Calorimetry (ITC/Thermodynamics and drug design)

Lecture 7 MEDCH 528 John Sumida Molecular Analysis Facility/Analytical Biopharmacy Core

Isothermal Titration Calorimetry

$$Q_i = n \cdot M_t \cdot \Delta H_B \cdot V_0 \cdot \Theta$$

Ligand/macromolecule in the cell - titrant/analyte in the syringe

Macromolecule (protein, mAb, liposome, etc) in the calorimetric cell is titrated with a binding partner at constant temperature.

ITC monitors:

- Changes in conformational states
- Polar and non-polar interactions in the active site
- Proton transfer upon binding
- Changes in hydration and hydrogen bonding

Small molecule Protein (Analyte) In the syringe

Characterizing the type of binding

Primary objective of an ITC experiment

Ligand/macromolecule in the cell Titrant/analyte in the syringe

Macromolecule (protein, mAb, liposome, etc) in the calorimetric cell is titrated with a binding partner at constant temperature.

Pure sample – SEC, Ion exchange, mixed phase, GPC.

Good sample preparation:

- Dialysis of ligand and analyte in the same buffer
- Accurate concentration measurement
 - Spectroscopic Abs at 280nm
 - Refractometry
 - Least accurate are colorimetric assays.

Characterizing the type of binding

Entropy-enthalpy compensation

 M_t^0 = Initial Ligand concentration (macromolecule) V^0 = Working Volume

 Q_i = heat of binding after the ith injection

 Θ = is the fraction of binding sites occupied by analyte

$$Q_i = n \cdot M_t \cdot \Delta H_B \cdot V_0 \cdot \Theta$$
 The Analysis

 M_t^0 = Initial Ligand concentration (macromolecule)

 V° = Working Volume

 Q_i = heat of binding after the ith injection

 Θ = is the fraction of binding sites occupied by analyte

$$\begin{split} M_{t} &= M_{t}^{0} \Biggl[\frac{1 - \frac{\Delta V}{2 \cdot V_{0}}}{1 + \frac{\Delta V}{2 \cdot V_{0}}} \Biggr] \qquad \qquad X_{t} = X_{free} + n \cdot \Theta \cdot M_{t} \\ X_{t} &= X_{t}^{0} \Biggl[1 - \frac{\Delta V}{2 \cdot V_{0}} \Biggr] \qquad \qquad K_{a} = \frac{\Theta}{(1 - \Theta) \cdot X_{free}} \end{split}$$

Quadratic equation is solved for Θ

High Affinity interaction by competition assay

Study of Aspartyl protease

MW=35086.76

Bailey et. al. Biochem J. 1993 289, 363-71.

ITC/DSC for Ultra-tight binding

Ligand stabilization of the thermal transition

 $K_{Bind}(27^{o}C) = 51 \text{pM}$

Gomez, Javier; Freire, Ernesto; "Thermodynamic Mapping of the Inhibitor Site of the Aspartic Protease Endothiapepsin", J. Mol. Bio., 1995, vol.252, pp337-350

Brandts, John F; Lin, Lung-Nan, "Study of Strong to Ultratight Protein Interactions Using Differential Scanning Calorimetry", Biochemistry, 1990, vol.29, pp6927-6940

Measuring proton exchange at the active site

> Increasing the pH reduces the affinity for peptatin A

Gomez, Javier; Freire, Ernesto; "Thermodynamic Mapping of the Inhibitor Site of the Aspartic Protease Endothiapepsin", J. Mol. Bio., 1995, vol.252, pp337-350

Tang, JBC, vol.246 1971 pp. 4510-4517 Fruton, Bergmann, Science vol.87 1938 p.557

6.6

pН

6.8

7.0

7.2

 $d\ln(K_B)$

 $\overline{d(pH)}$

Characterizing the protonation state at the active site

Enthalpy of binding as a function of the ionization enthalpy

 $\Delta H_{Binding} = \Delta H_{rxn} + n\Delta H_{Ionization}$

$$K_{B}(pH) = K_{B}(initial) \cdot \frac{10^{(pKa-pH)}}{1+10^{(pKa-pH)}}$$

Gomez, Javier; Freire, Ernesto; JMB., 1995, vol.252, pp337-350 Marciniszyn, J. Jr., Hartsuck JA, Tang JJN, JBC 1976 vol.251, pp7088-7094

