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Genetics of rheumatoid arthritis contributes to
biology and drug discovery
A list of authors and their affiliations appears at the end of the paper

A major challenge in human genetics is to devise a systematic strat-
egy to integrate disease-associated variants with diverse genomic
and biological data sets to provide insight into disease pathogenesis
and guide drug discovery for complex traits such as rheumatoid arth-
ritis (RA)1. Here we performed a genome-wide association study
meta-analysis in a total of .100,000 subjects of European and Asian
ancestries (29,880 RA cases and 73,758 controls), by evaluating 10
million single-nucleotide polymorphisms. We discovered 42 novel
RA risk loci at a genome-wide level of significance, bringing the total
to 101 (refs 2–4). We devised an in silico pipeline using established
bioinformatics methods based on functional annotation5, cis-acting
expression quantitative trait loci6 and pathway analyses7–9—as well
as novel methods based on genetic overlap with human primary immuno-
deficiency, haematological cancer somatic mutations and knockout
mouse phenotypes—to identify 98 biological candidate genes at these
101 risk loci. We demonstrate that these genes are the targets of approved
therapies for RA, and further suggest that drugs approved for other
indications may be repurposed for the treatment of RA. Together,
this comprehensive genetic study sheds light on fundamental genes,
pathways and cell types that contribute to RA pathogenesis, and
provides empirical evidence that the genetics of RA can provide
important information for drug discovery.

We conducted a three-stage trans-ethnic meta-analysis (Extended
Data Fig. 1). On the basis of the polygenic architecture of RA10 and
shared genetic risk among different ancestry3,4, we proposed that com-
bining a genome-wide association study (GWAS) of European and
Asian ancestry would increase power to detect novel risk loci. In stage 1,
we combined 22 GWAS for 19,234 cases and 61,565 controls of European
and Asian ancestry2–4. We performed trans-ethnic, European-specific
and Asian-specific GWAS meta-analysis by evaluating ,10 million
single-nucleotide polymorphisms (SNPs)11. Characteristics of the cohorts,
genotyping platforms and quality control criteria are described in Extended
Data Table 1 (overall genomic control inflation factor lGC , 1.075).

Stage 1 meta-analysis identified 57 loci that satisfied a genome-wide
significance threshold of P , 5.03 1028, including 17 novel loci (Extended
Data Fig. 2). We then conducted a two-step replication study (stage 2
for in silico and stage 3 for de novo) in 10,646 RA cases and 12,193
controls for the loci with P , 5.0 3 1026 in stage 1. In a combined ana-
lysis of stages 1–3, we identified 42 novel loci with P , 5.0 3 1028 in
any of the trans-ethnic, European or Asian meta-analyses. This increases
the total number of RA risk loci to 101 (Table 1 and Supplementary
Table 1).

Comparison of 101 RA risk loci revealed significant correlations of
risk allele frequencies (RAFs) and odds ratios (ORs) between Europeans
and Asians (Extended Data Fig. 3a–c; Spearman’s r 5 0.67 for RAF
and 0.76 for OR; P , 1.0 3 10213), although five loci demonstrated
population-specific associations (P , 5.0 3 1028 in one population but
P . 0.05 in the other population without overlap of the 95% confidence
intervals (95% CIs) of the ORs). In the population-specific genetic risk
model, the 100 RA risk loci outside of the major histocompatibility com-
plex (MHC) region12 explained 5.5% and 4.7% of heritability in Europeans
and Asians, respectively, with 1.6% of the heritability explained by the
novel loci. The trans-ethnic genetic risk model, based on the RAF from

one population but the OR from the other population, could explain
the majority (.80%) of the known heritability in each population
(4.7% for Europeans and 3.8% for Asians). These observations support
our hypothesis that the genetic risk of RA is shared, in general, among
Asians and Europeans.

We assessed enrichment of 100 non-MHC RA risk loci in epigenetic
chromatin marks13 (Extended Data Fig. 3d). Of 34 cell types investigated,
we observed significant enrichment of RA risk alleles with trimethylation
of histone H3 at lysine 4 (H3K4me3) peaks in primary CD41 regulatory
T cells (Treg cells; P , 1.0 3 1025). For the RA risk loci enriched with Treg

H3K4me3 peaks, we incorporated the epigenetic annotations along with
trans-ethnic differences in patterns of linkage disequilibrium to fine-map
putative causal risk alleles (Extended Data Fig. 3e, f).

We found that approximately two-thirds of RA risk loci demon-
strated pleiotropy with other human phenotypes (Extended Data Fig. 4),
including immune-related diseases (for example, vitiligo, primary bili-
ary cirrhosis), inflammation-related or haematological biomarkers (for
example, fibrinogen, neutrophil counts) and other complex traits (for
example, cardiovascular diseases).

Each of 100 non-MHC RA risk loci contains on average ,4 genes in
the region of linkage disequilibrium (in total 377 genes). To prioritize
systematically the most likely biological candidate gene, we devised an
in silico bioinformatics pipeline. In addition to the published methods
that integrate data across associated loci7,8, we evaluated several bio-
logical data sets to test for enrichment of RA risk genes, which helps to
pinpoint a specific gene in each loci (Extended Data Figs 5, 6 and
Supplementary Tables 2–4).

We first conducted functional annotation of RA risk SNPs. Sixteen
per cent of SNPs were in linkage disequilibrium with missense SNPs
(r2 . 0.80; Extended Data Fig. 5a, b). The proportion of missense RA
risk SNPs was higher compared with a set of genome-wide common
SNPs (8.0%), and relatively much higher in the explained heritability
(,26.8%). Using cis-acting expression quantitative trait loci (cis-eQTL)
data obtained from peripheral blood mononuclear cells (5,311 indivi-
duals)6 and from CD41 T cells and CD141CD162 monocytes (212
individuals), we found that RA risk SNPs in 44 loci showed cis-eQTL
effects (false discovery rate (FDR) q or permutation P , 0.05; Extended
Data Table 2).

Second, we evaluated whether genes from RA risk loci overlapped
with human primary immunodeficiency (PID) genes14, and observed
significant overlap (14/194 5 7.2%, P 5 1.2 3 1024; Fig. 1a and Extended
Data Fig. 5c). Classification categories of PID genes showed different
patterns of overlap: the highest proportion of overlap was in ‘immune
dysregulation’ (4/21 5 19.0%, P 5 0.0033) but there was no overlap in
‘innate immunity’.

