC, \downarrow ADCP and \downarrow CDC
Bisecting N-acetylglucosamine	1 ADCC
Non-fucosylation	1 ADCC

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

Antigen non-specific elimination and salvage of mAb therapeutics through RES and other receptor mediated processes

Cah

19

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

ELIMINATION OF THERAPEUTIC PROTEINS

 Same catabolic pathways as endogenous or dietetic peptides and proteins

Negligible non-metabolic elimination •

Molecular weight	Elimination site	Predominant elimination mechanisms	Major determinant
<500	Blood, liver	Extracellular hydrolysis Passive lipoid diffusion	Structure, lipophilicity
500-1,000	Liver	Carrier-mediated uptake Passive lipoid diffusion	Structure, lipophilicity
1,000–50,000	Kidney	Glomerular filtration and subsequent degradation processes (see Fig. 4)	Molecular weight
50,000-200,000	Kidney, liver	Receptor-mediated endocytosis	Sugar, charge
200,000-400,000		Opsonization	α_2 -macroglobulin, IgG
>400,000		Phagocytosis	Particle aggregation
Note: Other determining fact	oro oro oizo, oborgo, lipophilioiti	functional groups, ouger recognition, vulnershifts for prot	anneal annealize to posticles

formation of complexes with opsonization factors, etc. Mechanisms may overlap and endocytosis may occur at any molecular weight range.

Meibohm & Braeckman, In: Crommelin, Sindelar, Meibohm (eds.), Pharmaceutical Biotechnology, 3rd ed, Informa Healthcare 2007 21

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements. actual results may vary materially; Amgen disclaims any duty to update

HEPATIC UPTAKE AND DEGRADATION OF PROTEINS

- Major site of protein metabolism for larger molecular weight proteins
 - Usually initiated by endopeptidases with subsequent proteolytic degradation by exopeptidases

Intracellular uptake as a prerequisite

- Small peptides
 - Passive diffusion or carrier-mediated uptake and subsequent degradation
- Large peptides, proteins, and antibodies
 - Pinocytosis (fluid-phase endocytosis)
 - Receptor-mediated endocytosis

Examples:

- Low density lipoprotein receptor (LDLR)
- Low density lipoprotein-related protein (LPR)
- <u>'Scavenger' Receptors</u>: mannose/fucose-binding C-type lectin receptors; β-GalNAc
- Target-mediated endocytosis

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

HEPATIC UPTAKE MECHANISMS & CATABOLISM

Cell type	Uptake mechanism	Proteins/peptides transported
Hepatocytes	Anionic passive diffusion Carrier-mediated transport	Cyclic and linear hydrophobic peptides (<1.4 kDa; e.g., cyclosporins, CCK-8)
	RME: Gal/GalNAc receptor (asialoglycoprotein receptor)	N-acetylgalactosamine-terminated glycoproteins, galactose-terminated glycoproteins (e.g., desialylated EPO)
	RME: Low density lipo-protein receptor (LDLR)	LDL, apoE- and apoB-containing lipoproteins
	RME: LDLR-related protein (LRP receptor)	α ₂ -macroglobulin, apo-E-enriched lipoproteins, lipoprotein lipase (LpL), lactoferrin, 1-PA, u-PA, complexes of 1-PA and u-PA with plasminogen activator inhibitor type 1 (PAI-1), TFPI, thrombospondin (TSP), TGF-β and IL-1β bound to α ₂ -macroglobulin
	RME: Other receptors	IgA, glycoproteins, lipoproteins, immunoglobulins intestinal and pancreatic peptides, metallo- and hemoproteins, transferrin, insulin, glucagon, GH, EGF
	Nonselective pinocytosis (non- receptor-mediated)	Albumin, antigen-antibody complexes, some pancreatic proteins, some glycoproteins
Kupffer cells	Endocytosis	Particulates with galactose groups
Kupffer and	RME	IgG, N-acetylgalactosamine-terminated glycoproteins
endothelial cells	RME: Mannose receptor	Mannose-terminated glycoproteins (e.g., t-PA, renin)
	RME: Fucose receptor	Fucose-terminated glycoproteins
Endothelial cells	RME: Scavenger receptor	Negatively charged proteins
	RME: Other receptors	VEGF, FGF (?)
Fat-storing cells	RME: Mannose-6-phosphate receptor	Mannose-6-phosphate-terminated proteins (e.g., IGF-II)

viation: RME, rec

Meibohm & Braeckman, In: Crommelin, Sindelar, Meibohm (eds.), Pharmaceutical Biotechnology, 3rd ed, Informa Healthcare 2007 23

