Cephalosporins

First isolated by Brotzu from *Cephalosporium acremonium* (a mold) from a sewage outfall (and popular swimming spot) in Sardinia. He noticed the *C. acremonium* cultures inhibited the growth of *Salmonella enterica* (typhi), a Gram- bug that produces a penicillinase.

- M.O.A. same as penicillins, to inhibit synthesis and maintenance of bacterial peptidoglycan.

Semi-synthetic cephalosporins

- Cephalosporin C had poor bioavailability, rapidly cleared.
- All cephalosporins in use are of the semi-synthetic variety, no equivalents to Pen G and V in use.
- Cleave off natural sidechain to yield 7-aminocephalosporanic acid (7-ACA) core, which then could be synthetically substituted with other sidechains (R1, R2).
- Alter the spectrum, stability, bioavailability, resistance to beta-lactamases.
- More modifications possible than w/ penicillins.
Cephamycin general features

- Cephamycin beta-lactams + cephalosporins = cephems (but we will use “cephalosporin” to refer to both).
- Originally isolated from *Streptomyces*; now semi-synthetic derivatives
- Cephamycins have an O-methylated beta-lactam ring
- Good anaerobic activity

Cephalosporins general features

- Generally broader spectrum coverage than penicillins
 - Whereas original penicillins had primarily Gram+ coverage, most cephalosporins also cover some Gram-
 - Better resistance to beta-lactamases, but susceptible to AmpC, ESBL (if bug makes ESBL or AmpC, typically go to carbapenems instead).
- Cleared renally with ~5-30% metabolic breakdown, much active drug excreted in urine
- Low toxicity:
 - Lower allergenicity than penicillins though still some due to beta-lactam ring opening (10% cross-reactivity with penicillins)
Cephalosporins general features

- Other adverse drug reactions:
 - Some such as cefotetan has an N-methylthiotetrazole (N-MTT) moiety that is released as a metabolic byproduct. This can cause hypoprothrombinemia, which manifests as bleeding due to combination of effects: 1) altered gut flora changes vitamin K production, 2) direct interaction of N-MTT with prothrombin, 3) platelet dysfunction. First noted with moxalactam (2-3% fatalities; off market).
 - N-MTT also can inhibit aldehyde dehydrogenase, giving rise to a disulfiram-like reaction following alcohol consumption. Intense hang-over feeling, hyper-sensitivity to alcohol.

![Cefotetan](image)

Cephalosporins general features

- Cephalosporin “generations”: generally get broader, more Gm- coverage with later generations
 - Generation 1: Generally had better Gram+ than Gram- activity; susceptible to many Gram- beta-lactamases
 - Examples: Cephalexin, Cefazolin
 - Generation 2: Better resilience to Gram- beta-lactamases, Gram- coverage
 - Examples: Cefuroxime
 - Generation 3: More potent, better Gram- beta-lactamase stability, better penetration; pick up some anti-Pseudomonal activity, give up some Gram+ coverage
 - Examples: Cefpodoxime, Cefdinir, Cefixime, Cefotaxime, Ceftriaxone, Ceftazidime.
 - Generation 4: Very broad spectrum (Gm- and Gm+)
 - Example: Cefepime
 - Generation 5: MRSA and PRSP coverage
 - Example: Ceftaroline
Cephalosporins general features

- Some penetrate to the CNS:
 - *Cefuroxime*
 - *Cefotaxime*
 - *Ceftazidime*
 - *Ceftriaxone*

Oral cephalosporins

Underlined are on UW formulary

<table>
<thead>
<tr>
<th>generation</th>
<th>name</th>
<th>brand name</th>
<th>structure</th>
<th>dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cephalexin</td>
<td>generic</td>
<td></td>
<td>QID</td>
</tr>
<tr>
<td></td>
<td>cephradine</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
<tr>
<td></td>
<td>cefadroxil</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
<tr>
<td>2</td>
<td>cefaclor</td>
<td>generic</td>
<td></td>
<td>TID</td>
</tr>
<tr>
<td>2</td>
<td>cefuroxime</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
<tr>
<td>2</td>
<td>cefprozil</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
</tbody>
</table>

