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15-2 LIGAND EQUILIBRIA

Macroscopic and microscopic constants

nds with multiple sites on macromolecules,
ion between microscopic and macroscopic
ided by the titration of the aming
fine GH}, GH,and G~ as

Before discussing the association of liga
it is useful to discuss briefly the distinct
equilibrium constants. A concrete example is prov
acid glycine. This can be viewed as a dibasic acid. We de

{ the forms bearing 1wo, one, and no protons, respectively. The macroscopic equilibria
are
GH; = GH + H"* {15-1a)
GH=G +H' {15-1b)
and the two macroscopic dissociation constants are given by
| K, = (GH)(H*)/(GH3?) (15-2a)
{15-2b)

Ky = (G )YH")I(GH)

The two pK values can be obtained from a titration; at 25°C, extrapolated to zero

jonic strength, they are pK, = 2.35,and pK; = 9.78.
We now examine the microscopic states of glycine during the titration. Alto-

gether there are four forms, where

GH} = ‘H,NCH,COCH (15-3a)
GH = "H,NCH,COO0~ + H;NCH,COOH (15-3b)
G~ = H,NCH,C00 (15-3c)
and the microscopic ionization equilibria are
*H,NCH,CQ0
7 N
"M ,NCH,COOH H,NCH,C00 {15-4)
ks
" H,NCH,COOH

where the k; values arc microscopic dissociation constants. According to Equations
15-2 und 135-3,

K, = [(*H;NCH;COO ) + (H,NCH,COOH)](H ")/(* H;NCH,COOH)

=k +k, (15-5a)
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18-2 LIGAND EQUILIBRIA

K, = (H,NCH,COO “}H *)/[(* H;NCH,COO ") + (H,NCH,COOH)]
= Liky ' + ki) (15-5b)
Equation 15-5 shows the relationships between the microscopic and macroscopic

dissociation constants.
The four microscopic constants are not independent. In particular,

klk3 = k2k4 (15'6)

Equation 15-6 is easy to verify; it is a direct consequence of detailed balancing. Equa-
tions 15-5 and 15-6 give three relationships involving the (our microscopic constants.
A fourth relationship may be obtained by assuming that &, has the same value as the
single dissociation constant for the methyl ester of glycine (*H3NCH.CO,CH; =
H,NCH,CO,CH, + H"). This assumption gives pk, = 7.7. With the values of pK,
and pK . given earlier, it then is casy to calculate from Equations 15-5 and 15-6 that
pk, = 2.35, pky =9.78, and pk, = 4.43. From these values, the reader should be
able to deduce whether dissociation from *HiNCH,COOH to neutral glycine
proceeds predominantly by the top path or the bottom path in Equation 15-4.

This simple illustration serves as a concrete example of the meanings of micro-
scopic and macroscopic constants, and of their interrelationships. As a second
example, we treat a situation in which statistical effects come into play. Consider a
molecule A, which has two equivalent sites for a specific ligand. For instance, A
might be a long-chain aliphatic dicarboxylic acid in which the microscopic dis-
sociation constant is the same for each carboxylic group, regardless of the ionization
state of the other group (this condition can be fulfilled if the aliphatic chain is long
enough that clectrostatic interactions between the two carboxyl groups are negli-
gible). The macroscopic equilibria are

A+H' =AM, (15-7a)
AH™), + H® 2 AH); (15-7b)
and the macroscopic dissociation constants are given by
Ky = (AXH")(AH"),) (15-8a)
Ky = (A(H"))H)(AHT),) (15-8b)

The microscopic equilibria can be written schematically as

851

A+H" =AH' {15-9a)
A+ HY = "HA (15-9b)
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LIGAND INTERACTIONS AT EQUILIBRIUM
AH*® + H* = *HAH* (15-9c)
*HA + H* = *HAH"* {15-9d)

where the microscopic dissociation constant & is the same for each step. [n Equation
15-9 we have distinguished between microspecies by assigning one ionization site Lo
the left and the other to the right side of A. In terms of microscopic species, the
macroscopic forms are defined as

A=A (15-10a)
A{H*}, = AH* + *HA (15-10b)
AH"), = *HAH* (15-10c)

From Equations 135-8 to 15-10, we conclude that

K, =k2 (15-11a)
K, =2k (15-11b)
K,/K,=1/4 (15-11c)

Thus, even though the microscopic dissociation constant is the same for each ioniza-
tion, statistical effects make the first apparent macroscopic dissociation constant
Jour times smaller than that of the second one.