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

MANNOSE RECEPTOR IMPACT ON THE PK OF MABS

Hig clea	h-mannose gly rance in huma	ycans on the Fc region o ans	f therapeutic IgG antibodies increase serum	100	[
Tabl Calo glyo	e VI. culated decrease in t can at different dosin	otal PK AUC attributable to faster o g regimens (see text for details)	learance of therapeutic Mabs containing at least one Fc M5	р (hg/mL)	7	Non-M5,	$t_{1/2} = 25.9$	d.
Mab	Dose	% decrease in AUC due to faster M5 c	learance, average of 2 (range) PK time range (h)	tior				
Mab1	1000 mg intravenously	1.06 (0.84-1.27)	1-816	ıtra	17			
	300 mg intravenously	0.90 (0.85-0.94)	2-816	1 CGL	1		ana an	
	100 mg intravenously	1.09 (0.95-1.22)	1-312	Con		M5 t	- 11 /d	-
	300 mg subcutaneously	1.70 (1.63-1.77)	24-648			$100, t_{1/2}$	2 - 11.4u	
Mab2	1000 mg intravenously	2.77 (2.58-2.96)	1-168					
Mab3	20 mg/kg intravenously	1.31 (1.02-1.59)	1-696	0.1	+	10	20	
	20 mg/kg intravenously	5.83 (5.73-5.92)	0.5-336		0	10	20	30

Secondary and tertiary structure predicted to prevent uptake through mannose receptor •

Likely antibody specific due to conformational dynamics

Mannose content tracked as a "quality attribute" for drug product

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

24

MOLECULAR UPTAKE

- Wide array of internalization mechanisms on eukaryotic cells
- <u>Clathrin-independent</u>
 - Phagocytosis
 - Macropinocytosis
 - Caveolin-dependent endocytosis
- <u>Clathrin-dependent</u>
 - Receptor-mediated endocytosis
- > mAbs serve as opsonins and enhance binding for phagocytosis through Fc receptors

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements. actual results may vary materially; Amgen disclaims any duty to update.

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

HUMAN FC GAMMA R PROPERTIES

Receptor	FcgR1 (CD64)	FcgR IIa (CD32)	FcgR IIb (CD32)	FcgR IIIa (CD16)	FcgR IIIb (CD16)
Structure					8
Binding to IgG1 Order of affinity	1-10nM IgG1=G3 IgG4 IgG2	>500nM IgG1=G3 IgG1=G2* IgG4	>500nM IgG1=G3 IgG4 IgG2	>500nM IgG1=G3 IgG4 IgG2	? IgG1=G3 IgG4 IgG2
Cellular expression	MO, DC, eosinophils neutrophils	MO, DC, platelets, eosinophils, neutrophils	B cells, MO, DC, neutrophils	NK, activated MO, DC	Neutrophils
Function	Phagocytosis, monomeric mAb and immune complex uptake, stimulation for cytokine secretion	Phagocytosis, immune complex uptake, stimulation for cytokine secretion	Inhibition of immune response	ADCC	Activation upon cross- linking?
Allelic prevalence (caucacians)		131H/H: 44% 131H/R hets:31% 131R/R: 25%	I232:: T232:	158V/V: 11% 158F/V hets:39% 158F/F:50%	Wt isoform is158V/V

Cell killing: IgG1=IgG3>IgG4>IgG2

26

Gessner Ann. Hematol. 1998, 76:231-48

McMahon, H. & Boucrot, E. (2011) Nature Rev. Mol. Cell. 12: 517-533

AMGEN

Nature Reviews | Molecular Cell Biology

ADCC and CDC: Mechanisms of Action

ADCC

- 1. Fc receptors on effector cell binds target-engaged mAbs
- 2. Initiates release of cytolytic enzymes

*Enhanced FcR-Fc interactions lead to improved clinical outcomes

CDC

- 1. C1q complement protein binds "multimeric" IgG bound to target
- 2. Initiates complement cascade

Role of FcR in clearance?