Table - Oral Cephalosporins

<table>
<thead>
<tr>
<th>generation</th>
<th>name</th>
<th>brand name</th>
<th>structure</th>
<th>dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cephalexin</td>
<td>generic</td>
<td></td>
<td>QID</td>
</tr>
<tr>
<td></td>
<td>cephradine</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
<tr>
<td></td>
<td>cefadroxil</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
<tr>
<td>2</td>
<td>cefaclor</td>
<td>generic</td>
<td></td>
<td>TID</td>
</tr>
<tr>
<td>2</td>
<td>cefuroxime</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
<tr>
<td>2</td>
<td>cefprozil</td>
<td>generic</td>
<td></td>
<td>BID</td>
</tr>
</tbody>
</table>

Courtesy Prof. Gary Elmer
Oral cephalosporins (cont.)

<table>
<thead>
<tr>
<th>Generation</th>
<th>Cephalosporin</th>
<th>Brand Name</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>cefpodoxime</td>
<td>proxetil</td>
<td>BID</td>
</tr>
<tr>
<td>3</td>
<td>ceftibutin</td>
<td>Cedax®</td>
<td>qd</td>
</tr>
<tr>
<td>3</td>
<td>cefdinir</td>
<td>generic</td>
<td>BID</td>
</tr>
<tr>
<td>3</td>
<td>cefditoren</td>
<td>pivoxil</td>
<td>BID</td>
</tr>
<tr>
<td>3</td>
<td>cefixime</td>
<td>Suprax®</td>
<td>qd</td>
</tr>
</tbody>
</table>

Parenteral cephalosporins/cephamycins

![Parenteral Cephalosporins and Cephamycins](image_url)

<table>
<thead>
<tr>
<th>Generation</th>
<th>Name</th>
<th>Brand Name</th>
<th>Cephalosporin Structure</th>
<th>*Cephamycin Structure</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cefazolin</td>
<td>generic</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>TID</td>
</tr>
<tr>
<td>2</td>
<td>cefoxitin*</td>
<td>generic</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>QID</td>
</tr>
<tr>
<td>2</td>
<td>cefotetan*</td>
<td>generic</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>BID</td>
</tr>
<tr>
<td>2</td>
<td>cefuroxime</td>
<td>generic</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>TID</td>
</tr>
<tr>
<td>3</td>
<td>cefotaxime</td>
<td>generic</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>TID</td>
</tr>
<tr>
<td>3</td>
<td>ceftizoxime</td>
<td>Cefizox®</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>TID</td>
</tr>
<tr>
<td>3</td>
<td>ceftriaxone</td>
<td>generic</td>
<td>R_1 -NH_O_N_N_CH_3 -CH_3</td>
<td>O_CH_2_O_CH_3</td>
<td>qd</td>
</tr>
</tbody>
</table>

Table - Parenteral Cephalosporins and Cephamycins

Courtesy Prof. Gary Elmer
Formulary Oral Cephalosporins

a) General comments:
- Used for follow-up and ambulatory patient therapy, UTI (pen. Allergic), otitis media, staph. URI, LRI

b) First Generation
- **Cephalexin Keflex**
- **Dista and generics**
- **Indications:**
 1. Respiratory tract – *Strep. pneumoniae* and *Strep. pyogenes*
 2. Otitis media – *Strep. pneumoniae*, *H. flu*, *M. cat.* (the *H. flu* and *M. cat.* may be resistant)
 4. Bone – *Staph.*, *Proteus mirabilis*
 5. GU – *E. coli*, *Klebsiella*, *Proteus mirabilis*