Third, we evaluated overlap with cancer somatic mutation genes15,
under the hypothesis that genes with cell growth advantages may contri-
bute to RA development. Among 444 genes with registered cancer somatic
mutations15, we observed significant overlap with genes implicated in
haematological cancers (17/251 5 6.8%, P 5 1.2 3 1024; Fig. 1b and
Extended Data Fig. 5d), but not with genes implicated in non-haema-
tological cancers (6/221 5 2.7%, P 5 0.56).
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Fourth, we evaluated overlap with genes implicated in knockout mouse
phenotypes16. Among the 30 categories of phenotypes16, we observed 3
categories significantly enriched with RA risk genes (P , 0.05/30 5 0.0017):
‘haematopoietic system phenotype’, ‘immune system phenotype’, and
‘cellular phenotype’ (Extended Data Fig. 5e).

Last, we conducted molecular pathway enrichment analysis (Fig. 1c
and Extended Data Fig. 5f). We observed enrichment (FDR q , 0.05)
for T-cell-related pathways, consistent with cell-specific epigenetic marks,
as well as enrichment for B-cell and cytokine signalling pathways (for
example, interleukin (IL)-10, interferon, granulocyte–macrophage colony-
stimulating factor (GM-CSF)). For comparison, our previous RA GWAS
meta-analysis2 did not identify the B-cell and cytokine signalling path-
ways, thereby indicating that as more loci are discovered, further bio-
logical pathways are identified.

On the basis of these new findings, we adopted the following 8 criteria
to prioritize each of the 377 genes from the 100 non-MHC RA risk loci
(Fig. 2 and Extended Data Fig. 6a–c): (1) genes with RA risk missense
variant (n 5 19); (2) cis-eQTL genes (n 5 51); (3) genes prioritized by
PubMed text mining7 (n 5 90); (4) genes prioritized by protein–protein
interaction (PPI)8 (n 5 63); (5) PID genes (n 5 15); (6) haematological
cancer somatic mutation genes (n 5 17); (7) genes prioritized by associated
knockout mouse phenotypes (n 5 86); and (8) genes prioritized by
molecular pathway analysis9 (n 5 35).

Ninety-eight genes (26.0%) had a score $2, which we defined as ‘can-
didate biological RA risk genes’. Nineteen loci included multiple bio-
logical RA risk genes (for example, IL3 and CSF2 at chromosome 5q31),
whereas no biological gene was selected from 40 loci (Supplementary
Table 5).

To provide empirical evidence of the pipeline, we evaluated relation-
ships of the gene scores to independent genomic or epigenetic informa-
tion. Genes with higher biological scores were more likely to be the
nearest gene to the risk SNP (18.6% for gene score ,2 and 49.0% for
gene score $2; P 5 2.1 3 1028), and also to be included in the region
where RA risk SNPs were overlapping with H3K4me3 Treg peaks (41.9%
for gene score ,2 and 57.1% for gene score $2; P 5 0.034). Further,
Treg cells demonstrated the largest increase in overlapping proportions
with H3K4me3 peaks for increase of biological gene scores compared
with other cell types (Extended Data Fig. 6d).

Finally, we evaluated the potential role of RA genetics in drug dis-
covery. We proposed that if human genetics is useful for drug target
validation, then it should identify existing approved drugs for RA. To
test this ‘therapeutic hypothesis’1, we obtained 871 drug target genes
corresponding to approved, in clinical trials or experimental drugs for
human diseases17,18 (Supplementary Table 6). We evaluated whether
any of the protein products from the identified biological RA risk genes,
or any genes from a direct PPI network with such protein products

Table 1 | Novel rheumatoid arthritis risk loci identified by trans-ethnic GWAS meta-analysis in .100,000 subjects
SNP Chr Genes A1/A2

(1)
Trans-ethnic European Asian

OR (95% CI) P OR (95% CI) P OR (95% CI) P

rs227163 1 TNFRSF9 C/T 1.04 (1.02–1.06) 3.9 3 1024 1.00 (0.97–1.03) 9.3 3 1021 1.11 (1.08–1.16)* 3.1 3 1029*
rs28411352 1 MTF1-INPP5B T/C 1.11 (1.08–1.14)* 2.8 3 10212* 1.10 (1.07–1.14)* 5.9 3 1029* 1.12 (1.06–1.19) 7.8 3 1025

rs2105325 1 LOC100506023 C/A 1.12 (1.08–1.15)* 6.9 3 10213* 1.12 (1.08–1.15)* 3.3 3 10211* 1.13 (1.04–1.23) 5.2 3 1023

rs10175798 2 LBH A/G 1.08 (1.06–1.11)* 1.1 3 1029* 1.09 (1.06–1.12)* 4.2 3 1028* 1.07 (1.02–1.13) 6.4 3 1023

rs6732565 2 ACOXL A/G 1.07 (1.05–1.10)* 2.7 3 1028* 1.10 (1.07–1.14)* 9.4 3 1029* 1.04 (1.00–1.08) 4.0 3 1022

rs6715284 2 CFLAR-CASP8 G/C 1.15 (1.10–1.20)* 1.8 3 1029* 1.15 (1.10–1.20)* 2.5 3 1029* - -
rs4452313 3 PLCL2 T/A 1.09 (1.06–1.12)* 1.6 3 10210* 1.11 (1.08–1.15)* 5.2 3 10211* 1.04 (0.99–1.09) 9.2 3 1022

rs3806624 3 EOMES G/A 1.08 (1.05–1.11)* 8.6 3 1029* 1.08 (1.05–1.12)* 2.8 3 1028* 1.06 (0.99–1.14) 1.0 3 1021

rs9826828 3 IL20RB A/G 1.44 (1.28–1.61)* 8.6 3 10210* 1.44 (1.28–1.61)* 8.7 3 10210* - -
rs13142500 4 CLNK C/T 1.10 (1.07–1.13)* 3.0 3 1029* 1.10 (1.06–1.15) 2.4 3 1026 1.10 (1.04–1.15) 2.8 3 1024

rs2664035 4 TEC A/G 1.07 (1.04–1.10) 9.5 3 1028 1.08 (1.05–1.11)* 3.3 3 1028* 1.03 (0.97–1.08) 3.3 3 1021