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

ENGINEERING FC GAMMA INTERACTIONS TO ENHANCE CL OF SOLUBLE ANTIGEN

NEONATAL FC RECEPTOR (FCRN) MEDIATES RECYCLING OF IGG & ALBUMIN

FcRn:

- Fc receptor neonatal
- Brambell identified receptor responsible for maternal to fetal IgG transfer
- > Heterodimer consisting of the glycosylated class I MHC protein α FcRn and a β_2 microglobulin (m) subunit
- Expressed in endothelial cells of vasculature, APC, Kidney, muscle
- IgG recycling due to pH-dependent binding to FcRn in acidic endosomes

IgG 1, 2, and 4 ~ 21d T $\frac{1}{2}$

IgG3 ~ 7d T ¹/₂ (H435R)

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

31

FCRN KNOCKOUT MICE HAVE SIGNIFICANTLY INCREASED IGG ANTIBODY CLEARANCE

Half-lives were reduced from 6-8 days to 1 day

DC Roopenian et al, J. Immunology 170:3528-3533 (2003)

- Consistent with other proteins that are not efficiently cleared by the kidney

KO mice have 20-30% of the normal IgG levels as wild type mice

- IgG1 is present at a concentration of 8mg/ml in human serum (therapeutic antibodies are usually between 1-300ug/ml)
- 90% of serum proteins are IgG

34

* Anti-Receptor mAb ≠ non-linear PK and Anti-Ligand mAb ≠ linear PK

receptor

> Antigen specific elimination

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

TARGET-MEDIATED DISPOSITION (CLEARANCE)

UNDERSTANDING TMDD SERUM PK PROFILES

36

actual results may vary materially; Amgen disclaims any duty to update

Cassette dosing of competing mAb blocks TMDD of therapeutic
14C-NSP Biodistribution demonstrated clearance of therapeutic predominantly in skin

De-risking Requires Knowledge of Target Disposition

- Analysis at the cell/target level to inform the site of action minimal PBPK model
 - Drug/Target/Complex turnover, disposition, and elimination
- K_D, k_{on} can be measured via analysis of binding to whole cells
- k_{el,s} Receptor/drug internalization rate measured by flow cytometry or imaging
- k_{pt}/k_{tp} partition ratio via tissue extravasation measurement
- [T] target concentration in tissue(s) of interest requires knowledge of receptor density and cell type distribution (IHC) in the organ

TARGET INFLUENCES LINEAR VS. NON-LINEAR PK PROFILE EXAMPLE: ANTI-SOLUBLE LIGAND VS. ANTI-MEMBRANE RECEPTOR

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

FcRn can salvage mAb bound to either soluble or membrane associated antigen/target

actual results may vary materially; Amgen disclaims any duty to update.

ENGINEER IN PH-DEPENDENT ANTIGEN BINDING TO

PH-DEPENDENT BINDING CAN IMPROVE THE PK/PD PROFILE OF A MEMBRANE RECEPTOR TARGETING MAB

41

Anti-human IL-6R mAbs observe cross reactivity to nonhuman primate IL-6R

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update. Igawa Nature Biotech (2010) 28:1203-1207

AMGEN

Other factors impacting mAb disposition & PK

LOSS OF MOLECULAR INTEGRITY IMPACTS BOTH PK AND PD

ANTI-DRUG ANTIBODIES (ADA) CAN AFFECT PK & EFFICACY

44

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

- Molecular ADME:
- Case study of role of biochemistry & biophysics in understanding IgG disposition

45

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

AMGEN

IGG CH2/CH3 RESIDUE INTERACTIONS WITH FCRN

ALTER FC REGION RESIDUES TO PROMOTE HIGHER AFFINITY INTERACTIONS WITH FCRN

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

AMGEN

NOT AS SIMPLE AS JUST FC/FCRN INTERACTIONS...