c) Second Generation
- **Cefuroxime Axetil**
 - **Ceftin® Glaxo Wellcome and generic**
 - Broad spectrum oral cephalosporin that gets into CNS
 - **Indications:**
 1. Pharyngitis and tonsillitis – *Strep. pyogenes*
 2. Otitis media – *Strep. pneumoniae*, *M. cat.*, *H. flu*, including *-lactamase producing*
 3. Sinusitis – *Strep. pneumoniae*, *H. flu*
 4. Exacerbation of chronic bronchitis – *Strep. pneumoniae*, *H. flu*, *H. parainfluenzae*
 5. UTI – *E. coli*, *Klebsiella*, *Proteus*
 7. GU – *E. coli*, *Klebsiella*, *Proteus*
 8. Impetigo – *Staph.*, *Strep.*

d) Third Generation
- **Cefpodoxime proxetil**
 - **Vantin**
 - **Pharmacia and now generic**
 - Broad spectrum, beta lactamase resistant cephalosporin
 - **Indications:**
 2. Chronic bronchitis – *Strep. pneumoniae*, *H. flu*, *M. cat.*
 3. Otitis media
 4. Pharyngitis
 5. STD – *N. gonorrheae*, 200mg stat single dose
 6. Uncomplicated skin infections – *Staph.*, *Strep. pyogenes*
 7. UTI

Some oral cephalosporins are prodrugs

- **Examples:** **Cefpodoxime**, **Cefuroxime**, **Ceftizoxime**, **Cefditoren**, **Cefetamet**, **Cefditoren**
- Metabolized to active drug by intestinal mucosal tissue
- Sometimes aids in better absorption; e.g. crossing membranes
- Sometimes aids in better solubility

<table>
<thead>
<tr>
<th></th>
<th>Cefazidime</th>
<th>Generic</th>
<th>Chemical Structure</th>
<th>TID</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>TID</td>
</tr>
<tr>
<td>4</td>
<td>Cefepime</td>
<td>Generic</td>
<td></td>
<td>BID</td>
</tr>
</tbody>
</table>

Courtesy Prof. Gary Elmer
Some parenteral cephalosporins are prodrugs

๏ Anatomy of a cephalosporin: ceftaroline (a gen-5 ceph)

Cephalexin (Gen1, PO)

๏ Keflex ® (Eli Lilly), and generics
๏ Up to 90% excreted unmodified in urine.

๏ Indications:
 ๏ Skin infections: S. aureus (MSSA even w/ penicillinase, not MRSA), S. pyogenes
 ๏ Respiratory infections: S. pneumoniae (not PRSP), S. pyogenes
 ๏ Otitis media: S. pneumoniae, H. influenzae, M. catarrhalis
 ☺ H. influenzae and M. catarrhalis may have resistance due to beta-lactamases
 ๏ Urogenital: E. coli, Klebsiella pneumoniae, Proteus mirabilis
 ๏ Bone: S. aureus, P. mirabilis
Cephalexin (Gen1, PO)

Indicated spectrum for cephalexin (Gen1, oral):

Aerobic gram-positive microorganisms:
- *Staphylococcus aureus* (including penicillinase-producing strains)
- *Streptococcus pneumoniae* (only penicillin-sensitive strains)
- *Streptococcus pyogenes*

Resistant Gm+ bacteria, not covered:
- MRSA
- PRSP

Most strains of *enterococci (E. faecalis)* are resistant to cephalosporins, including Cephalexin.
- *Enterobacter spp.*
- *Morganella morganii*
- *Proteus vulgaris*
- *Pseudomonas spp.*
- *Acinetobacter calcoaceticus*

Aerobic gram-negative microorganisms:
- *Escherichia coli*
- *Haemophilus influenzae*
- *Klebsiella pneumoniae*
- *Moraxella catarrhalis*
- *Proteus mirabilis*

Cefazolin (Gen1, Parenteral IV/IM)