In this chapter and in Chapter 17, we [requently use the concepts of microscopic
and macroscopic constants, and it will be important to keep firmly in mind the
distinctions between them that are illustrated in the preceding examples.

15-3 IDENTICAL INDEPENDENT SITES
Calculating the number of microscopic species

We first consider a macromolecule M, which contains # sites for the ligand L. Each
site has the same microscopic ligand dissociation constant k. The sites also are
assumed Lo be independent—that is, the microscopic dissociation constant k for a
particular site is the same regardless of the state of occupancy of the other sites. The
equilibria that characterize the interaction may be written as

My +L =M,
M, +L =M,

M, , +L=M, (15-12)
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15.3 IDENTICAL INDEPENCENT SITES 853

e index on M denotes the total number of molecules of L that are bound.

where th
' Thus, M, is taken to mean the total set of microscopic species that have i bound mole-
! cules of L. For example, if n = 4, and we schematically represent our macromolecule

as a square with four sites,

M, = t+LL+LL+LL+LL+t (15-13)

ual amounts. Thus, with n = 4, there

where each microscopic form is present in eq
In general, there are £, ; distinct ways

are six microscopic species that comprise M.
1o put i ligands on n sites, where?

! _nx(n—l)x(n—2)x---x(u—i+1)_ n!
E it " (n - DUt (15-14)

Consequently, there are Q,; microscopic forms that make up M,.

Calculation of v

m measurements of ligand binding typically yield the moles of ligand

Equilibriu
bound per mole of macromolecule. This parameter generally is designated v; it is
given by
v=Y iM)/ T (M) (15-15)
i=o [ i=o

Our goal is to express v in terms of the free ligand concentration, (L).
In general, we can express the concentration of any form M; in terms of any

' Equation 15-14 is casy to derive. There are u different sites in which to place the first ligand; afier it

i has been placed, there are it = 1 sites available for the sccond, then n — 2 for the third, and so on, with
- i+ 1 sites available for the ith ligand. The product n x @ = 1) % -+ x (n =i+ 1) would give the

total arrangements possible except that there is a redundancy; this arises because we have counted each

: distinet acrangement of i ligands in # sites more than once. For example, il we place the first ligand in

site ? and the sccond in site 4, this gives the same end result as if we had placed the first in site 4 and the

sccond in site 2. In the product nx (m—1) = - = {w = i + 1), we have counted each distinet arrange-

ment it Limes, 50 a correction must be made.
Note ulsa that £, is the binomial cocfficient of x' in the expansion of (1 + x)".
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LIGAND INTERACTIONS AT EQUILIBRIUM

other form by making use of the mucroscopic dissociation constants. For example,

and

| ]
(M) = (M- L) K: = ML) [ [T K,
I Jj=

hfl = (Mu}(L}.-'I(Ml)
Ki = (Mo (LY (M)

K, = (M, )(L)(M,)

(15-16a)
(15-16b)

{15-16¢c)

(15-17)

The macroscopic constant K; is to be distinguished from the single microscopic
constant k that characterizes all of the sites. The dissociation constant k refers to the
equilibrium with respect to particular microscopic species, whereas the macroscopic
constant K| involves the entire ensemble of species represented by M; and M, _ . For
example, with n = 4, and again using the format of the schematic illustration from

Equation 15-13,

=T

( L

whereas K, for example, is

K|=

(L

(15-18)

(15-19)

The relationship between K, and k is governed by the simple statistical factors

Q. ;- In particular, it is easy to show (Problem 15-1) that

x

macromolecules,
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Ky = (- 1/ )k (15-20)
Therefore, we can rewrite Equation 15-17 as
(M) = (M, JLYK,; = (M- )[(n = i + 1)/i][(L)/k] (15-21)
With similar expressions for (M,_,), (M, _,), etc., we obtain
i
(M) = (M) [T [(n = + l)-'j]}[(L).-'k]‘ {15-22}
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n(LY/k
V= e (15-28)
1 + (LYK
or
wi{L) = n/k — vk (15-29)
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15-3 1DENTICAL INDEPENDENT SITES