47

- Altering the interaction between the Fc region and FcRn at pH 6.0 has been shown to improve the t1/2 of mAbs in vivo.
 - Gurbaxani, B. Molecular Immun. (2013) 56(4): 660-674 & references therein
- A clear correlation between affinity at 6.0 and t1/2 has not been observed with conflicting results published
 - Gurbaxani, B. Molecular Immun. (2013) 56(4): 660-674 and references therein
- Studies suggesting net charge of antibody impacts electrostatic interactions on cell surface and alters pinocytosis rates
 - Igawa, T. PEDS (2010) 23(5): 385-392
 - Boswell, A. Bioconjug. Chem. (2010) 21(12): 2153-2163
- Studies suggesting influence of Fab region on FcRn binding and PK
 - Wang, W. Drug. Metab. Disp. (2011) 39(9): 1469-1477
 - Suzuki, T. J. Immunol. (2010) 184(4): 1968-1976

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

CHARGE-MEDIATED INFLUENCE OF THE ANTIBODY VARIABLE DOMAIN ON FCRN-DEPENDENT PHARMACOKINETICS

- Investigate the influencing factors of the Fab region to FcRn-mediated IgG homeostasis •
- Briakinumab and ustekinumab both fully human IgG1 to human p40-subunit of IL-12 & IL-23 with no Xreactivity to mouse
- Nearly identical constant domains with minor differences in several allotype-specific amino acids all of which are outside the cognate FcRn-binding region

Table 1.

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements. actual results may vary materially; Amgen disclaims any duty to update

Name	Description
Briakinumab	Briakinumab
Ustekinumab	Ustekinumab
mAb 1	Ustekinumab Fv + briakinumab constant domains
mAb 2	Briakinumab Fv + ustekinumab constant domains
mAb 3	Ustekinumab HC + briakinumab LC
mAb 4	Briakinumab HC + ustekinumab LC
mAb 5	Ustekinumab CDRs on briakinumab
mAb 6	Briakinumab CDRs on ustekinumab
mAb 7	Briakinumab R19HCA, K64HCA, R83HCA*
mAb 8	Briakinumab R16HCA, R19HCA, K57HCA, K64HCA R83HCA
mAb 9	Briakinumab R27LCA, R55LCA, R94LCA*

CHARGE-MEDIATED INFLUENCE OF THE ANTIBODY VARIABLE DOMAIN **ON FCRN-DEPENDENT PHARMACOKINETICS (CONTINUED)**

50

49

Systematically engineered variants of briakinumab and ustekinumab

Name	Description
Briakinumab	Briakinumab
Ustekinumab	Ustekinumab
mAb 1	Ustekinumab Fv + briakinumab constant domains
mAb 2	Briakinumab Fv + ustekinumab constant domains
mAb 3	Ustekinumab HC + briakinumab LC
mAb 4	Briakinumab HC + ustekinumab LC
mAb 5	Ustekinumab CDRs on briakinumab
mAb 6	Briakinumab CDRs on ustekinumab
mAb 7	Briakinumab R19HCA, K64HCA, R83HCA*
mAb 8	Briakinumab R16HCA, R19HCA, K57HCA, K64HCA R83HCA*
mAb 9	Briakinumab R27LCA, R55LCA, R94LCA*

FcRn affinities and calculated net charge of all tested antibodies

Name	Ret. time (min)	Rel. KD	pI (IgG)	$q(V_L) pH 6$	q(VL) pH 7.4	q(V _H) pH 6	q(V _H) pH 7.4	q(Fv) pH 6.0	q(Fv) pH 7.4
Ustekinumab	84.3	1	9.3	2.1	1.9	3.1	2.9	5.2	4.9
mAb 1	84.3	1.0 ± 0.22	9.5	2.1	1.9	3.1	2.9	5.2	4.9
mAb 4	84.5	0.5 ± 0.08	9.6	2.1	1.9	6.4	4.3	8.4	6.2
mAb 5	85.1	0.9 ± 0.16	9.9	2.1	1.9	4.1	3.9	6.1	5.9
mAb 6	86.2	0.4 ± 0.17	9.0	3.9	3.0	5.4	3.3	9.2	6.3
mAb 9	86.2	0.4 ± 0.04	9.1	0.8	0.0	6.4	4.3	7.2	4.3
mAb 8	90.1	0.4 ± 0.07	8.8	3.8	3.0	1.4	-0.7	5.2	2.3
mAb 7	90.4	0.2 ± 0.03	9.2	3.8	3.0	3.4	1.3	7.2	4.3
mAb 3	92.4	0.2 ± 0.06	9.3	3.8	3.0	3.1	2.9	6.9	6.0
mAb 2	93.0	0.3 ± 0.19	9.3	3.8	3.0	6.4	4.3	10.2	7.3
Deisbiewensb	02.7	0.2 + 0.07	0.6	2.0	2.0	6.4	4.2	10.2	7.2

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

Schoch, A. PNAS (2015) 112(19): 5997-6002

CHARGE-MEDIATED INFLUENCE OF THE ANTIBODY VARIABLE DOMAIN ON FCRN-DEPENDENT PHARMACOKINETICS (CONTINUED)

Correlation observed between in vivo PK parameters and FcRn column elution pHs.