- Ancef ® (GSKB), and generics
- Up to 80% excreted unmodified in urine.
- For Gm+ *Staphylococci* including *Staph. aureus* (not MRSA), *Streptococci* including *Strep. pyogenes*, *Strep. pneumoniae* (not PRSP)
 - Respiratory tract infections (*Staph.*, *Strep.*)
 - Uncomplicated skin infections
 - Bone and joint
- Some Gram- coverage: *E. coli*, *H. influenzae* (some resistance), *P. mirabilis*,
 - Urogenital
- Like N-MTT, N-MTD sidechain, potential for bleeding and disulfram-like alcohol side effects
 - Co-administration with parenteral vitamin K may counter bleeding
Cefazolin (Gen1, Parenteral IV/IM)

Indicated spectrum for cefazolin (Gen1, parenteral):

Aerobic gram-positive microorganisms:
- *Staphylococcus aureus* (including penicillinase-producing strains)
- *Staph. epidermidis*
- *Strep. pneumoniae* (only penicillin-sensitive strains)
- *Strep. pyogenes*
- *Strep. agalactiae*

Resistant Gm+ bacteria, not covered:
- MRSA
- PRSP
- *Enterococci* (*E. faecalis*)

Aerobic gram-negative microorganisms:
- *Escherichia coli*
- *Proteus mirabilis*

Cefuroxime axetil (Gen2, PO)

- Ceftin ® (GSKB) and generics
- Prodrug: cefuroxime axetil converted to cefuroxime (also IV, not as prodrug)
- Indications:
 - Pharyngitis, Tonsillitis, Otitis media, sinusitis, bronchitis (*H. flu, S. pneumo, M. cat*)
 - Skin infections (*S. pyogenes, MSSA*)
 - UTI (*E. coli, Klebsiella*)
 - *N. gonorrhoeae* including penicillinase-producing
 - Early Lyme disease *Borrelia Burgdorferi* (amoxicillin, doxycycline also)
- **Penetrates to CNS:** meningitis (*N. meningitidis, H. influenzae, S. pneumoniae*)
Cefpodoxime proxetil (Gen3, PO)

- Vantin® (Pharmacia), and generics
- Prodrug
- Good Gram- and Gram+ coverage
 - not Pseudomonas, Enterococci, B. fragilis
- Indications: big for otitis media, pharyngitis, sinusitis
 - Community Acquired Pneumonia (CAP):
 - S. pneumoniae, H. influenzae, M. catarrhalis
 - H. influenzae and M. catarrhalis may have resistance due to beta-lactamases
 - N. gonorrhoeae: single 200mg dose
 - UTI
 - Otitis media:
 - S. pneumoniae, H. influenzae, M. catarrhalis
 - Uncomplicated skin infections: S. aureus (not MRSA), S. pyogenes

Cefdinir (Gen3, PO)

- Omnicef® (Abbot) and generics
- Similar coverage to cefpodoxime, but tastes better (important for children)
- Best selling cephalosporin, often prescribed for AOM (acute otitis media) if infection not responding to amoxicillin
Relative tastiness of cephalosporins

TABLE 2

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loracarbef</td>
<td>+++</td>
</tr>
<tr>
<td>Cefdinir</td>
<td>+++</td>
</tr>
<tr>
<td>Cefixime</td>
<td>+++</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>+++</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>+++</td>
</tr>
<tr>
<td>Amoxicillin'</td>
<td>+++</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole'</td>
<td>++</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>++</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate'</td>
<td>++</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>+</td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>+</td>
</tr>
</tbody>
</table>

* Data modified from references 9-11

Comparative commonly prescribed agent in pediatric patients

+ ++++, best overall taste; +++ above average;
 +++, below average; + poorly palatable

Cefotaxime (Gen3, Parenteral IV/IM)