Substitution of Equation 15-22 into Equation 15-15 gives

£ {11t + v}y

=1

nor (15-23)
AT - il

Vo=

Although Equation 15-23 appears algebraically complex, it readily simplifics.
The product term is identical to Q, ; (Eqn. 15-14}):

i
[T [(n =i+ V4] =ntin- ik (15-24)
I

Substituting Equation 15-24 into Equation 15-23, we obtain

Y. int/tn — UTILLYAY
=1 (15-25)

1+ i [nt/(n = iy )[(LYKY
i=1

vy =

The denominator of Equation 15-25 is simply the binomial expansion of [1 + (L)/k]":
[L+Lyk]* =1+ 5 [nYn - U'JLLYKT (15-26)

i=1 =

Differentiation of Equation 15-26 with respect to (L)/k, lollowed by multiplication

by (L)/k, gives
n[(LY/kJ[1 +(LYk]*" ! = Z": i[n(n — ULy KY {15-27)

i=1

The right-hand side of Equation 15-27 corresponds to the numerator of Equation
15-25. Substituting Equations 15-26 and 15-27 into Equation 15-25, we obtain
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LIGAND INTERACTIONS AT EQUILIBRIUM

The simple forms of Equations 15-28 and 15-29 suggest that these expressions
can be derived without recourse to the statistical framework we have generated.
This is indeed the case, although the derivation just given is useful in that it gives
good insight into the statistical features of the binding equilibria.

A simple derivation

An easy way to derive Equation 15-28 is to focus on the binding equilibrium of site
i only, Let ©; be the [ractional saturation of site i. Then,

©; = (Bound site {)/[(Free site {) + (Bound site i)]

_ (Free site i)[(Bound site i)/(Free site i)] (15-30)
"~ (Free site {)[ 1 + (Bound site i)/(Free site i}]

Because (Bound site i)/(Free site i) = (L)/k, we have

Lk .
O =i (15-31)

A similar expression may be written for each of the n identical sites. Adding these n
expressions together, we obtain Equation 15-28 (note that z‘ Q=)

v

Scatchard plot

Equation 15-29 is a useful representation of the relationship between v and (L) for
the simple case of identical independent sites. A plot of v/(L) versus v is sometimes
known as a Scatchard plot (see Scatchard, 1949}). This plot is linear with an ordinate
intercept of n/k, an abscissa intercept of n, and a slope of —k ™! (Fig. 15-1). Clearly,
this plot provides a simple and convenient way to obtain the two parameters that

characterize the binding equilibria.

15-4 MULTIPLE CLASSES OF INDEPENDENT SITES

Curved Scatchard plots

In many cases, a Scatchard plot of v/(L} versus v proves to be curved rather than
linear. This may mean that more than one class of sites are present. If there are n,
independent sites with the intrinsic microscopic dissociation constant k,, and »n,
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Intercept = n/k

vitL)

Intercept = n \
0
Flgure 15-1
Scatchard plot for identical, independent binding sites.

v

sites with dissociation constant k,, and so on, then an equation analogous to Equa-
tion 15-28 holds for each class of sites. Thus we obtain

n{L)/k,

and

v(L) = Z m;/k;

T 1+ (Lyk, (15-33)

Equations 15-32 and 15-33 are parametric forms that may be used to obtain the
parameters »; and k; from a Scatchard plot. Figure 15-2 is an illustration of a biphasic
plot for the case of two classes of independent sites,

macromolecules,
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LIGAND INTERACTIONS AT EQUILIBRIUM

Decomposition of a biphasic Scatchard piot

The plot in Figure 15-2 may be decomposed as follows. A tangent line is drawn to
the plot around v = 0. The v/(L) intercept of this line? is my/ky + na/ks. As a first

Intercept = u,/k, + ny/k,

v/iL)

Figure 15-2

A biphasic Scatchard plot.
Intercept = n, + n,

{L)

approximation, we can assume that it is dominated by the smallest k (defined as k,)
and estimate that the intercept is equal to n,/k,. Likewise, the v intercept of the
tangent line is taken to be a first estimate of n,. With estimates of n, and k,, we can
subtract from the data the contribution of the strongest-binding {smallest-k) sites.
We then can construct a new plot that can be analyzed according to Equation 15-29
in order 1o obtain cstimates of 1, and k,.

The first estimate of all the parameters may be improved by a refinement pro-
cess. For cxample, a new estimate of n,/k, may be obtained by subtracting the
approximate values of na/k, from the v/(L) intercept of the tangent line mentioned
above. After this, the process can be continued to obtain a new estimate of iy and k.
Throughout the procedure, the constraint is used that ny + iy equals the observed
v intercept. The refinement procedure is continued untit Y dny/k;) equals the observed
v/(L) intercept.

