
Herpesviruses

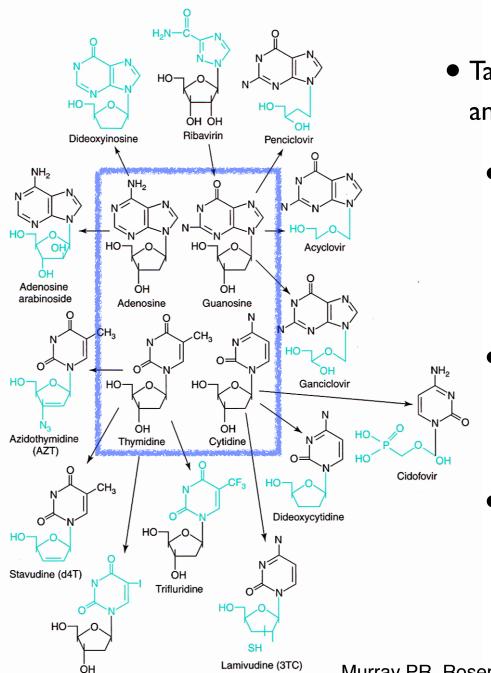
Fusion and attachment proteins

Herpesviruses- type and disease

Designation Common Name Subfamily		Subfamily	Associated Diseases	
HHV-1	HSV-1	Alpha	Oral Herpes (cold sore), Genital Herpes	
HHV-2	HSV-2	Alpha	Genital Herpes	
HHV-3	VZV	Alpha	Chicken Pox, Shingles	
HHV-4	EBV	Gamma	Mononucleosis, Lymphoma, Carcinoma	
HHV-5	CMV	Beta	Mononucleosis, Retinitis, Transplant Rejection	
HHV-6	HHV-6	Beta	Roseola infantum, Mononucleosis syndrome, Chronic fatigue syndrome, Multiple Sclerosis?	
HHV-7	HHV-7	Beta	Roseola infantum, Mononucleosis syndrome?	
HHV-8	KSHV	Gamma	Kaposi's Sarcoma	

Herpesvirus latency

- After the primary infection, herpesviruses establish latency in the infected host. Once a patient has become infected by herpes virus, the infection remains for life.
- Virus can hide in a quiescent, non-replicating state, often in nerve cells.
 Controls host's natural cell death mechanisms.
- The latent genome can become activated, in response to various stimulus, to produce infectious virions (e.g. VZV and shingles).
 - Triggers not well-understood:
 - Weakened immune system
 - Other infection
 - Stress
 - Trauma
- Antivirals are not effective against latent "virus"

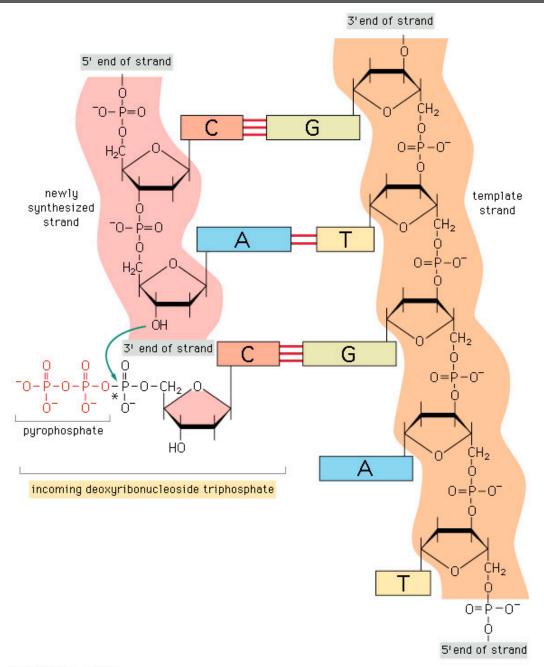

Varicella-Zoster Virus (VZV)