- **Clafon®** (Sanofi Aventis)
- Cefotaxime becomes deacetylated, resulting desacetylcefoxime also active
- Broad spectrum; Gram-, Gram+
 - Activity against PRSP, but used in combination with other antimicrobials
 - Notable Gm+ exceptions: *Enterococci*
 - Notable Gm- exceptions: *Pseudomonas*
- Lower respiratory tract infections, bone and joints, skin, urogenital infection, septicemia
- Intra-abdominal including use as pre-surgery prophylaxis
- **Penetrates to CNS**: meningitis
Ceftriaxone (Gen3, Parenteral IV/IM)

- **Rocephin ®** (Hoffman-La Roche)
- **Broad spectrum; Gram-, Gram+**
 - Can be used for Penicillin-resistant *Strep. Pneumoniae* (PRSP)
 - Highly active against *N. gonorrhoeae*: 250mg single IM dose
 - Some activity against *Pseudomonas aeruginosa*, but not the most potent
- **Very long half-life ~6-8h** (vs e.g. 1h for cefotaxime); less frequent dosing
- **Penetrates the CNS**
- **Often used in combination w/ aminoglycoside or macrolide**
 - *E.g.* w/ azithromycin for *Chlamydia tracomatis*
- **Do not co-administer or dilute with calcium-containing compounds/solutions**
 - *Ceftriaxone* precipitates with calcium

Aerobic gram-negative microorganisms:
- *Acinetobacter calcoaceticus*
- *Enterobacter aerogenes*
- *Enterobacter cloacae*
- *Escherichia coli*
- *Haemophilus influenzae* (including ampicillin-resistant and beta-lactamase producing strains)
- *Haemophilus parainfluenzae*
- *Klebsiella oxytoca*
- *Klebsiella pneumoniae*
- *Moraxella catarrhalis* (including beta-lactamase producing strains)
- *Morganella morganii*
- *Neisseria gonorrhoeae* (including penicillinase- and nonpenicillinase-producing strains)
- *Neisseria meningitidis*
- *Proteus mirabilis*
- *Proteus vulgaris*
- *Serratia marcescens*
- *Pseudomonas aeruginosa*

Aerobic gram-positive microorganisms:
- *Staphylococcus aureus* (including penicillinase-producing strains, not MRSA)
- *Staphylococcus epidermidis*
- *Streptococcus pneumoniae* (active for PRSP)
- *Streptococcus pyogenes*
- *Viridans group streptococci*

*NOTE: MRSA resistant to most cephalosporins, including ceftriaxone. Most strains of Group D streptococci and enterococci, eg, *Enterococcus faecalis*, are resistant.*

Anaerobic microorganisms:
- *Bacteroides fragilis*
- *Clostridium species* (NOTE: Most strains of *Clostridium difficile* are resistant)
- *Peptostreptococcus species*
Ceftazidime (Gen3, Parenteral IV/IM)

- Fortum ® (GSK)
- Broad spectrum; Gram-, some Gram+
 - Activity against *Pseudomonas aeruginosa*, ~85-90% sensitive (only ~68% for CF patients)
 - Poorer against Gm+, not generally used
- CNS penetration in meningitis

Cefepime (Gen4, Parenteral IV/IM)

- Maxipime ® (Elan)
- Even more resistant to beta-lactamases binds tightly to PBPs
- Better penetration of Gram- outer membranes
- Broad spectrum: Gram- and Gram+
 - Activity against PRSP
 - *Pseudomonas aeruginosa* coverage (90% sensitive for non-CF patients, only 50% for CF)
 - Enterobacteriaceae
 - Not anaerobes
- Empiric therapy: used to suppress infection, then switch to another cephalosporin
 - Does not induce the expression of chromosomal beta-lactamases;
- FDA precaution for neurotoxicity (encephalopathy, myoclonus, seizures)
Ceftaroline fosamil (Gen5, Parenteral IV/IM)