Figure 15-3 gives data for the binding of Mn?* to the ¥(three-filths molecule)
of a specific transfer RNA in 0.1 » triethanolamine. Based on the t(RNA cloverieal

' The ratio v {L) appears 1o go 10 0.0 when (L) -+ 0. The vaive of this indeterminate form can be ob-
tained from 'Hopital's rule, which says that the limiting ratio is given by the limit of the derivative of the
numerator (v) divided by the derivative of the denominator, (L), From Equation 15-32, [dv/d{L))y,-0 =
¥mgk, and d(L)HL) = 1: theeefore,

,[I_i,lpu [vily] = ; kg

This result also is obtained by letting (L) — 0 on the right-hand sikde of Equation 15-33.

1scopic equilibria

Ao

(15-1b)
(15-2a)
(15-2b)

(15-1a)

(15-3a)
(15-3b)
(15-3¢)
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Figure 15-3

Biphasic Scatchard plot of Mn? * binding to
the 5'-(three-fifths molecule) of a specific
IRNA. [After A. A. Schreier and P. R
Schimmel, J. Mol. Biol. 86:601 (1974).]

viL) (pa™h

v

' structure, this nucleic acid fragment contains single-stranded regions and a double-
: helical hairpin stem and hairpin loop. The data were analyzed as just described to
give two classes of sites with n; = 6 and n, = 10; the dissociation constants are
k, = 14 um and k; = 200 pm. The curve is constructed from these calculated param-
eters, whereas the points are experimental. Good agreement is achieved between the
calculated and observed behaviors.

Are the parameters obtained from a multiphasic Scatchard plot unique? For
example, could other #; and k, values equally well fit the data in Figure 15-37 With
the constraint that n, + n, = constant, variations of +1 in »; give relatively small
(less than 4 50%) changes in the k; values for this particular example. This suggests
" “ihat the k; values are reliable. A related question is whether the data might also be

- described well by positing more than two classes of sites. Of course, the greater the
. number of parameters available to fit any data to a model, the better will be the
. agreement between theory and experiment. The best procedure is to account for
f data, within the limits of experimental error, with the fewest possible assumptions
- and parameters. This approach gives a picture of the minimal (and presumably
- dominant) features of the system.

8 155 INTERACTION BETWEEN SITES
Some general considerallons

'.';.,__ ‘f Now we must ask whether the assumption of separate classes of sites, and the
|~ representation of Equations 15-32 and 15-33, is the only way to account for curved
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r 86D LIGAND INTERACTIONS AT EQUILIBRIUM

Scatchard plots. It clearly is not. {t is possible, for example, that binding of one
ligand alters the affinity of the macromolecule for the successive one, and so on,
effectively producing a continuous variation in the microscopic dissociation constant.
. For the simple case of one class of identical sites, we can define kg as the micro-
1 scopic dissociation constant at v = 0. As v increases, interactions between sites
: cause a change in k. Let AGP® be the standard [ree energy change for dissociation of
a bound ligand. This is given by

AG® = AGY + RT(v) (15-34)

where AG) = —RT Inky, and ¢(v) is a function that,” by definition, takes into ;
account the effects of interactions between sites that vary with the degree of satura- |
tion. From Equation 15-34, and the relationship k(v) = ¢ 4" %7 we obtain

k(v) = kge ™" (15-35)

where ¢(v) is zero at v = 0.

Equations 15-28 and 13-29 can now be used, but with k replaced by k(v) from
Equation 15-35. If ¢(v) is a decreasing function of v, then k(v) increases as saturation
proceeds. In this case, the Scatchard plot according to Equation 15-29 will be curved,
concave upwards. On the other hand, il ¢(v) increases as v increases, then the
i Scatchard plot can be “humped,” or concave downwards. As binding proceeds,
i successive ligands are bound more strongly (smaller dissoctation constants). This
' situation corresponds to one in which a cooperative interaction between sites occurs
as v increases, Figure 15-4 illustrates the two cases.
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Flgure 15-4 ¢(v) decreases
Hypothetical Scarchurd plins for cases where

@(v) decreases or increases with increasing r.
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18.5 INTERACTION BETWEEN SITES

Because $(v) is a completely arbitrary function, it can always be defined so as
to explain any data according to Equations 15-28 and 15-35. In an ideal situation,
enough is known about the system under investigation that one can reasonably
choose between the description of Equation 15-35 or the assumption of independent
classes of sites as the best way to account for a curved Scatchard plot. If Equation
15-35 is believed to be the best description, then it is desirable 10 have a model for
the system that permits a theoretical derivation of the functional form of @(v). For
example, simple clectrostalic theory can be used to estimate ¢(v) for the association
of ions with a charged macromolecule (see Tanford, 1961). With a definite form
assigned to ¢(v), one then can test whether the data actually do conform to Equa-
tion 15-35.