Displacement isothermal titration calorimetry of HIV-1 protease inhibitors affinity

Exothermic versus Endothermic Binding: polar vs non-polar interactions

 $\Delta C_{p} = -60 \text{ cal/mol-K}$

Glu-Asp-Leu

 $\Delta G = -6.0 \text{ kcal/mol}$

$$\Delta G_B = \Delta H_B - T \Delta S_B$$

$$-R \cdot T \ln(K_B) = \Delta G_B$$

Acetyl-Pepstatin +

 ΔG = -8 kcal/mol

$$\Delta C_{P} = -452 \text{ cal/mol-K}$$

 Δ H = -3.6 kcal/mol

Non Polar : Polar 400 Å² : 380 Å²

 $\Delta H = 7.0 \text{ kcal/mol}$ Non Polar : Polar 854 Å² : 450 Å²

Exothermic versus Endothermic Binding: solvation and conformational entropy

854 Å² : 450 Å²

Exothermic: affinity decreases with increasing temperature

Endothermic: affinity increases with increasing temperature

Binding of NNRTs to WT HIV-1 protease

Velazquez-Campoy, et. al. Biochemistry, 2000, vol. 39, pp. 2201-2207

Schon et. al. Biophys. Chem. 2003, vol.105, pp. 221-230

 $\Delta H = 3.9 \text{ kcal/mol} \qquad K_i = 2.0 \text{ nM}$ $-T\Delta S = -15.7 \text{ kcal/mol}$ $\Delta C_p = -0.450 \text{ kcal/mol-K}$ Non-pol:pol = 3.3

 Δ H = 2.2 kcal/mol K_i = 4.0 nM -T Δ S = -14.0 kcal/mol Δ C_P = -0.340 kcal/mol-K Non-pol:pol = 2.8

 $\label{eq:constraint} \begin{array}{ll} \Delta H = 2.8 \mbox{ kcal} & \mbox{K}_{i} = 2.0 \mbox{ nM} \\ -T \Delta S = -14.2 \mbox{ kcal/mol} \\ \Delta C_{p} = -0.400 \mbox{ kcal/mol-K} \\ \mbox{ Non-pol:pol} = 3.2 \end{array}$

 $\Delta H = -2.3 \text{ kcal} \qquad K_i = 0.3 \text{ nM}$ -T $\Delta S = -11.2 \text{ kcal/mol}$ $\Delta C_p = -0.380 \text{ kcal/mol-K}$ Non-pol:pol =2.3

Binding of NNRTs to WT HIV-1 protease

Binding of NNRTs to and active site mutant HIV-1 protease V82F/I84V

2nd generation protease inhibitors: WT protease

2nd generation protease inhibitors: V82F/I84V binding

Yoshiumura et. al. PNAS , 1999, vol.96, pp. 8675-8680 Luque et. al. Biochemistry, 1998, vol.37, pp. 5791-5797 Velazquez-Campoy et. al. Protein Science, 2000, vol. 9 pp.1801-1809 Velazquez-Campoy et. al. Archives Biochem Biophys., 2001, vol. 390, pp. 169-175 Levitt, et. al. Curr. Op. Struct. Bio. 2001, vol.11, pp.560-566

2nd generation protease inhibitors: V82F/I84V binding

Structurally constrained

Yoshiumura et. al. PNAS , 1999, vol.96, pp. 8675-8680 Luque et. al. Biochemistry, 1998, vol.37, pp. 5791-5797 Velazquez-Campoy et. al. Protein Science, 2000, vol. 9 pp.1801-1809 Velazquez-Campoy et. al. Archives Biochem Biophys., 2001, vol. 390, pp. 169-175 Levitt, et. al. Curr. Op. Struct. Bio. 2001, vol.11, pp.560-566

- High affinity $K_D \approx 10^{-11}$
- Conformationally flexible
- Exothermic interactions increased hydrophilic character
 - In the examples here the ability to trap water in the active site resulted in the increased exothermic nature of the binding

More soluble conformationally flexible molecules not more hydrophobic constrained molecules