rs9378815 6 IRF4 C/G 1.09 (1.06–1.12)* 1.7 3 10210* 1.09 (1.05–1.12) 1.4 3 1027 1.10 (1.04–1.15) 2.3 3 1024

rs2234067 6 ETV7 C/A 1.15 (1.10–1.20)* 1.6 3 1029* 1.14 (1.09–1.19)* 4.1 3 1028* 1.22 (1.06–1.41) 7.0 3 1023

rs9373594 6 PPIL4 T/C 1.09 (1.06–1.12)* 3.0 3 1029* 1.07 (1.02–1.12) 6.5 3 1023 1.11 (1.07–1.15)* 4.8 3 1028*
rs67250450 7 JAZF1 T/C 1.10 (1.07–1.14)* 3.7 3 1029* 1.11 (1.07–1.14)* 2.6 3 1029* 1.02 (0.84–1.23) 8.5 3 1021

rs4272 7 CDK6 G/A 1.10 (1.06–1.13)* 5.0 3 1029* 1.10 (1.07–1.14)* 1.2 3 1028* 1.06 (0.98–1.15) 1.3 3 1021

rs998731 8 TPD52 T/C 1.08 (1.05–1.11)* 1.9 3 1028* 1.09 (1.06–1.12)* 6.6 3 1029* 1.02 (0.96–1.10) 4.9 3 1021

rs678347 8 GRHL2 G/A 1.08 (1.05–1.11)* 1.6 3 1028* 1.10 (1.06–1.13)* 7.3 3 1029* 1.03 (0.98–1.10) 2.6 3 1021

rs1516971 8 PVT1 T/C 1.15 (1.10–1.20)* 1.3 3 10210* 1.16 (1.11–1.21)* 3.2 3 10211* - -
rs12413578 10 10p14 C/T 1.20 (1.13–1.29)* 4.8 3 1028* 1.20 (1.12–1.29) 7.5 3 1028 - -

rs793108 10 ZNF438 T/C 1.08 (1.05–1.10)* 1.3 3 1029* 1.07 (1.04–1.10) 6.1 3 1027 1.09 (1.04–1.14) 4.4 3 1024

rs2671692 10 WDFY4 A/G 1.07 (1.05–1.10)* 2.8 3 1029* 1.06 (1.03–1.09) 2.6 3 1025 1.10 (1.05–1.14) 9.9 3 1026

rs726288 10 SFTPD T/C 1.14 (1.07–1.20) 1.6 3 1025 0.96 (0.86–1.06) 4.1 3 1021 1.22 (1.14–1.31)* 8.8 3 1029*
rs968567 11 FADS1-FADS2-FADS3 C/T 1.12 (1.07–1.16)* 1.8 3 1028* 1.12 (1.07–1.16)* 1.8 3 1028* - -

rs4409785 11 CEP57 C/T 1.12 (1.09–1.16)* 1.2 3 10211* 1.12 (1.08–1.16)* 3.6 3 1029* 1.16 (1.07–1.27) 4.3 3 1024

chr11:107967350 11 ATM A/G 1.21 (1.13–1.29)* 1.4 3 1028* 1.21 (1.13–1.29)* 1.1 3 1028* - -
rs73013527 11 ETS1 C/T 1.09 (1.06–1.12)* 1.2 3 10210* 1.08 (1.05–1.11) 1.0 3 1026 1.14 (1.08–1.21) 4.1 3 1026

rs773125 12 CDK2 A/G 1.09 (1.06–1.12)* 1.1 3 10210* 1.09 (1.06–1.12)* 2.1 3 1028* 1.10 (1.04–1.17) 1.1 3 1023

rs10774624 12 SH2B3-PTPN11 G/A 1.09 (1.06–1.13)* 6.8 3 1029* 1.09 (1.06–1.13)* 6.9 3 1029* - -
rs9603616 13 COG6 C/T 1.10 (1.07–1.13)* 1.6 3 10212* 1.11 (1.07–1.14)* 2.8 3 10211* 1.08 (1.02–1.14) 1.0 3 1022

rs3783782 14 PRKCH A/G 1.14 (1.09–1.18)* 2.2 3 1029* 1.12 (0.96–1.31) 1.4 3 1021 1.14 (1.09–1.19)* 4.4 3 1029*
rs1950897 14 RAD51B T/C 1.10 (1.07–1.13)* 8.2 3 10211* 1.09 (1.06–1.12)* 5.0 3 1028* 1.16 (1.08–1.25) 1.1 3 1024

rs4780401 16 TXNDC11 T/G 1.07 (1.05–1.10)* 4.1 3 1028* 1.09 (1.06–1.13)* 8.7 3 1029* 1.03 (0.98–1.08) 2.5 3 1021

rs72634030 17 C1QBP A/C 1.12 (1.08–1.17)* 1.5 3 1029* 1.12 (1.06–1.19) 2.9 3 1025 1.12 (1.07–1.18) 9.6 3 1026

rs1877030 17 MED1 C/T 1.09 (1.06–1.12)* 1.9 3 1028* 1.09 (1.05–1.13) 1.3 3 1025 1.09 (1.04–1.14) 3.2 3 1024

rs2469434 18 CD226 C/T 1.07 (1.05–1.10)* 8.9 3 10210* 1.05 (1.02–1.08) 6.7 3 1024 1.11 (1.07–1.15)* 1.2 3 1028*
chr19:10771941 19 ILF3 C/T 1.47 (1.30–1.67)* 8.6 3 10210* 1.47 (1.30–1.67)* 8.8 3 10210* - -

rs73194058 21 IFNGR2 C/A 1.08 (1.05–1.12) 1.2 3 1026 1.13 (1.08–1.18)* 2.6 3 1028* 1.03 (0.98–1.08) 2.9 3 1021

rs1893592 21 UBASH3A A/C 1.11 (1.08–1.14)* 7.2 3 10212* 1.11 (1.07–1.15)* 9.8 3 1029* 1.11 (1.05–1.18) 1.3 3 1024

rs11089637 22 UBE2L3-YDJC C/T 1.08 (1.05–1.11)* 2.1 3 1029* 1.10 (1.06–1.15) 2.0 3 1027 1.06 (1.02–1.10) 8.9 3 1024

rs909685 22 SYNGR1 A/T 1.13 (1.10–1.16)* 1.4 3 10216* 1.11 (1.08–1.15)* 6.4 3 10212* 1.23 (1.14–1.33) 2.0 3 1027

chrX:78464616 X P2RY10 A/C 1.11 (1.07–1.15)* 3.5 3 1028* 1.16 (0.78–1.75) 4.6 3 1021 1.11 (1.07–1.15)* 3.6 3 1028*