However, in many situations it is not possible to derive an expression for ¢(v).
Enough information about the system simply is not available.

In the absence of accurate information on (or evidence for) negatively inter-
acting sites as described by Equation 15-35, it is best to treat a concave-up Scatchard
plot in terms of independent classes of sites (according to Eqns. 15-32 and 15-33).
This, at the least, provides a useful phenomenological description of the system.
Maoreover, in any given situation, the likelihood of genuinely distinct classes of sites
may be sell-evident. In the example of Figure 15-3, the macromolecule under inves-
tigation presumably contains both single-stranded and double-stranded sections.
Because the two types of sections are known to have significantly different ligand
(Mn?*) affinities, a model with at least two classes of sites is physically reasonable.
If, as in the example, the data can be quantitatively accounted for by the different
classes of sites known to exist in the macromolecule, then there is no reason to
invoke possible effects due to ¢(v).

However, in the event of a concave-down Scatchard plot (Fig..15-4), separate
classes of noninteracting sites cannot be assumed. This is because the description of
Equations 15-32 and 15-33 gives only concave-up plots. Therefore, a concave-down
plot is definitive evidence for interactions between sites: ¢(v) decreasing with in-
creasing v. We treat such systems in following subsections.

In the general case where there are several classes of interacting sites, then
Equations 15-32 and 15-33 apply, with each k, replaced by k,(v) where, by analogy

with Equation 15-35,
k‘(\') = ’\'058 St (15'36)

where ko is the intrinsic microscopic dissociation constant at v =0 for sites in
class i, and ¢(v) is the interaction function for sites in class i. The interaction function
for each class of sites may be unique, so that ¢{v) can be different from ¢y(v). Of
course, Equations 15-32 and 15-33, in conjunction with Equation 13-36, are useful
only if enough information is available that $i(v) is known for cach of the various
classes of sites.

The preceding discussion serves to sketch the general issues that must be con-
sidered in treating interacting sites. In practice, cooperative interactions are probably
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15-5 (INTERACTION BETWEEN SITES

The magnitude of the cooperativity involved in binding two ligands can be cast
into units of energy by a simple procedure. Let AG] = RTIn K, be the apparent
standard free energy change for binding the ith ligand in a series. (Recall that K; is
a dissociation constant, so that —RT In K; is the {rec energy change associated with
dissociation; therefore, +RT In K; is that associated with association.) This free
energy change contains a pure statistical component given by RT In (Q,;. €0
(cf. Eqn. 15-20). To correct for this, we define the intrinsic standard free energy change
associated with binding of the ith ligand in a series as AG, which is

AGY = +RTIn K; — RT In(Q;_ 1/ Q) (15-38)

We define the interaction energy AG, ;; per site as the difference in the intrinsic free
energies of association of the ith and jth ligands. This interaction cnergy is

AGI.U = A(-;? - A(—;?

u

Q. i1/
—RTIn(K;/K;) + RTin(—-"ll--l'—-"l') (15-39)
. J) Qn.j = I'Qn.j

With this definition of AG, ;,, if the jth ligand binds more strongly than the ith (j > i),
then as in a cooperative system, AG,;; < 0. Note also that, if cach site has the same
intrinsic dissociation constant, then the two terms on the right-hand side of Equation

" 15-39 cancel, and AG,;; = 0.

In the case of oxygen binding to human hemoglobin, Equation 15-39 gives
AG,;; = —2 keal mole™ ! site™ " for i = | and j = 4. This means that site site inter-
actions stabilize a bound oxygen molecule in the saturated hemogiobin tetramer
by approximately 2 kcal mole ™" over an oxygen molecule bound to a hemoglobin
species that has three vacant sites. N

A semiempirical approach: the Hill constant

For the purpose of treating and characterizing data on the cooperative association
of ligands, it is common practice to use a semiempirical approach and then to interpret
the physical significance of the empirical parameters that are obtained. This approach
is based on the assumption that the binding over part of the saturation range can
be described by equations phenomenologically resembling those for an infinitely
cooperative system. In the extreme case of infinite cooperativity, the binding can be
represented as an “all-or-none” reaction:

M, & oL = M, (15-40)

K" = (Mp)(L)'/(M,) (13-41)
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LIGAND INTERACTIONS AT EQUILIBRIUM

the most commonly encountered examples ol interacting sites. These are considered
next.