- **Teflaro®** (Cerexa, Forest Labs); FDA approved fall, 2010.
- **Ceftaroline fosamil** prodrug becomes dephosphonated in the blood to *ceftaroline*
- Similar spectrum to ceftriaxone, but gain increased Gram+
 coverage including **MRSA** and **PRSP** due to increased affinity for **MRSA**'s PBP2a and pen. resistant S. *pneumoniae*'s PBP2x, which confers resistance to most beta-lactams.
 - **MRSA** and **VRSA**
 - **PRSP**
 - **H. influenzae**
 - **M. catarrhalis**
 - **S. pyogenes**
 - **S. viridans** group
 - **E. faecalis**
 - **K. pneumoniae**
 - **Shigella**
 - NOT for *P. aeruginosa*, beta-lactamase (ESBL,AmpC) producing Enterobacteriaceae, *Bacteriodes, C. difficile*

- **Indicated uses**
 - Skin infection
 - Community associated pneumonia (CAP)

Ceftaroline fosamil (Gen5, Parenteral IV/IM)

Table 1. In vitro activity of ceftaroline against common Gram-positive and Gram-negative bacteria

<table>
<thead>
<tr>
<th>Organism (number of isolates)</th>
<th>MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>range</td>
</tr>
<tr>
<td>Gram-positive</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>MRSA (102)</td>
<td>0.03–0.5</td>
</tr>
<tr>
<td>MRSA (105)</td>
<td>0.5–2</td>
</tr>
<tr>
<td>vancomycin reduced susceptibility (647)</td>
<td>0.25–2</td>
</tr>
<tr>
<td>linazolid non-susceptible (13)</td>
<td>0.5–2</td>
</tr>
<tr>
<td>Streptococcus pyogenes (102)</td>
<td>≤0.008–0.015</td>
</tr>
<tr>
<td>Streptococcus agalactiae (104)</td>
<td>≤0.008–0.03</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td></td>
</tr>
<tr>
<td>vancomycin susceptible (102)</td>
<td>0.25–16</td>
</tr>
<tr>
<td>vancomycin resistant (108)</td>
<td>0.5–16</td>
</tr>
<tr>
<td>Streptococcus pneumonia</td>
<td></td>
</tr>
<tr>
<td>penicillin susceptible (MIC ≤0.06 mg/L) (102)</td>
<td>≤0.008–0.06</td>
</tr>
<tr>
<td>penicillin intermediate (MIC 0.12 – 1 mg/L) (102)</td>
<td>≤0.008–0.12</td>
</tr>
<tr>
<td>penicillin-resistant (MIC ≥ 2 mg/L) (100)</td>
<td>0.03–0.5</td>
</tr>
<tr>
<td>≤0.006–0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>levofloxacin non-susceptible (53)</td>
<td>≤0.008–0.5</td>
</tr>
<tr>
<td>multi-drug resistant (≥ 2 classes) (127)</td>
<td>≤0.008–0.5</td>
</tr>
<tr>
<td>Gram-negative</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>ceftazidime susceptible (102)</td>
<td>0.015–8</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td></td>
</tr>
<tr>
<td>ceftazidime susceptible (102)</td>
<td>0.015–1</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td></td>
</tr>
<tr>
<td>β-lactamase negative (130)</td>
<td>≤0.008–0.25</td>
</tr>
<tr>
<td>β-lactamase positive (101)</td>
<td>≤0.008–0.12</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (101)</td>
<td>4 to >16</td>
</tr>
<tr>
<td>Acinetobacter baumannii (101)</td>
<td>2 to >16</td>
</tr>
</tbody>
</table>

respectively) and β-lactamase-positive and -negative isolates of *Haemophilus influenzae* (MIC₉₀s, 0.03 and 0.015 mg/L, respectively) (Table 1). Ceftaroline is inactive against extended-spectrum β-lactamase (ESBL)-producing or AmpC-overexpressing Enterobacteriaceae (data not shown) and has limited activity against non-fermenting Gram-negative bacilli such as *Pseudomonas aeruginosa* and *Acinetobacter baumannii*, with MIC₉₀s of 16 mg/L for both organisms (Table 1).

