Optical Spectroscopies: UV-Vis, CD, Fluorescence

Abhi Nath MEDCH 528 Jan 19/24, 2018

Outline

- UV-Vis Absorbance
 » intrinsic vs. extrinsic chromophores
- Circular Dichroism
 - » far UV, near UV
- Fluorescence
 - » steady-state, lifetime, anisotropy, single-molecule

Electronic Spectroscopy

Jablonski, Nature 131:839 (1933)

Ideal Absorbance Spectra

, eleligui

Spectrophotometer Schematics

adapted from Wikipedia

What is Absorbance, Anyway?

Intrinsic Chromophores in Proteins

20 mM phosphate, pH 6.5, 6.0 M Gdn HCI

Edelhoch, Biochemistry 6:1948 (1967)

ChemWiki, chemwiki.ucdavis.edu Soderberg, Organic Chemistry With a Biological Emphasis

Das et al., Anal. Chem. 81:3754 (2009)

Fernando et al. Biochemistry 45:4199 (2006)

Non-2-State Systems: Rhodopsin Photobleaching

Kawamura et al. Vision Res. 17:991 (1977)

Transient Absorbance: Pump-Probe Spectroscopy

Lytle et al. Appl. Spectr. 39:444 (1985)

Kandori et al. Biochemistry (Mosc.) 66:1197 (2001)

Summary of Absorbance

- · convenient probe of concentration
- label-free steady-state & kinetic insight
- · can interrogate very short timescales

Caveats

- low resolution
- intrinsic chromophores not very environment-sensitive

Outline

- UV-Vis Absorbance
 » intrinsic vs. extrinsic chromophores
- Circular Dichroism
 » far UV, near UV
- Fluorescence
 - » steady-state, lifetime, anisotropy, single-molecule

Circular Dichroism

 differential absorption of <u>circularly polarized</u> light by an <u>optically active</u> system

Wikipedia

Circularly Polarized Light (CPL)

Wikipedia

Linear vs. Circular vs. Elliptical Polarizations

Measuring Circular Dichroism

chemwiki.ucdavis.edu

Optically Active Molecules

- chiral molecules interact differentially with circularly polarized light
 - » differential refraction: optical rotation
 - » differential absorbance: circular dichroism
- (any asymmetric single molecule is optically active, even without a chiral center)

Far-UV CD of Protein 2' Structure

Pritzker et al. PNAS 95:7287 (1998)

Gratzer, P. Roy. Soc. Lond. A. 297:163 (1967)

Measuring Protein Folding by CD

Krittanai & Johnson. Anal. Biochem. 253:57 (1997)

Measuring Protein Folding by CD

Hornemann & Glockshuber. J. Mol. Biol. 262:614 (1996)

Greenfield. Nat. Prot. 1:2527 (2006)

Hammoudeh et al. J. Am. Chem. Soc. 131:7390 (2009)

Near-UV CD: Local Structure Around Aromatic Side-Chains

Vertessy et al. FEBS Lett. 421:83 (1998)

Summary of CD

- label-free probe of secondary structure
- · rich insight into folding mechanisms

Caveats

- low resolution
- can be tricky to assign changes, esp. near-UV

Outline

- UV-Vis Absorbance » intrinsic vs. extrinsic chromophores
- Circular Dichroism
 - » far UV, near UV
- Fluorescence
 - » steady-state, lifetime, anisotropy, single-molecule

Fluorimeter Schematic

chemwiki.ucdavis.edu

Excitation & Emission Spectra

Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed.