Prevalence of cooperative interactions

There are many examples in biology of the association of ligands with a macromole-
cule being a cooperative process. One of the best-studied examples is the association
of oxygen with hemoglobin, discussed in greater depth in Chapter 17. In addition,
many multisubunit enzymes bind substrates or other molecules in a cooperative
fashion. The cnzyme aspartate transcarbamoylase (also considered in Chapter 17)
exhibits this kind of behavior. And, in some instances, certain nucleic acids coopera-
tively bind particular ligands. Thus, cooperative imteractions are widespread in
biological systems.

The cooperative association of ligands with macromolecules has been treated
by many authors. Some aspects of these treatments, and some of the models for co-
operativity put forth, are discussed in Chapter 17. At this point, however, it is worth
considering some of the elementary features of these kind of interactions.

Statistical effects and interaction energy

For the sake of illustration, consider a macromolecule that combines with four
ligands, L. If all of the sites are identical and independent and bind L with a micro-
scopic dissociation constant k, then, according to Equation 15-20, the four macro-
scopic conslants are

Ky =(1/4)k {15-37a)
K, =(2/3)k {15-37b)
Ky =(3/2k ' {15-37¢)
Ky=4k (15-37d)

Therefore, in this case, K, < K, < K3 < K that is, viewed [rom the standpoint
of the macroscopic constants, the binding appears to become progressively weaker
as saturation proceeds, even though the same microscopic constant holds for each
site. Thus, from the standpoint of the macroscopic dissociation constants, statistical
effects introduce some apparent anticooperatirity into the binding equilibria,

In a cooperative system, when corrected for statistical cffects, the apparent
dissociztion constant for one or more of the successive steps decreases as saturation
progresscs. In the example of a macromolecule with four sites, this means that, if
cooperativity occurs between the first and second step, then (as a consequence of
Eqn. 15-37} 4K, > (312)K,; if all four steps involve progressively stronger binding,
then 4K, = (3 2}K, = (2K, = (1/4K,.
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where K is the apparent dissociation constant for the interacting sites. For this case,
the parameter v is given by

V= "(Mn)[(MD) + (Mll)]
= [n(LY/K")[1 + (Ly/K") (15-42a)

wi(L) = [n(Ly™ 5 K)[1 + (Ly/K"] (15-42b)

whereas the fractional saturation ¥ = v/n is

¥ = (@KL +(Lp/Kn] =),

Equations 15-40 through 15-43 are based on the assumption that binding is
infinitely cooperative for all » ligands. In practice, infinite cooperatively is not
observed. Instead, data on cooperative interactions commonly are described over
part of the saturation range (typically 25°, to 75°,) by semiempirical relationships
analogous to Equations 15-40 through 15-43. These semiempirical relationships are

v = [n(Ly/K™)[1 + (L)Y K] (15-44a)
(L) = [n(Ly~ /K] /[1 + (LYK (15-44b)
7= [Ly K g+ LK) (15-45)

where | < oy < n. The parameter oy commonly is known as the Hill constant (see Hill,
1910); it is an index to the cooperativity. When a = n, the system behaves as perfectly
cooperative, whereas ay = 1 indicates no cooperativity. Figure 15-5 shows several
plots of ¥ versus (L)/K for various values of ay,. It is clear that the steepness of the
curve is very sensitive to ay,.

From Equation 15-45, the parameter 2y, is given by

diinCy1 - 71} _
] = (15-46)

Equation 15-46 serves as a convenient definition of the Hill constant. In general,
Equation 15-45 does not hold over the entire range of values of F, so that oy is a
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where (L), is the concentration of L at half-saturation, and 2, , is the value of i
#y when 7 = 1,2, Equations 15-46 and 15-47 are uscful relationships; they show that I
the Hill constant can be obtained from the slope of a plot of In[ 7/(1 — ®] versus i
In(L), which is called a Hill piot.

Equation 15-44 gives parametric relationships that can be used to analyze
Scatchard plots of cooperative associations, sometimes over a broad range of values !
of v and (L). These plots are markedly different from those discussed earlier for ,
independent, noninteracting sites. According to Equation 15-44b, (or 2y > 1 the |
plot actually passes through the origin—as when v = 0 [or (L) = 0] and v/(L) = 0.
Atlow values of v or (L), the curve rises and reaches a maximum at vy, = nloy — 1)/agy,
and then descends to intercept the v axis at v = n.