- Varicella virus (a.k.a. Human Herpes Virus-3) causes chicken pox in children
- Latent state, infection not cleared. May reemerge in adults as shingles.
 - Shingles rash can transmit VZV, less contagious than chicken pox rash.
- Approved antivirals for the treatments of VZV:
 - Acyclovir
 - Valacyclovir
 - Famciclovir
- Treatment within 48-72h of shingles eruption for reduction of blisters/pain
 - Reduces later complications such as postherpetic neuralgia (persistent pain for months-years, likely due to nerve damage from VZV)
- A vaccine is available: Zostavax®

Herpesvirus encephalitis

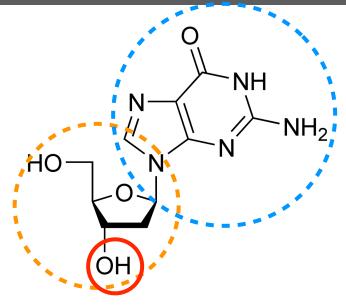
- Caused by HSV-I (90%) and HSV-2 (10%)
- Retrograde transmission from facial nerves to brain
- 1/500,000 individuals
- Confusion, seizures, fever, elevated WBC in CSF without bacteria or fungi
- Without treatment, fatal in 70% of cases
 - Acyclovir IV treatment

Mechanisms of action: Deoxynucleoside analogs



Iododeoxvuridine

- Target viral DNA polymerases (herpesvirus)
 and reverse transcriptase (HIV, hepatitis B)
 - The drugs can selectively inhibit viral genome replication because the viral polymerases are more tolerant to binding incorrect substrate (the drug).
 - The viral polymerases and reverse transcriptases are essential for virus replication and distinct from host enzymes.
 - Activated in cells by viral kinase then by host kinases.


Murray PR, Rosenthal KS, Pfaller MA, (2009) Medical Microbiology 6th Edition

Mechanisms of action: (Deoxy)nucleoside analogs

®1998 GARLAND PUBLISHING

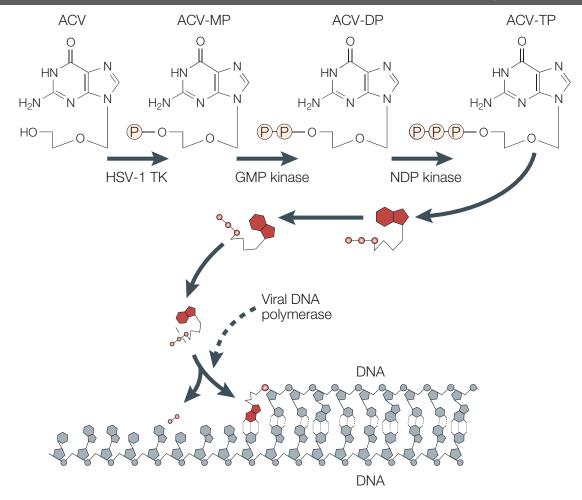
Mechanisms of action: Nucleoside analogs

Sugar modifications

• E.g. acyclovir, ganciclovir, valacyclovir, penciclovir, cidofovir, lamivudine (3TC), etc. In some cases, 3'-hydroxyl on "sugar" is missing, and chain termination results

Base modifications

- Inactivating mutations due to incorporation into nucleic acid chain (e.g. ribavirin, idoxuridine, trifluridine)
- Viral versus host DNA polymerases: Selectivity of drug for viral polymerase desired (100-1000x greater affinity). Collateral damage if host polymerases affected, toxicity issues (e.g. teratogenic)


Nucleoside analog example: Acyclovir, a deoxyguanosine analog

• Lack of 3'-hydroxyl on "sugar" makes nucleic acid chain elongation impossible. Chain terminating drug.

Herpesvirus thymidine kinase (TK)

- Herpesviruses encode a kinase ("viral thymidine kinase", TK) that performs the first step in phosphorylation of nucleosides in virally infected cells. Many of the antivirals have a high affinity for TK over host thymidine kinases.
- Selectivity: Because the viral thymidine kinase is absent from uninfected cells nucleoside analog (e.g. acyclovir) is not converted to active form; no initial phosphorylation. Low impact on host DNA synthesis in uninfected cells.