Intrinsic Trp Fluorescence: Folding

Royer et al. Protein Sci. 2:1844 (1993)

Excited State Lifetimes by TCSPC (Time-Correlated Single Photon Counting)

Wahl, Technical Note: TCSPC v2.1, Picoquant

Sidebar: Shot Noise

• For any counting process where the trials or intervals are independent of each other, the *variance* is equal to the *number of observations*. $\sigma^2 = N$

TCSPC: Mixed Systems

Frequency-Domain Lifetime Measurements

Fluorescence Quenching

static quenching - no effect on lifetime

Fluorescence Quenching: Stern-Volmer Plots

Förster Resonance Energy Transfer: A Special Case of Dynamic Quenching

Förster Resonance Energy Transfer: A Special Case of Dynamic Quenching

Förster equation describes distance dependence of energy transfer efficiency, ET_{eff}:

$$ET_{eff} = \frac{A}{A+D} = \frac{1}{1+(r/R_0)^6}$$
$$R_0 \propto \kappa^2 \Phi_D J(\lambda) n^{-4}$$

Förster radius R_o depends on: orientational parameter $\kappa^2 \approx 2/3$ donor quantum yield Φ_D overlap integral $J(\lambda)$ refractive index *n*

Distance Measurement by FRET

Distance Distributions by TR-FRET

Grupi & Haas. J. Mol. Biol. 411:234 (2011)

Environment-Sensitive Extrinsic Fluors: the Twisted Intramolecular Charge-Transfer Mechanism

The Perrin Equation

$$\frac{r_0}{r} = 1 + \frac{\tau}{\theta}$$

 $\tau = \text{fluorescence lifetime}$ $r_0 = \text{fundamental anisotropy}$ $\theta = \text{rotational correlation time}$ $\theta = \frac{\eta V_H}{RT} = (6D_R)^{-1}$

 $\begin{array}{l} R=& gas \ constant \\ T=& temperature \\ \eta=& viscosity \\ V_{H}=& volume \ of \ molecule \\ D_{R}=& rotational \ diffusion \ coefficient \end{array}$

$$r_0 = \frac{3\cos^2 \xi - 1}{5} \le 0.4$$
 where ξ is the angle between excitation and emission dipole moments

Helicase Activity Monitored by Anisotropy

anisotropy jumps upon helicase binding to labeled DNA

ATP addition triggers unwinding – anisotropy progressively decreases as strands unwind

low final anisotropy reflects lower molecular weight and higher flexibility of ssDNA product vs. dsDNA substrate

Xu et al. Nuc. Acids Res. e70 (2003)

Outline

- UV-Vis Absorbance
 » intrinsic vs. extrinsic chromophores
- Circular Dichroism
 - » far UV, near UV
- Fluorescence
 - » steady-state, lifetime, anisotropy, single-molecule

Single-Molecule Geometries

TIRFM Selective Probes Surfacebound Molecules

Olympus, http://www.olympusmicro.com/primer/

Single Molecules Are Resolved as Diffraction-Limited Spots

Mattheyses et al. J. Cell. Sci. (2010) 123:3621

Ha et al. PNAS (1996) 93:6264

Measuring Stoichiometry by Single-Molecule Photobleaching

Ulbrich & Isacoff Nature Methods (2007) 3:319

Super-Resolution Microscopy : (STORM, PALM, FPALM, PAINT, SHRIMP, FIONA...)

Betzig et al. Science (2006) 313:5793

von Diezmann *et al. Chem. Rev.* (2017) 117:7244

Conformational Dynamics of Immobilized Protein Molecules

Confocal Single Molecule-FRET

Why Does Autocorrelation Decay?

Adapted from Fluorescence Correlation Spectroscopy: An Introduction to its Concepts and Applications, by Petra Schwille and Elke Haustein

Diffusion Measurement by FCS

Other Uses of FCS

Fast (sub-ms) components of the autocorrelation signal can be used to probe conformational dynamics, chemical reactions, and rapid photophysical processes.

Summary of Fluorescence

- sensitive, selective and versatile probe of:
 » conformation, local environment, intramolecular distances
- broad dynamic range for kinetics:
 » excited-state lifetime, anisotropy, FCS
- insight into molecular heterogeneity, population distributions
 - » SM-FRET, TR-FRET, TIRF

Caveats

- · many factors can affect intrinsic fluorescence
- extrinsic fluorophores may perturb the system
- distance determination low resolution, many potential artifacts