SNPs newly associated with P , 5.0 3 1028 in the combined study of the stage 1 GWAS meta-analysis and the stages 2 and 3 replication studies of trans-ethnic (Europeans and Asians), European or Asian ancestry
are indicated. SNPs, positions and alleles are based on the positive (1) strand of NCBI build 37. A1 represents an RA risk allele. Chr, chromosome; OR, odds ratio; 95% CI, 95% confidence interval. Full results of the
studies are available in Supplementary Table 1. Hyphens between gene names indicate that several candidate RA risk genes were included in the region.
*Association results with P , 5.0 3 1028.
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(Fig. 3a), are the pharmacologically active targets of approved RA drugs
(Extended Data Fig. 7a).

Twenty-seven drug target genes of approved RA drugs demonstrated
significant overlap with 98 biological RA risk genes and 2,332 genes
from the expanded PPI network (18 genes overlapped; 3.7-fold enrich-
ment by permutation analysis, P , 1.0 3 1025; Fig. 3b). For compar-
ison, all drug target genes (regardless of disease indication) overlapped
with 247 genes, which is 1.7-fold more enrichment than expected by
chance, but less than 2.2-fold enrichment compared with overlap of the
target genes of RA drugs (P 5 0.0035). Examples of approved RA ther-
apies identified by this analysis include tocilizumab19,20 (anti-IL6R),
tofacitinib21 (JAK3 inhibitor) and abatacept21 (CTLA4–immunoglobulin;
Fig. 3c and Extended Data Fig. 8).

We also assessed how approved drugs for other diseases might be
connected to biological RA risk genes. We highlight CDK6 and CDK4,
targets of three approved drugs for different types of cancer22 (Fig. 3d).
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In support for repurposing, one CDK6/CDK4 inhibitor, flavopiridol,
has been shown to ameliorate disease activity in animal models of
RA22. Further, the biology is plausible, as several approved RA drugs
were initially developed for cancer treatment and then repurposed for
RA (for example, rituximab). Although further investigations are neces-
sary, we propose that target genes/drugs selected by this approach could
represent promising candidates for novel drug discovery for RA treatment.

We note that a non-random distribution of drug-to-disease indications
in the databases could potentially bias our results. Namely, because RA
risk genes are enriched for genes with immune function, spurious
enrichment with drug targets could occur if the majority of drug indi-
cations in databases were for immune-mediated diseases or immune-
related target genes. However, such enrichment was not evident in our

analysis (,11% for drug indications and ,9% for target genes; Extended
Data Fig. 7b).

Through a comprehensive genetic study with .100,000 subjects, we
identified 42 novel RA risk loci and provided novel insight into RA
pathogenesis. We particularly highlight the role of genetics for drug
discovery. Although there have been anecdotal examples of this1,23, our
study provides a systematic approach by which human genetic data
can be efficiently integrated with other biological information to derive
biological insights and drive drug discovery.

METHODS SUMMARY
Details can be found in Methods, Extended Data Fig. 1, Extended Data Table 1 and
Supplementary Information, including (1) information about the patient collections;
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(2) genotyping, quality control and genotype imputation of GWAS data; (3) genome-
wide meta-analysis (stage 1); (4) in silico and de novo replication studies (stages 2
and 3); (5) trans-ethnic and functional annotations of RA risk SNPs; (6) prioritiza-
tion of biological candidate genes; and (7) drug target gene enrichment analysis.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Subjects. Our study included 29,880 RA cases (88.1% seropositive and 9.3%
seronegative for anti-citrullinated peptide antibody (ACPA) or rheumatoid factor
(RF), and 2.6% who had unknown autoantibody status) and 73,758 controls. All
RA cases fulfilled the 1987 criteria of the American College of Rheumatology for
RA diagnosis24, or were diagnosed with RA by a professional rheumatologist. The
19,234 RA cases and 61,565 controls enrolled in the stage 1 trans-ethnic GWAS
meta-analysis were obtained from 22 studies on people with European and Asian
ancestries (14,361 RA cases and 43,923 controls from 18 studies of Europeans and
4,873 RA cases and 17,642 controls from 4 studies of Asians): BRASS2, CANADA2,
EIRA2, NARAC12, NARAC22, WTCCC2, Rheumatoid Arthritis Consortium Inter-
national for Immunochip (RACI)-UK4, RACI-US4, RACI-SE-E4, RACI-SE-U4,
RACI-NL4, RACI-ES4, RACI-i2b2, ReAct, Dutch (including AMC, BeSt, LUMC
and DREAM), anti-TNF response to therapy collection (ACR-REF: BRAGGSS,
BRAGGSS2, ERA, KI and TEAR), CORRONA, Vanderbilt, three studies from the
GARNET consortium (BioBank Japan Project3, Kyoto University3 and IORRA3),
and Korea. Of these, GWAS data of 4,309 RA cases and 8,700 controls from six
studies (RACI-i2b2, ReAct, Dutch, ACR-REF, CORRONA and Vanderbilt) have
not been previously published.

The 3,708 RA cases and 5,535 controls enrolled in the stage 2 in silico replication
study were obtained from two studies of Europeans (2,780 RA cases and 4,700
controls from Genentech and SLEGEN) and Asians (928 RA cases and 835 con-
trols from China) (H.X. et al., manuscript submitted). The 6,938 RA cases and
6,658 controls enrolled in the stage 3 de novo replication study were obtained from
two studies of Europeans (995 RA cases and 1,101 controls from CANADAII2)
and Asians (5,943 RA cases and 5,557 controls from BioBank Japan Project, Kyoto
University and IORRA3).

All subjects in the stage 1, stage 2 and stage 3 studies were confirmed to be inde-
pendent through analysis of overlapping SNP markers. Any duplicate subjects were
removed from the stage 2 and stage 3 replication studies, leading to slightly different
sample sizes compared with previous studies that used these same collections2,3.