Figure 15-6 shows an example of this kind of Scatchard plot. This figure gives
data on the cooperative association of Mn?* to transfer RNA. The concave-down
character of the plot is clearly evident. Parameters that characterize the interaction
may be obtained by defining K** in terms of experimentally determined variables as

follows:

10
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o 2 = |
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) s ’,’ Figure 15-5
l’ Effect of 2y on fractionad satiration curees
02(-/ /,
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% |
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§ (LYK
|
; function of the degree of saturation. Often the parameter xy is evaluated at 7 =
-} | — 7 = 1/2. In this case, Equation 15-46 becomes (note that d Inx = dx/x)
i d(v(1 =7 X 2
i ( (FA J)]) _ Hae (15-47)
4 d(L) v=12 (L2
i
1

B I8

K = (Ly"[n(M}g — (L)) (L), (15-48)

™ e O G AL = [Faa

and rearranging Equation 15-48 to give

i In(L} = =(1/2) In[(n/v) = 1] + In K (15-49)
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15-7 LINKAGE OF LIGAND BINDING
FROM AN ENERGETIC VIEWPOINT

Coupling free energy

Gregorio Weber (1975) has used a different viewpoint for examining coupled ligand
equilibria, treating them in terms of energetic considerations. This treatment helps
us to think concretely in terms of the energies involved in the linked reactions.

For the sake of illustration, consider a stmple system in which a macromolecule
binds one molecule each of ligands L, and L,. The reactions are

M+L, =ML, AGY (15-82a)
M+ L, =L,M AGY (15-82b)
LM+ Ly = LML, AGY2) (15-82¢)
ML, + L, o= LML, AGYH1) (15-82d}

Standard free energics for each of the reactions are indicated on the right-hand side;
for example, AGY(2) is the standard free energy change for binding L, to the macro-
molccule saturated with L,

The free cnergies in Equation 15-82 are not independent, but are tied together
because

AGY + AGY(1) = AG? + AGY(2) = AG"(1,2) (15-83)
where AG%(1, 2) is the standard free energy change lor the reaction
M4L, 4L, =L,ML, (15-84)

Figurc 15-8 is a diagram of these relationships. Note that there is no requirement that
AGY = AGY(2) or that AG? = AGY(1). From Equation 15-83, we have
AGY(2) - AGY = AGY(1) - AGY = AGY, (15-85)
The meaning of this equation is similar to the linkage relationship of Equation 15-65
forthecasem=n=11t says that the efiect (in terms of free energy) of L, on the
binding of L, is the sume as the effect of L, on the binding of L,. This mutual effect
of one ligand on the other can be put in terms of a coupling free energy AGY, (defined
in Egn. 13-85).
Combining Equations 15-83 and 15-83, we obtain another expression for AGY,:

AGY, = AGY1,2) — AGY — AGY (15-86)
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Figure 15-8

Free energy dingram for a system of two ligands, L, and L, and a macromolecule M. Each ligand has
one site on the macromolecule. Standard chemical potentials are designated 12 with subscripts referring
1o particular species. [After G. Weber, Adv. Protein Chem. 29:1(1975).]

Thus, AGY, is the difference between (a) the standard free energy for the overall
reaction M + L, + L, = L,ML,, and (b) the sum of the standard free energies for
the reactions M + L, & ML, and M + L, = L,M. Figure 15-8 shows the definition
of AGY,.

_ Clearly, if AG?, = 0, there is no interaction between ligands; binding of each
proceeds in a truly independent fashion. For other cases, the sign of the coupling
free energy determines whether the interaction between ligands is cooperative or
antagonistic. If AGY, < 0, then binding of either L, or L, facilitates binding of the
other ligand. Conversely, when AG?, > 0, there is antagonism between the bindings
of the ligands.

There is still another way to look at the coupling free energy. To do this, we write
out the three relevant equilibria and their associated free energy changes:

Ly + Ly + MaL,ML, AG"(1,2) (15-871})
L, + Mz ML, AGY {15-87b)
L, +M=L,M AGY (15-87¢)

Subtracting Equation 15-87b,c from 15-87a, we obtain
ML, + LM = M+ LML, AGY(1,2) - AGY — AGY = AGY, (15-88)

Thus, AGY, is the free energy change for a kind of disproportionation reaction. This
reaction has an equilibrium constant K, » given by

- AGY,
Ky = e Mkl = (LML, M) (ML, )(L,M) (15-89)
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{

"" From this analysis, it is clear that, if AGT, < 0, then K, > 1, and the species L,ML,
and M are favored over the partially saturated forms ML, and L,M. The reverse

holds true when AGY, > 0.