Acyclovir (and other nucleoside analogs) M.o.A.

- Acyclovir is phosphorylated by viral thymidine kinase to acyclovir monophosphate, then by cellular kinases to ACV-triphosphate.
- Acyclovir triphosphate substitutes for guanosine in the growing DNA chain by competing for binding to the viral DNA-polymerase, thus terminating DNA chain proliferation.

 De Clercq E, Nat Rev Drug Discov 1:13 (2002)

Acyclovir (and other nucleoside analogs) M.o.A.

- Because the viral thymidine kinase is absent from uninfected cells the acyclovir is not converted to active form; no initial phosphorylation.
- Viral DNA polymerase binds ACV-triphosphate more tightly than cellular DNA polymerase, and hence is selectively inhibited
- Apparently greater uptake of ACV into herpesvirus-infected cells
- Resistance by reduced thymidine kinase activity (ACV cannot get activated; but mutated virus are usually less fit) or DNA polymerase (prevents ACV binding)

Herpesviruses- type and disease

Designation Common Name Subfamily		Subfamily	Associated Diseases	
HHV-1	HSV-1	Alpha	Oral Herpes (cold sore), Genital Herpes	
HHV-2	HSV-2	Alpha	Genital Herpes	
HHV-3	VZV	Alpha	Chicken Pox, Shingles	
HHV-4	EBV	Gamma	Mononucleosis, Lymphoma, Carcinoma	
HHV-5	CMV	Beta	Mononucleosis, Retinitis, Transplant Rejection	
HHV-6	HHV-6	Beta	Roseola infantum, Mononucleosis syndrome, Chronic fatigue syndrome, Multiple Sclerosis?	
HHV-7	HHV-7	Beta	Roseola infantum, Mononucleosis syndrome?	
HHV-8	KSHV	Gamma	Kaposi's Sarcoma	

Targeting alpha-herpesviruses: HSV-1, HSV-2, VZV

- Acyclovir
- Valaciclovir
- Penciclovir
- Famciclovir
- Idoxuridine: HSV-1 only; keratitis; topical opthalmic treatment of cornea
- Trifluridine: HSV-1 & 2, vaccinia, adenovirus; conjunctivitis, keratitis; topical opthalmic solution

Acyclovir (Zovirax®, Glaxo-SmithKline)

Spectrum:	Virus	EC50	
	HSV-1	0.1 µM	
 HSV-I: cold sores, keratitis (eye), encephalitis (CNS) 	HSV-2	0.5 µM	
• HSV-2: genital herpes	VZV	4.9 µM	
• 115 v-2. genital helpes	CMV	71 µM	
 Varicella zoster virus (VZV): shingles/chicken pox 	EBV	120 μΜ	

Indicated uses:

- Mucosal and cutaneous herpes simplex in immunocompromised patients
- Severe episodes of herpes genitalis
- Herpes simplex encephalitis
- Neonatal herpes virus infections
- VZV (shingles) in immunocompromised patients

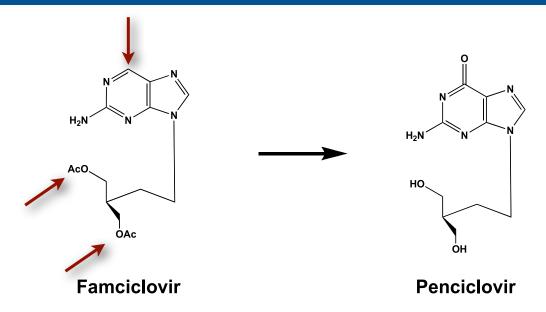
Acyclovir

Acyclovir properties:

- Poor oral bioavailability (15-20%)
- Topical ointments, creams, PO, and IV
- IV delivery if high concentrations needed (e.g. for encephalitis)
- Up to 91% renal clearance of unmodified drug; adjust dose for renal dysfunction

Adverse effects

- Renal function impairment
- Precipitation of acyclovir in renal tubules (crystalluria); ensure good hydration
- Thrombocytopenic purpura/hemolytic uremia syndrome (rare; immunocompromised)
- Photosensitivity (rash)
- Stinging (30%) with ointment


Nucleoside analog prodrugs

- The active nucleoside analog drugs have very poor oral bioavailability.
- Prodrugs improve bioavailability by increasing transport/uptake and solubility.