All participants provided written informed consent for participation in the study
as approved by the ethical committees of each of the institutional review boards.
Detailed descriptions of the study design, participating cohorts and the clinical
characteristics of the RA cases are provided in detail in Extended Data Fig. 1 and
Extended Data Table 1a, as well as in previous reports2–4.
Genotyping, quality control and genotype imputation of GWAS data. Genotyping
platforms and quality control criteria of GWAS, including cut-off values for sam-
ple call rate, SNP call rate, minor allele frequency (MAF), and Hardy–Weinberg
equilibrium (HWE) P value, covariates in the analysis, and imputation reference
panel information are provided for each study in Extended Data Table 1b. All
studies were analysed based on the same analytical protocol, including exclusion of
closely related subjects and outliers in terms of ancestries, as described elsewhere3.
After applying quality control criteria, whole-genome genotype imputation was
performed using 1000 Genomes Project Phase I (a) European (n 5 381) and Asian
(n 5 286) data as references11. We excluded monomorphic or singleton SNPs or
SNPs with deviation of HWE (P , 1.0 3 1027) from each of the reference panels.
GWAS data were split into ,300 chunks that evenly covered whole-genome regions
and additionally included 300 kb of duplicated regions between neighbouring chunks.
Immunochip data were split into ,2,000 chunks that included each of the targeted
regions or SNPs on the array. Each chunk was pre-phased and imputed by using
minimac (release stamp 2011-10-27). SNPs in the X chromosome were imputed
for males and females separately. We excluded imputed SNPs that were duplicated
between chunks, SNPs with MAF , 0.005 in RA cases or controls, or with low
imputation score (Rsq , 0.5 for genome-wide array and , 0.7 for Immunochip)
from each study. We found that imputation of Immunochip effectively increased
the number of the available SNPs by 7.0 fold (from ,129,000 SNPs to ,924,000
SNPs) to cover ,12% of common SNPs (MAF . 0.05) included in the 1000 Genomes
Project reference panel for European ancestry11.
Stage 1 trans-ethnic genome-wide meta-analysis. Associations of SNPs with RA
were evaluated by logistic regression models assuming additive effects of the allele
dosages including top 5 or 10 principal components as covariates (if available)
using mach2dat v.1.0.16 (Extended Data Table 1b). Allele dosages of the SNPs in X
chromosome were assigned as 0/1/2 for females and 0/2 for males and analysed
separately. Meta-analysis was performed for the trans-ethnic study (both Europeans
and Asians), European study, and Asian study separately. The SNPs available in $3
studies were evaluated in each GWAS meta-analysis, which yielded ,10 million
autosomal and X-chromosomal SNPs. Information about the SNPs, including the
coded alleles, was oriented to the forward strand of the NCBI build 37 reference
sequence. Meta-analysis was conducted by an inverse-variance method assuming a
fixed-effects model on the effect estimates (b) and the standard errors of the allele
dosages using the Java source code implemented by the authors25. Double GC cor-
rection was carried out using the inflation factor (lGC) obtained from the results of

each GWAS and the GWAS meta-analysis25 after removing the SNPs located 6 1 Mb
from known RA loci or in the MHC region (chromosome 6, 25–35 Mb). Although
there is not yet uniform consensus on the application of double GC correction, we
note that potential effects of double GC correction would not be substantial in our
study because of the small values of the inflation factors in the GWAS meta-
analysis (lGC , 1.075 and lGC adjusted for 1,000 cases and 1,000 controls
(lGC_1,000) , 1.005; Extended Data Table 1b).

As for the definition of known RA risk loci in this study, we included the loci that
showed significant associations in one of the previous studies (P , 5.0 3 1028) or
that had been replicated in independent cohorts. We consider the locus including
multiple independent signals of associations as a single locus, such as the MHC
locus12 and TNFAIP3 (ref. 4). Although 6 of these 59 loci previously identified
as known RA risk loci did not reach a suggestive level of association (defined
as P , 5.0 3 1026) in our stage 1 meta-analysis, previous studies have gone on to
replicate most of these associations in additional samples (Supplementary Table 1)2,3.
Thus, the number of confirmed RA risk loci is 101 (including the MHC region).
Stage 2 and stage 3 replication studies. In silico (stage 2) and de novo (stage 3)
replication studies were conducted using independent European and Asian sub-
jects (Extended Data Table 1). The 146 loci that satisfied P , 5.0 3 1026 in the
stage 1 trans-ethnic, European or Asian GWAS meta-analysis were selected for the
stage 2 in silico replication study. The SNPs that demonstrated the most significant
associations were selected from each of the loci. When the SNP was not available in
replication data sets, a proxy SNP with the highest linkage disequilibrium (r2 . 0.80)
was alternatively assessed. GWAS quality control, genotype imputation and asso-
ciation analysis were assessed in the same manner as in the stage 1 GWAS. For the
60 loci that demonstrated suggestive associations in the combined results of the
stage 1 GWAS meta-analysis and the stage 2 in silico replication study but were not
included as a known RA risk locus, we calculated statistical power to newly achieve
a genome-wide significance threshold of P , 5.0 3 1028 for Europeans and Asians
separately, which were estimated based on the allele frequencies, ORs and de novo
replication sample sizes of the populations. We then selected the top 20 SNPs with
the highest statistical power for Europeans and Asians separately (in total 32
SNPs), and conducted the stage 3 de novo replication study. Genotyping methods,
quality control and confirmation of subject independence in the stage 3 de novo
replication study were described previously2,3. The combined study of the stage 1
GWAS meta-analysis and the stages 2 and 3 replication studies was conducted by
an inverse-variance method assuming a fixed-effects model25.
Trans-ethnic and functional annotations of RA risk SNPs. Trans-ethnic com-
parisons of RAF (in the reference panels), ORs and explained heritability were
conducted using the results of the stage 1 GWAS meta-analysis of Europeans and
Asians. Correlations of RAF and OR were evaluated using Spearman’s correlation
test. ORs were defined based on minor alleles in Europeans. Explained heritability
was estimated by applying a liability-threshold model assuming disease prevalence
of 0.5% (ref. 10) and using the RAF and OR of the population(s) according to the
genetic risk model. For the population-specific genetic risk model, the RAF and
OR of the same population was used. For the trans-ethnic genetic risk model, the
RAF of the population but the OR of the other population was used.