The spectrum of activity of ceftaroline makes it attractive as a new agent for treating cSSSIs. The activity of ceftaroline against contemporary cSSSI clinical isolates was further explored in a surveillance study conducted in the USA and Europe in 2008.

Ceftaroline exhibited broad-spectrum activity against key skin pathogens, including *S. aureus* and β-haemolytic streptococci (Table 2). For MRSA, MIC₉₀ s of ceftaroline, vancomycin and linezolid were 1, 1 and 2 mg/L, respectively. Ceftaroline also retained activity against the penicillin-non-susceptible viridans group streptococci (MIC₉₀, 0.5 mg/L) compared with ceftriaxone, which was less active (MIC₉₀, 8 mg/L).

Basic PK and PD profile

Ceftaroline fosamil is a prodrug that is rapidly converted by plasma phosphatases into active ceftaroline following intravenous (iv) administration (Figure 3). Phase III clinical studies have evaluated the efficacy of 600 mg of ceftaroline.

Table 2. Activity of ceftaroline and comparator agents against Gram-positive clinical isolates of skin pathogens from US and European medical centres in 2008

<table>
<thead>
<tr>
<th>Organism</th>
<th>Antimicrobial agent</th>
<th>range</th>
<th>50%</th>
<th>90%</th>
<th>Susceptible (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methicillin susceptible (1554)</td>
<td>ceftaroline</td>
<td>≤0.008-1</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>1-32</td>
<td>4</td>
<td>4</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>0.25-2</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.25-2</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>methicillin resistant (1237)</td>
<td>ceftaroline</td>
<td>0.25-2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>1 to >32</td>
<td>32</td>
<td>>32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>0.25-2</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.25-2</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all isolates (643)</td>
<td>ceftaroline</td>
<td>≤0.008-4</td>
<td>0.25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>≥0.25 to >32</td>
<td>16</td>
<td>>32</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>≤0.12-4</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.12 to >8</td>
<td>1</td>
<td>1</td>
<td>99.2</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all isolates (613)</td>
<td>ceftaroline</td>
<td>0.12 to >16</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>1 to >32</td>
<td>>32</td>
<td>>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>0.5 to >16</td>
<td>1</td>
<td>2</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.25-2</td>
<td>1</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>β-Haemolytic streptococci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all isolates (596)</td>
<td>ceftaroline</td>
<td>≤0.008-0.06</td>
<td>≤0.008</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>0.25-1</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.5-2</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all isolates (190)</td>
<td>ceftaroline</td>
<td>≤0.008-1</td>
<td>0.03</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>≤0.25-16</td>
<td>≤0.25</td>
<td>0.5</td>
<td>93.7</td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>0.25-1</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.25-2</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>penicillin non-susceptible (42)</td>
<td>ceftaroline</td>
<td>≤0.008-1</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceftriaxone</td>
<td>≤0.25-16</td>
<td>≤0.25</td>
<td>0.5</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>vancomycin</td>
<td>0.25-0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>linezolid</td>
<td>0.5-1</td>
<td>0.5</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>
Beta-lactam antibiotics: Carbapenems

- **Imipenem**
- **Meropenem**
- **Doripenem**
- **Ertapenem**

- Carbon instead of sulfur in 5-membered ring
- All are IV products, none oral

Carbapenems: general features

- Highly resistant to most beta-lactamases
 - Including to ESBLs and AmpC
 - Carbapenemases are emerging (KPC, VIM, NDM-1)
 - Induce expression of chromosomal beta-lactamases (though not degraded), thus switching to another beta-lactam after carbapenem not advised

- Extremely broad spectrum; broader than penicillins, cephalosporins
 - *Pseudomonas* coverage (not ertapenem), but MICs pretty high (all IV)
 - Not MRSA
 - Not Enterococci