Valacyclovir (Valtrex®, Glaxo-SmithKline)

- Valine ester prodrug of acyclovir.
- PO; 54% oral bioavailability (vs 10-20% for acyclovir); GI absorption (PEPT1 transporter)
- Metabolized to active acyclovir by esterases in liver/intestines
- Due to prolonged release (activation) of acyclovir, can give fewer doses per day
- Similar indications to acyclovir (ACV); plus chickenpox in immunocompetent children
- Similar adverse reactions to ACV

Famciclovir and Penciclovir

Famciclovir (Famvir®, Novartis)

- Diacetate ester prodrug of penciclovir
- PO; 77% oral bioavailability (vs 2-5% for penciclovir); absorbed through gut mucosa
 - Penciclovir used only as a topical treatment (1% cream Denavir®)
- Double activation required by carboxylesterases and xanthine oxidase
- Not chain-terminating, $\sim 100x$ less active than ACV, but intracellular concentrations very high, so still effective
- Similar indications to acyclovir (ACV); often used for VZV/shingles
- Similar adverse reactions to ACV

Docosanol

- Abreva®
- OTC, topical 10% cream indicated for treatment of HSV-1 labialis (cold sores)
- Saturated fatty alcohol
- Believed to inhibit membrane fusion between viral envelope and host cell
 - In vitro activity against HSV-1&2, RSV, influenza, HIV, other enveloped viruses
- Shortens duration of infection by ~I day (out of 8-14 days)

Targeting beta-herpesviruses

- Cytomegalovirus
- Drugs with indicated usage for treatment of beta-herpesviruses:
 - Ganciclovir
 - Valganciclovir
 - Cidofovir
 - Foscarnet
 - Fomivirsen

Beta-herpesvirus: Cytomegalovirus (CMV)

- CMV causes few symptoms in children and mild disease in adults. Can be a risk for developing fetus during pregnancy, however (I in 750 infants are born with or develop some form of disability due to in utero CMV exposure-CDC).
- The virus is spread via secretions: saliva, urine, vaginal secretions, semen
- CMV may also be spread by blood transfusion and organ transplant
- Virus elicits humoral and cell-mediated immunity but the infection is not cleared due to virus existing in a latent state or low-level chronic infection
- The virus may reactivate, particularly in cases of:
 - Organ transplant patients
 - Immunosuppressive disease
- CMV-retinitis occurs in up to 15% of all AIDS patients; can lead to blindness
- Also may cause pneumonia, colitis, esophagitis and encephalitis

Ganciclovir

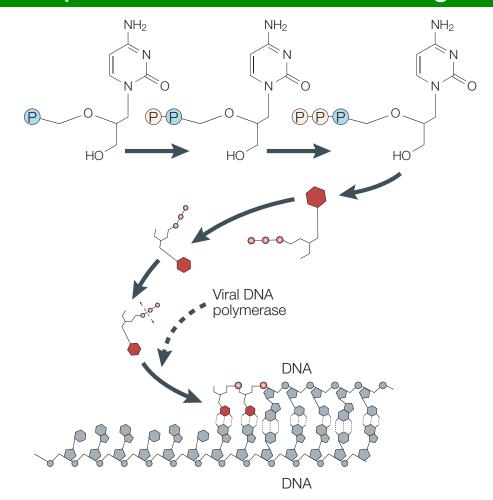
Ganciclovir (Cytovene®, Roche)

$$H_2$$
N H_2 N H_2 N H_2 N H_2 N H_2 N H_3 N H_4 N H_2 N H_4 N H_5 N

- A guanosine analog, similar to acyclovir, but better activity against CMV.
- Ganciclovir is phosphorylated by TK for HSV-1, HSV-2, and VZV, but by a virally-encoded protein kinase (UL97 gene product) for CMV
- Ganciclovir-triphosphate blocks the uptake of dGTP into the growing viral DNA by competing for binding sites. Gets incorporated into viral nucleic acid, but <u>not a chain terminator like acyclovir.</u>

Ganciclovir

• Broad spectrum anti-herpesvirus activity, but only indicated use is for CMV in immunocompromised patients (retinitis) and as a prophylaxis against CMV infection in organ transplants.