Details of the overlap enrichment analysis of RA risk SNPs with H3K4me3
peaks have been described elsewhere13. Briefly, we evaluated whether the RA risk
SNPs (outside of the MHC region) and SNPs in linkage disequilibrium (r2 . 0.80)
with them were enriched in overlap with H3K4me3 chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) assay peaks of 34 cell types obtained from
the National Institutes of Health Roadmap Epigenomics Mapping Consortium, by
a permutation procedure with 3105 iterations.
Fine mapping of causal risk alleles. For fine mapping of the causal risk alleles, we
selected the 31 RA risk loci where the risk SNPs yielded P , 1.0 3 1023 in the stage
1 GWAS meta-analysis of both Europeans and Asians with the same directional
effects of alleles (outside of the MHC region). For fine mapping using linkage-
disequilibrium structure differences between the populations, we calculated aver-
age numbers of the SNPs in linkage disequilbrium (r2 . 0.80) in Europeans,
Asians, and in both Europeans and Asians, separately.

For fine mapping using H3K4me3 peaks of Treg primary cells, we first evaluated
H3K4me3 peak overlap enrichment of the SNPs in linkage disequilbrium (in
Europeans and Asians) compared with the neighbouring SNPs (62 Mb). We fixed
the SNP positions but physically slid H3K4me3 peak positions by 1 kb bins
within 62 Mb regions of the risk SNPs, and calculated overlap of the SNPs in
linkage disequilibrium with H3K4me3 peaks for each sliding step, and evaluated
the significance of overlap in the original peak positions by a one-sided exact test
assuming enrichment of overlap. For the 10 loci that demonstrated significant
overlap (P , 0.05), we calculated the average number of the SNPs that were in linkage
disequilibrium in both Europeans and Asians and also included in H3K4me3
peaks.
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Pleiotropy analysis. We downloaded phenotype-associated SNPs and phenotype
information from the National Human Genome Research Institute (NHGRI)
GWAS catalogue database26 on 31 January, 2013. We selected 4,676 significantly
associated SNPs (P , 5.03 1028) corresponding to 311 phenotypes (other than RA).
We manually curated the phenotypes by combining the same but differently
named phenotypes into a single phenotype (for example, from ‘urate levels’, ‘uric
acid levels’ and ‘renal function-related traits (urea)’ to ‘urate levels’), or splitting
merged phenotypes into sub-categorical phenotypes (for example, from ‘white
blood cell types’ into ‘neutrophil counts’, ‘lymphocyte counts’, ‘monocyte counts’,
‘eosinophil counts’ or ‘basophil counts’). Lists of curated phenotypes and SNPs are
available at http://plaza.umin.ac.jp/,yokada/datasource/software.htm.

For each of the selected NHGRI GWAS catalogue SNPs and the RA risk SNPs
identified by our study (located outside of the MHC region), we defined the genetic
region based on 625 kb of the SNP or the neighbouring SNP positions in mod-
erate linkage disequilibrium with it in Europeans or Asians (r2 . 0.50). If multiple
different SNPs with overlapping regions were registered for the same phenotype,
they were merged into a single region. We defined ‘region-based pleiotropy’ as two
phenotype-associated SNPs sharing part of their genetic regions or sharing any
UCSC hg19 reference gene(s) that partly overlapped each of the regions (Extended
Data Fig. 4a). We defined ‘allele-based pleiotropy’ as two phenotype-associated
SNPs that were in linkage disequilibrium in Europeans or Asians (r2 . 0.80). We
defined the direction of an effect as ‘concordant’ with RA risk if the RA risk allele
also leads to increased risk of the disease or increased dosage of the quantitative
trait; similarly, we defined relationships as ‘discordant’ if the RA risk allele is assoc-
iated with decreased risk of the disease phenotype (or if the RA risk allele leads to
decreased dosage of the quantitative trait).

We evaluated statistical significance of region-based pleiotropy of the registered
phenotypes with RA by a permutation procedure with 3107 iterations. When one
phenotype had n loci of which m loci were in region-based pleiotropy with RA, we
obtained a null distribution of m by randomly selecting n SNPs from obtained
NHGRI GWAS catalogue data and calculating the number of the observed region-
based pleiotropy with RA for each of the iteration steps. For estimation of the null
distribution, we did not include the SNPs associated with several autoimmune
diseases that were previously reported to share pleiotropic associations with RA
(Crohn’s disease, type 1 diabetes, multiple sclerosis, coeliac disease, systemic lupus
erythematosus, ulcerative colitis and psoriasis)2.
Prioritization of biological candidate genes from RA risk loci. For RA risk
SNPs outside of the MHC region, functional annotations were conducted by Annovar
(hg19). RA risk SNPs were classified if any of the SNPs in linkage disequilibrium
(r2 . 0.80) in Europeans or Asians were annotated in order of priority of missense
(or nonsense), synonymous or non-coding (with or without cis-eQTL) SNPs. We
also applied this SNP annotation scheme to 10,000 randomly selected genome-
wide common SNPs (MAF . 0.05 in Europeans or Asians).

We then assessed cis-eQTL effects by referring two eQTL data sets: the study for
peripheral blood mononuclear cells (PBMCs) obtained from 5,311 European
subjects6 and newly generated cell-specific eQTL analysis for CD41 T cells and
CD141CD162 monocytes from 212 European subjects (ImmVar project; T.R. et al.,
manuscript submitted). When the RA risk SNP was not available in eQTL data sets,
we alternatively used the results of best proxy SNPs in linkage disequilibrium with
the highest r2 value (.0.80). We applied the significance thresholds defined in the
original studies (FDR q , 0.05 for PBMC eQTL and gene-based permutation
P , 0.05 for cell-specific eQTL).