Differential sorting of briakinumab and ustekinumab in FcRn positive sorting endosomes

Schoch, A. PNAS (2015) 112(19): 5997-6002

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

51

AMGEN

Image-based strategies for characterization of biodistribution and mechanism of action

Defining Drug Disposition at Increasing Resolution is Critical to Focus Discovery Experiments

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

53

Near IR Fluorescent Probes for Rapid LM Biodistribution with Whole Body Sectioning

54

control

- No lab restrictions as with radiolabels
- > near IR spectral region free of interfering tissue autofluorescence
- > Minimal light scattering renders *tissue quantitation* possible

Near-IR Probe Quantitation Reveals Altered mAb-Tissue Exposure Relative to both Unlabled 8C2 &¹²⁵I-8C2

Large increase in liver uptake observed

- Rapid clearance from all tissues is at odds with anticipated residualizing nature of negatively charged probe relative to non-residualizing ¹²⁵I label
- Suggests IR800 dye affects increased clearance via specific uptake and elimination mechanisms
 - e.g. scavenger/salvage receptors
- Begs the question: How are conjugated mAbs 'perceived' in vivo?

Tissue	AUC (IR800) ^a	AUC (125I)	AUC (IR800)/AUC (125I)	TB (IR800)/TB (125I	
	nM*day	nM*day			
Liver	636.1 (69)	483.7 (57.1)	1.32	3.24	
Spleen	117.1 (15.5)	560.5 (56.9)	0.21	0.52	
Lung	213.6 (13.9)	656.4 (65.1)	0.33	0.80	
Heart	41.0 (6.6)	406.8 (33.3)	0.10	0.25	
Kidney	130.1 (23)	505.5 (45.6)	0.26	0.63	
Skin	80.1 (0.5)	630.8 (27.8)	0.13	0.31	
Muscle	21.3 (1.4)	1889.9 (7.9)	0.11	0.28	
Bone	61.2 (3.3)	324.9 (15.2)	0.19	0.46	
GI	56.2 (3.1)	350.3 (101.3)	0.16	0.39	

Conner KP, et al. Drug Metab. Disp. 42: 1906-13, Nov. 2014

Liver

Conner KP, et al. Drug Metab. Disp. 42: 1906-13, Nov. 2014

Binding, Uptake, and Recycling by Immunofluorescence

56

Membrane Accessible Receptor-mAb Complex

- Competancy for target receptor-mediated recycling is verified by immunofluorescence microscopy
- Strategy to eliminate recycling-deficient mAbs early in discovery

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking stc.e.nenc., actual results may vary materially; Amgen disclaims any duty to update.

Recycled Fraction

Intracellular Trafficking Analysis Reveals Divergent Endosomal Trajectory for Efficient vs. Poor Recycling mAbs

Provided University of Washington SOP, 2018, as part of an oral presentation and is qualified by such, contains forward-looking statements, actual results may vary materially; Amgen disclaims any duty to update.

- Efficient mAbs maintain high colocalization with Rab11 positive compartments (recycling endosome) within short timescale of assay (2hr)
- Poor recyclers concentrate into divergent endosomal compartments toward lysosomal degradation

AMGEN

Co-localization Methods for Characterizing Uptake of BsAbs into Lysosomes at 2hr Chase Using Wide-Field Microscopy

57

- BsAb displays fast clearance from central (blood) compartment due to rapid uptake and degradation in T-cells
- Trafficking analysis can anticipate PK and catabolite profile differences based on BsAb valency

Li et al. J. Neuroscience (2004), 24(16) p4070 Jaskolski et al. Journal of Neuroscience Methods 146 (2005) 42–49

INTRA-VITAL IMAGING TO ASSESS TUMOR UPTAKE AND T-CELL ACTIVITY PyMT Tumor in BL6 mouse model BI 6 Mouse Spleen

20ug Anti-TCRa mAb, 17hrs

5ug Anti-TCRa mAb, 17hrs

5ug Anti-TCRa mAb, 2hrs

AMGEN

> Aim is to characterize exposure at the target level in tissue in real time

