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Hydrogen/Deuterium exchange 
probes the accessibility of amide 

hydrogens
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*Labeling doesn’t perturb protein structure



Hydrogen exchange catalysis
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Acid catalysis

Tuchsen & Woodward, J. Mol. Biol. 1985

• Two mechanisms of 
amide proton exchange
– Slowest at pH 2-3



What governs the rate of H/D exchange in 
proteins?

• Exchange not dependent on 
surface accessibility 

– Englander SW, J. Am Soc Mass Spec 2006

• Surface accessibility 
correlations have been 
reported

– Truhlar et al, J. Am Soc Mass Spec 2006

• Main “protection factor” is 
amide hydrogen bonding
– stable secondary structure
– secondary effect of solvent 

accessibility (steric)

OO



Proteins undergo motions on many 
time-scales

• H-bonds break and 
reform as proteins 
breathe 

• Longer deuteration 
required for more 
ordered (rigid) sites

Disordered/
unstructured

Highly protected, 
well ordered

“dynamic”



Exchange regimes

• Small & fast local 
structural 
fluctuations (“EX2”)
– Brief exposure of 

amides for exchange
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Exchange regimes

• Small & fast local 
structural 
fluctuations (“EX2”)
– Brief exposure of 

amides for exchange
• Large & slow unfolding 

events (“EX1”)
– Exposes amides for a 

relatively long period



Measuring H/D kinetics
• 1950’s - Ultra-precision 

densitometry

• 1960-70s Tritium exchange 
with scintillation counting

– HPLC to remove residual 3H
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Measuring H/D kinetics
• 1950’s - Ultra-precision 

densitometry

• 1960-70s Tritium exchange 
with scintillation counting

– HPLC to remove residual 3H

• Late 1980s modern NMR to 
detect deuteration of amides

– 2D 1H-15N HSQC to monitor 
amides as they disappear

• 1990s Mass spectrometry
– D is 1 Da heavier than H
– Fast & sensitive



Dilute into D2O

Freeze in liquid N2
store at -80°C

Stock protein
(in H2O)

pH 2.5
0°C

Pepsin

Peptides

*Each D increases the 
peptide mass by 1 Da

Quench

(sec-
hours)
pH 7.4

5 min

HDX-MS experimental setup

LC-MS



Why is H/D exchange so 
popular?

• Probes the solution state of a 
protein

• Requires very little sample 
(~10’s of mgs)

• Relatively fast 
– Weeks

• Applicable to just about any 
system
– Large complexes
– Membrane proteins
– Glycoproteins
– Impure samples

• Measures local amide 
accessibility

• Probe transient conformational 
states

• Mapping protein-ligand 
interfaces

– (epitope mapping)

• Biopharmaceutical 
characterization 



What’s the protein size limit?

Kazazic et al., 2009 JASMS

• Complexity of mixtures is the limiting factor 
(spectral overlap)

• MS
Resolution helps
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What’s the protein size limit?
• Complexity of mixtures is the limiting factor 

(spectral overlap)
• MS

Resolution helps

• LC
UPLC helps

• Ion mobility
Additional dimension



Iacob, Murphy & Engen (2008) Rapid Comm Mass Spectrom

Ion mobility helps resolve peptides 
for HDX-MS



What’s the sequence resolution?

• Limited by available 
proteases
– pH 2.5, 0°C, Gnd/Urea
– Pepsin, 

Aspergillopepsin, 
Rhizopus protease,
Nepenthesin protease

• Non-specific 

IgG light chain

Houde et al, Anal Chem 2009



• Limited by available 
proteases
– pH 2.5, 0°C, Gnd/Urea
– Pepsin, 

Aspergillopepsin, 
Rhizopus protease,
Nepenthesin protease

• Non-specific 

• Reduction of disulfides 
with TCEP
– Tris(2-Carboxyethyl) phosphine
– Works at low pH

IgG light chain

Sequence coverage is limited by the 
available proteases



Overlapping fragments give higher 
resolution

• Overlapping 
peptides are 
commonly 
generated with 
pepsin

• Deuteration of 
smaller fragments 
can be calculated

IgG light chain

~8Da

~7Da

~1Da



More peptides = higher resolution

• The more peptides you can track the more precisely 
you can localize deuterium exchange kinetics. 

• Another good reason to have optimal LC and MS 
resolution (observe lower abundance peptides). 

Mayne et al. JASMS., 2011 



Rand et al. J. Am. Chem. Soc., 2008 

• Collision activated dissociation (CID)
• electron capture dissociation (ECD/ETD)

– Gentle fragmentation through radical chemistry

Why not simply do MS/MS to 
localize deuterium?



Site-specific resolution by ETD

• Mass shifts with c/z ion 
series (ETD) can localize 
deuterium to specific 
amides (red)

• CID based fragment ions 
(b/y) have lost all 
relevant deuterium 
exchange information. 