We obtained PID genes and their classification categories as defined by the
International Union of Immunological Societies Expert Committee14, downloaded
cancer somatic mutation genes from the Catalogue of Somatic Mutations in
Cancer (COSMIC) database15, and downloaded knockout mouse phenotype labels
and gene information from the Mouse Genome Informatics (MGI) database16 on
31 January, 2013 (Supplementary Tables 2–5). We defined 377 RA risk genes included
in the 100 RA risk loci (outside of the MHC region) according to the criteria described
in the previous section (625 kb or r2 . 0.50), and evaluated overlap with PID cat-
egories, cancer phenotypes with registered somatic mutations, and phenotype
labels of knockout mouse genes with human orthologues. Statistical significance
of enrichment in gene overlap was assessed by a permutation procedure with 3106

iterations. For each iteration step, we randomly selected 100 genetic loci matched
for number of nearby genes with those in non-MHC 100 RA risk loci. When one
gene category had m genes overlapping with RA risk genes, we obtained a null
distribution of m by calculating the number of genes in the selected loci overlap-
ping with RA risk genes for each iteration step.

We conducted molecular pathway enrichment analysis using MAGENTA soft-
ware9 and adopting Ingenuity and BIOCARTA databases as pathway information
resources. We conducted two patterns of analyses by inputting genome-wide SNP
P values of the current trans-ethnic meta-analysis (stage 1) and the previous meta-
analysis of RA2 separately. As the previous meta-analysis was conducted using

imputed data based on HapMap Phase II panels, we re-performed the meta-
analysis using the same subjects but with newly imputed genotype data based on
the 1000 Genomes Project reference panel11 to make SNP coverage conditions ident-
ical between the meta-analyses. Significance of the molecular pathway was evalu-
ated by FDR q values obtained from 3105 iterations of permutations.

We scored each of the genes included in the RA risk loci (outside of the MHC
region) by adopting the following eight selection criteria and calculating the num-
ber of the satisfied criteria: (1) genes for which RA risk SNPs or any of the SNPs in
linkage disequilibrium (r2 . 0.80) with them were annotated as missense variants;
(2) genes for which significant cis-eQTL of any of PBMCs, T cells or monocytes
were observed for RA risk SNPs (FDR q , 0.05 for PBMCs and permutation
P , 0.05 for T cells and monocytes); (3) genes prioritized by PubMed text mining
using GRAIL7 with gene-based P , 0.05; (4) genes prioritized by PPI network using
DAPPLE8 with gene-based P , 0.05; (5) PID genes14; (6) haematological cancer
somatic mutation genes15; (7) genes for which $2 of associated phenotype labels
(‘haematopoietic system phenotype’, ‘immune system phenotype’ and ‘cellular
phenotype’; P , 1.0 3 1024) were observed for knockout mouse16; and (8) genes
prioritized by molecular pathway analysis using MAGENTA9, which were included
in the significantly enriched pathways (FDR q , 0.05) with gene-based P , 0.05.
Because these criteria showed weak correlations with each other (R2 , 0.26; Extended
Data Fig. 6c), each gene was given a score based on the number of criteria that were
met (scores ranging from 0–8 for each gene). We defined the genes with a score $2
as ‘biological RA risk genes’.

For each gene in RA risk loci, we evaluated whether the gene was the nearest
gene to the RA risk SNP within the risk locus, or whether the RA risk SNP (or SNPs
in linkage disequilibrium with it) of the gene overlapped with H3K4me3 histone
peaks of cell types. The difference in proportions of genes that were the nearest
gene to biological RA risk genes (score $2) and non-biological genes (score ,2)
was evaluated by using Fisher’s exact test implemented in R statistical software
(v.2.15.2). The difference in the proportions of genes overlapping with Treg prim-
ary cell H3K4me3 peaks between biological and non-biological genes was assessed
by a permutation procedure by shuffling the overlapping status of RA risk SNPs/
loci with 3105 iterations.
Drug target gene enrichment analysis. We obtained drug target genes and cor-
responding drug information from DrugBank17 and the Therapeutic Targets Database
(TTD)18 on 31 January, 2013, as well as additional literature searches. We selected
drug target genes that had pharmacological activities (for the genes from DrugBank)
and human orthologues, and that were annotated to any of the approved, clinical
trial or experimental drugs (Supplementary Table 6). We manually extracted drug
target genes annotated to approved RA drugs on the basis of discussions with
professional rheumatologists (Extended Data Fig. 7a). We extracted genes in direct
PPI with biological RA risk genes by using the InWeb database27. To take account
of potential dependence between PPI genes and drug target genes, overlap of
biological RA risk genes and genes in direct PPI with them with drug target genes
was assessed by a permutation procedure with 3105 iterations.

Let x be the set of the biological RA risk genes and genes in direct PPI with them
(nx genes), y be the set of genes with protein products that are the direct target of
approved RA drugs (ny genes), and z be the set of genes with protein products that
are the direct target of all approved drugs (nz genes). We defined nx>y and nx>z as
the numbers of genes overlapping between x and y and between x and z, respectively.
For each of 10,000 iteration steps, we randomly selected a gene set of x9 including
nx genes from the entire PPI network (12,735 genes). We defined nx>y9 and nx>z9