Virus	EC50	
HSV-1	0.1 μΜ	
HSV-2	0.1 µM	
VZV	2.8 µM	
CMV	3.4 µM	
EBV	0.1 µM	

- IV or intravitreal. Very poor oral bioavailability, 2-7%. Valganciclovir prodrug has ~60%.
- 90-100% renally cleared unmodified.
 - Should be given by slow IV infusion to avoid reaching toxic blood levels of this drug, and dose needs to be adjusted in renal disfunction.
- Granulocytopenia (granulocytes \downarrow), anemia (RBC \downarrow), thrombocytopenia (platelets \downarrow).
- Teratogenic, mutagenic, and carcinogenic in animals. Hypospermia. Pregnancy cat. C.

Valganciclovir (Ganciclovir prodrug)

- Oral bioavailability ~60% (vs 2-7% for ganciclovir)
- Valyl moiety dramatically increases uptake due to recognition by peptide transporters
- Cellular esterases cleave off the valyl moiety
- Same toxicities as ganciclovir.

Cidofovir: a phosphonated, broad-spectrum nucleotide analog

Cidofovir (Vistide® Gilead)

- |V
- Purine nucleoside phosphonate that mimics deoxycytidine monophosphate (dCMP).
- Drug not reliant upon viral TK (only produced by some viruses), spectrum is broader: papillomavirus, herpesvirus, adenovirus, pox virus.
 - Selectivity no longer due to expression of viral TK, only due to preferential binding to viral polymerase over host polymerase (~1000x)

Cidofovir: a broad-spectrum phosphonated-nucleoside analog

Indicated only for treatment of CMV retinitis in patients with AIDS.

Nephrotoxicity: (taken up by renal proximal tubular cells, induces apoptosis)

Some cases observed after one or two doses.

Avoid use with other nephrotoxic drugs.

Prehydrate the patient well.

Administer with probenecid to decrease nephrotoxicity.

Probenecid competes with cidofovir for OAT-1 transporter in proximal tubular cells, which apoptose due to cidofovir uptake.

Neutropenia (neutrophils ↓)

Carcinogenic, teratogenic, hypospermia.

Target Herpesvirus DNA polymerase: Foscarnet

Foscarnet (Foscavir® Astra)

- |V
- An organic analog of inorganic pyrophosphate, which is a product of DNA/ RNA replication (PPi comes off the nucleoside triphosphate during polymerization). Foscarnet occupies the PPi site on viral DNA polymerase.
- At working concentrations, low binding to eukaryotic DNA polymerases.
- FDA approved for CMV retinitis and for acyclovir-resistant HSV infections.
 Usually used after other anti-herpes drugs have failed in immunocompromised patients.

Target alpha-Herpesvirus DNA polymerase: Foscarnet

Adverse effects:

- Nephrotoxic (1/3 of patients): monitor serum creatinine and dose adjust
- Seizures; neurotoxic due to changes in plasma mineral and electrolyte content
 - Forms a chelate with calcium.
 - 10% in AIDS patients.

Herpesvirus drugs summary

- Most are nucleoside analogs that get incorporated into replicating DNA
- Target replicating virus, not active against latent virus
 - Treat and control outbreaks, but does not cure one of the infection

- For alpha-herpes viruses: simplex I and simplex 2,VZV:
 - Acyclovir and Valacyclovir (prodrug)
 - Penciclovir and Famciclovir (prodrug)
 - Foscarnet
- For beta-herpes viruses: CMV
 - Ganciclovir and Valganciclovir (prodrug)
 - Cidofovir
 - Foscarnet