Rand et al. JASMS, 2011



Quantitative measure of Dynamics

• Probing the rates protein motions

• Intrinsic exchange rate (k2)
– Well known for all amino acids at various 

temperatures/pHs

X

k1 : opening rate
k-1 : closing rate
k2 : intrinsic exchange rate

Englander S.W., J. Am Soc Mass Spec 2006



Consequences of pH 
dependence

• k2 is pH dependent 
and kobs can 
plateau at high pH
– EX1 limit

• Going higher in pH 
doesn’t accelerate 
exchange since its 
limited by protein 
unfolding rate
– k1 limited



Two realms of exchange kinetics

*pH/temperature of deuteration can change type of observed kinetics (by changing k2)



EX1 exchange reveals local 
unfolding rates

• A direct measure of 
the opening rate (k1) 
at a specific site in 
the protein



EX2 exchange reveals local 
stability

• Compare measured rate (kobs) 
to intrinsic rates (k2)
– “protection factor”

• Estimate local stability

∆G = -RT ln Kop

kobs = (k1 / k-1) k2 = Kop k2



Exchange rates & protection 
factors 

Protection factor (PF)= Log kobs

k2

~0

4

2.5

1

Intrinsic rate
Native rate



Uses of HXMS
• Measure protein dynamics (local)

– Identify ordered/disordered regions
– Quantitative measure of dynamics

• Probe transient conformational changes
– Pulse labeling strategy

• Interface mapping
– Protein-protein or protein-ligand
– Monitor allosteric changes

• Biopharmaceutical characterization



Continuous vs. pulsed labeling
Continuous

• Protein in D2O constantly getting 
labeled as sites become 
accessible

• Measures deuterium uptake as a 
function of deuteration time
– Provides kinetic or 

thermodynamic information

Pulsed
• Protein incubated with perturbant

(Urea/Gnd, acid, etc.) for set time 
• Rapid (high pH) pulse used to label 

accessible sites
– Provides a rapid snapshot of a protein’s 

structure in solution

Various time points variable constant



Pulse labeling to track protein 
folding processes

• How do proteins fold?
• Nucleation events

– Certain secondary
structure forms first

– Anchor for the rest of the
polypeptide to fold



Millisecond pulse HDX labeling

• Denatured protein (D2O 2M GndHCl)
• Refolding (D2O pH 9): 50 ms – 3 min
• Pulse (H2O pH 9)
• Quench 

Walters et al, PNAS 2013



Millisecond pulse HDX labeling

• Denatured protein (D2O 2M GndHCl)
• Refolding (D2O pH 9): 50 ms – 3 min
• Pulse (H2O pH 9)
• Quench 

Walters et al, PNAS 2013



Measuring protein folding with 
pulse labeled HDX

Walters et al, PNAS 2013



Uses of HXMS
• Measure protein dynamics (local)

– Identify ordered/disordered regions
– Quantitative measure of dynamics

• Probe transient conformational changes
– Pulse labeling strategy

• Interface mapping
– Protein-protein or protein-ligand
– Monitor allosteric changes

• Biopharmaceutical characterization



Interface mapping
• Comparison of free and 

bound HDX profiles can 
reveal interactions sites

• Allosteric effects!
– Caveat if structure is 

unknown
– Benefit if structure is known



Example of extensive allosteric 
changes with ligand binding

Guttman et al. 2014 Structure

• Two drugs bind nearly 
the same site on the 
proteins

• Yet have dramatically
different effects on the
exchange profiles

• Excellent probe to 
monitor allosteric 
effects



Hopper et al., 2008 JASMS

Screening for protein-ligand 
interactions

• Intact protein HDX 
with rapid MALDI

• 3 min/ligand



Uses of HXMS
• Measure protein dynamics (local)

– Identify ordered/disordered regions
– Quantitative measure of dynamics

• Probe transient conformational changes
– Pulse labeling strategy

• Interface mapping
– Protein-protein or protein-ligand
– Monitor allosteric changes

• Biopharmaceutical characterization



Biopharmaceuticals

• Used to ensure proper folding 
of large molecule drugs
– Higher order structure (HOS)
– Especially useful if no activity 

assay is available

• Formulation
– Identify optimal 

buffers/formulation and sites of 
aggregation

– Solid state HDX of lyophilized
material

Engen J.R., Anal Chem 2009



Conformational Purity from HDX

~80% pure ~50% pure





Protein structural information from 
a mass measurement

Covalent modifications
• Side chain specific reagents
• Oxidative labeling

Proteolytic susceptibility

Cross-linking Hydrogen/Deuterium exchange



Covalent foot printing with MS
• Stable covalent 

modification 
– Oxidative labeling 

(hydroxyl radicals)
• Exposed sidechains

are more reactive than
buried ones

• Protein is perturbed by
labeling! 
– Fast labeling is key (ms 

or faster)

Covalent modifications
• Side chain specific reagents
• Oxidative labeling



Fast protein oxidation via radicals
• Fast photochemical

oxidation of proteins
(FPOP)
– UV laser splits 

hydrogen peroxide to 
form radicals

• X-ray foot printing
• Synchrotron radiation

– X-rays split water to form 
radicals



Guan & Chance Trends in Biochemical sciences 2005

X-ray Footprinting (XF-MS)

X-ray

LC-MS

Digest

Dose responseSite identification

Label side chains
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Chemistry of side chain oxidation

• Most reactive sites 
commonly yield +16 
Da species
– Met, Cys, Phe, Tyr, 

Trp*

Xu & Chance, Chem. Rev. 2007
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