- Reserved for last line use or complicated cases
 - Used for polymicrobial infections
 - If multi-drug resistance is evident

- Relatively low toxicity
Carbapenems: Imipenem + Cilastatin

- Primaxin ® (Merck)
- Combined with cilastatin because normally imipenem would be hydrolyzed by a renal dihydropeptidase enzyme (DHP-1). Cilastatin inhibits this enzyme.
- Other carbapenems more stable, do not require DHP-1 inhibitor
- Imipenem unusual in that it actually also inhibits some beta-lactamases
- Risk for seizures (1.5-2%), thus not indicated for meningitis

Indicated microbial spectra:

Gram-positive aerobes:
- Enterococcus faecalis
 (NOTE: Imipenem is inactive against Enterococcus faecium)
- Staphylococcus aureus including penicillinase-producing strains
 (NOTE: not MRSA)
- Staphylococcus epidermidis including penicillinase-producing strains
- Streptococcus agalactiae (Group B streptococci)
- Streptococcus pneumoniae
- Streptococcus pyogenes

Gram-positive anaerobes:
- Bifidobacterium spp.
- Clostridium spp.
- Eubacterium spp.
- Peptococcus spp.
- Peptostreptococcus spp.
- Propionibacterium spp.

Gram-negative anaerobes:
- Bacteroides spp., including B. fragilis
- Fusobacterium spp.

Gram-negative aerobes:
- Acinetobacter spp.
- Citrobacter spp.
- Enterobacter spp.
- Escherichia coli
- Gardnerella vaginalis
- Haemophilus influenzae
- Haemophilus parainfluenzae
- Klebsiella spp.
- Morganella morganii
- Proteus vulgaris
- Providencia rettgeri
- Pseudomonas aeruginosa
 (NOTE: Imipenem is inactive in vitro against Xanthomonas (Pseudomonas) maltophilia and some strains of P. cepacia.)
- Serratia spp., including S. marcescens
Imipenem + Cilastatin: indicated uses

- Lower respiratory tract infections
- UTI, complicated and uncomplicated
- Intra-abdominal infections
- Gynecological infections
- Septicemia
- Bone and Joint infections
- Skin infections
- Endocarditis
- Polymicrobial infections

Carbapenems: Meropenem

- Merrem ® (AstraZeneca)
- Lower seizure risk (0.4%) than imipenem. Indicated use for meningitis caused by *S. pneumoniae, H. influenzae, N. meningitidis*

 Other indicated uses:
 - Intra-abdominal infections caused by *Strep. viridans, E. coli, Klebsiella pneumoniae, P. aeruginosa, B. fragilis*
 - Complicated skin infections (not MRSA)
Carbapenems: Ertapenem

- Invanz ® (Merck)
- Possibly more susceptible to ESBL and AmpC than other carbapenems
- Very broad spectrum, thus good for polymicrobial infections
 - But not covering PRSP, not MRSA, not Pseudomonas
- Other indicated uses:
 - Complicated intra-abdominal infections
 - Complicated skin infections (not MRSA)
 - Complicated UTI
 - Pelvic infections
 - CAP (not involving PRSP)

Carbapenems: Doripenem

- Doxibax ® (Ortho-McNeil)
- Very good activity against Gram-, including Pseudomonas and anaerobes
- Other indicated uses:
 - Complicated intra-abdominal infections
 - Complicated skin infections (not MRSA)
 - Complicated UTI
 - Pelvic infections
 - CAP (not involving PRSP)
Azactam® (Squibb), Cayston® (Gilead) and generics

Natural product, but now produced synthetically

Gram- spectrum, similar to aminoglycosides; (minimal Gram+ and anaerobe)

- Activity against *Pseudomonas* (Cayston inhaled formulation: indicated for *P. aeruginosa* CF patient)

- Resistant to most beta-lactamases but not ESBL

- No penicillin allergy cross-reactivity