Effect of coupling energy on distribution of bound ligands

1t is of interest to inquire what magnitude of AGY, is required to alter significantly
the distribution of L, and L, among the species ML, LM, and L,ML,, as compared
with the distribution when there is no coupling (AGY, = 0). For this purpose, we
define the fractional saturations ¥, ¥, and ¥y;:

¥ = [(L:ML,) + (ML)} (M), (15-90a)
T2 = [(LaML}) + {L;M)]) (M) (15-90b)
! Fiz2 = (LaML,) (M), (15-90c)

where (M), = (M) + (ML,) + (L:M) + (L,ML,)}. Clearly, 7, and ¥, are the overali
fractional saturations with respect to L, and L, and ¥, is the degree of double
saturation.

| Consider a situation where (L,) and {L,) are so adjusted that one-hall of the L,
|| sites and one-half of the L, sites are filled. Under these conditions, it is easy to show
' (see Problem 15-4) that

K =702 = 7] (15-91)
- and

Fia = (UDKIZ/( + KiD) (15:92)
F Substituting Equation 15-91 into Equation 15-89, we obtain

AGY, = ~2RT In[2F,,/(1 - 27,2)] ! (15-93)

From Equation 15-93 we can obtain a plot of AGY, versus 27, ; (Fig. 15-9). When
2T, = 1. all of the bound ligands are in the form of L,ML,. When 2§, = 0, ail of
the bound ligands are in the form of ML, and L,M. At the point 2¥,, = 0.3, we see
that AGY, = 0(no coupling); this is the result expected for a simple unbiased statistical
distribution of the ligands among ML,, L.M, and L,ML,, and where each species is
present in equal amounts. Note that the plot in Figure 15-9 is symmetric about the
point 27, = 0.5.

When AGY, = —2 keal mole ™', then 2¥,, is greater than 0.8; when AGY; =
— 3 keal mole !, then 2F,, is over 0.9, In the latter case, over 907, of the bound L,
and L, is in the form of the double-saturated species L,ML,. In this instance, ligand
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L 2 |
E |  Figure 15-9
Gl 0 I Relation berween degree of double suturation
y 2 41 | (Fi2) and free energy caupling (AGY,) of the
i e | | bound figends, when the degree of saturation of
= +4: cach ligand (7,, F;) equals 0.5. [Alter G, Weber,
- : Ade. Protcin Chem, 29:1 (1975).]
+6
i : L i = J
: T 3 4 s 6 1 8 9 L0
- 27|2
l . - - -
! binding proceeds largely from the species M to LoML,, with little formation of ML,
Bp £ P 2Ly _
! and L,M. Conversely, when AG{, = +2 or +3 kcal mole !, most of the species at

1 half-saturation are the monoliganded forms ML, and L,M. Thus, a coupling energy
of only about +2 kcal mole™ ! is sufficient to cause a substantial skewing of the
distribution of liganded forms away from that obtained on a random basis.

Coupling free energies found in biological systems

Table 15-1 gives several cxamples of values for the coupling free energy between
two different ligands that interact with a protein. Both positive and negative energies

| are found, corresponding to antagonistic and cooperative effects, respectively. The
.
Table 15-1
Free energy coupling between ligands
AGY,
Protein Ligand couplct {kcal mole ™ ')
{ Hemoglobin Oxygen, 2,3-DPG +13 ;
Hemoglobin Oxygen, IHP +23
Serum albumin, bovine ANS, 3,5-dihydroxybenzoate +1.5
Pyruvate kinase Phosphoenol pyruvate, K* -1.2
Pyruvate kinase K*, Mn** -14
Pyruvate kinase Phenylalanine, Mn" +0.8
Aspartate transcarbamoylase CTP, succinate +0.5
Lactate dehydrogenase,
chicken heart NADH, oxalate - 1.5

§ |HP = inositol hesaphosphate; CTP = cytidine inphosphate; 2.3.DPG = 2 3-diphosphogly-
cerate; ANS = Lanilinonaphthalene 8-sulfonate.
Sourcr- After G. Webet, Adv, Protein Chem. 291 (1975).
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