as the numbers of genes overlapping between x9 and y, and between x9 and z,
respectively. The distributions of nx>y9, nx>z9 and nx>y9/nx>z9 obtained from the
total iterations were defined as the null distributions of nx>y, nx>z, and nx>y/nx>z,
respectively. Fold enrichment of overlap with approved RA drug target genes was
defined as nx>y/m(nx>y9), where m(t) represents the mean value of the distribution
of t. Fold enrichment of overlap with approved all drug target genes was defined as
nx>z/m(nx>z9). Relative fold enrichment of overlap with RA drug target genes and
with all drug target genes was defined as (nx>y/nx>z)/m(nx>y9/nx>z9). Significance
of the enrichment was evaluated by one-sided permutation tests examining nx>y,
nx>z, and nx>y/nx>z in their null distributions.
Web resources. The following websites provide valuable additional resources.
Summary statistics from the GWAS meta-analysis, source codes, and data sources
have been deposited at http://plaza.umin.ac.jp/,yokada/datasource/software.htm;
GARNET consortium, http://www.twmu.ac.jp/IOR/garnet/home.html; i2b2, https://
www.i2b2.org/index.html; SLEGEN, http://www.lupusresearch.org/lupus-research/
slegen.html; 1000 Genomes Project, http://www.1000genomes.org/; minimac, http://
genome.sph.umich.edu/wiki/Minimac; mach2dat, http://www.sph.umich.edu/csg/
abecasis/MACH/index.html; Annovar, http://www.openbioinformatics.org/annovar/;
ImmVar, http://www.immvar.org/; NIH Roadmap Epigenomics Mapping Consortium,
http://www.roadmapepigenomics.org/; NHGRI GWAS catalogue, http://www.genome.
gov/GWAStudies/; COSMIC, http://cancer.sanger.ac.uk/cancergenome/projects/
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cosmic/; MGI, http://www.informatics.jax.org/; MAGENTA, http://www.broadinstitute.
org/mpg/magenta/; Ingenuity, http://www.ingenuity.com/; BIOCARTA, http://www.
biocarta.com/; GRAIL, http://www.broadinstitute.org/mpg/grail/; DAPPLE, http://
www.broadinstitute.org/mpg/dapple/dapple.php; R statistical software, http://www.
r-project.org/; DrugBank, http://www.drugbank.ca/; TTD, http://bidd.nus.edu.sg/
group/ttd/ttd.asp.
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Extended Data Figure 1 | An overview of the study design. a, We conducted
a three-stage trans-ethnic meta-analysis in total of 29,880 RA cases and 73,758
controls of European (EUR) and Asian (ASN) ancestry. The stage 1 GWAS
meta-analysis included 19,234 RA cases and 61,565 controls from 22 studies,
which was followed by the stage 2 in silico replication study (3,708 RA cases
and 5,535 controls) and stage 3 de novo replication study (6,938 RA cases
and 6,658 controls). In the combined study of stages 1–3, we identified 42 novel
RA risk loci, which increased the total number of RA risk loci to 101. b, Using
the 100 RA risk loci (outside of the MHC region), we conducted trans-ethnic
and functional annotation of the RA risk SNPs. We constructed an in silico
bioinformatics pipeline to prioritize biological candidate genes. We adopted
eight criteria to score each of 377 genes in the RA risk loci: (1) RA risk
missense variant; (2) cis-eQTL; (3) PubMed text mining; (4) PPI; (5) PID;
(6) haematological cancer somatic mutation; (7) knockout mouse phenotype;
and (8) molecular pathway. Our study also demonstrated that these biological
candidate genes in RA risk loci are significantly enriched in overlap with target
genes for approved RA drugs.
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Extended Data Figure 2 | Quantile–quantile plots and Manhattan plots of
P values in the GWAS meta-analysis. a, Quantile–quantile plots of P values
in the stage 1 GWAS meta-analysis for trans-ethnic, European and Asian
ancestries. The x-axis indicates the expected 2log10 (P values). The y-axis
indicates the observed 2log10 (P values) after the application of double GC
correction. The SNPs for which observed P values were less than 1.0 3 10220

are indicated at the upper limit of each plot. Black, blue and red dots represent
the association results of all SNPs, SNPs outside of the MHC region and
PTPN22 locus, and SNPs outside of the known RA risk loci, respectively.

Double GC correction was applied based on the inflation factor, lGC, which was
estimated from the SNPs outside of the known RA loci and indicated in each
plot. b, Manhattan plots of P values in the stage 1 GWAS meta-analysis for
trans-ethnic, European and Asian ancestries. The y-axis indicates the 2log10

(P values) of genome-wide SNPs in each GWAS meta-analysis. The horizontal
grey line represents the genome-wide significance threshold of P 5 5.0 3 1028.
The SNPs for which P values were less than 1.0 3 10220 are indicated at the
upper limit of each plot.
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Extended Data Figure 3 | Trans-ethnic and functional annotation of RA
risk SNPs. a, b, Comparisons of RAF and OR values between individuals of
European (EUR) and Asian (ASN) ancestry from the stage 1 GWAS meta-
analysis. ORs were defined based on minor alleles in Europeans. SNPs with
FST . 0.10 or SNPs in which the 95% CI of the OR did not overlap between
Europeans and Asians are coloured. OR of the SNP in the HLA-DRB1 locus
($1.5) is plotted at the upper limits of the x- and y-axes. Five loci demonstrated
population-specific associations (P , 5.0 3 1028 in one population but
P . 0.05 in the other population without overlap of the 95% CI of the OR)
are highlighted by red labels (rs227163 at TNFRSF9, rs624988 at CD2, rs726288
at SFTPD, rs10790268 at CXCR5 and rs73194058 at IFNGR2). c, Cumulative
curve of explained heritability in each population. d, Enrichment analysis
for overlap of RA risk SNPs with H3K4me3 peaks in cell types. The most
significant cell type is Treg primary cells. e, Number of SNPs in the process
of trans-ethnic and functional fine mapping. For 31 loci in which the risk SNPs
yielded P , 1.0 3 1023 in both populations (stage 1 GWAS), the number of
candidate causal variants was reduced by 40–70% when confined by SNPs in
linkage disequilibrium with the RA risk SNPs (r2 . 0.80) in both populations
(on average, from 21.9 or 37.3 SNPs in linkage disequiliberium in Europeans

or Asians, to 15.0 SNPs in linkage disequilibrium in both populations). Further,
for 10 loci in which candidate causal variants significantly overlapped with
H3K4me3 peaks in Treg cells (P , 0.05), the average number of SNPs was
further reduced by half again, from 10.4 to 5.9. f, Fine mapping in the
CTLA4 locus, where the functional non-coding variant of CT60 (rs3087243)28

showed the most significant association with RA. The top three panels indicate
regional SNP associations of the locus in the stage 1 GWAS meta-analysis for
trans-ethnic, European and Asian ancestries, respectively. The bottom panel
indicates the change in the number of the candidate causal variants in each
process of fine mapping. Trans-ethnic fine mapping of candidate causal
variants decreased the number of candidate variants from 44 (linkage
disequilibrium in Asians) and 27 (linkage disequilibrium in Europeans)
to 21 (linkage disequilibrium in both populations). As these SNPs were
significantly enriched in overlap with H3K4me3 peaks in Treg cells compared
with the surrounding SNPs (P 5 0.037), we confined the candidate variants
into nine by additionally selecting the SNPs included in H3K4me3 peaks.
CT60 was included in these finally selected nine SNPs, and also located at
the vicinity of a H3K4me3 peak summit (indicated by a red arrow).
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Extended Data Figure 4 | Pleiotropy of RA risk SNPs. a, Definition of
region-based and allele-based pleiotropy. For each of the RA risk SNPs and
SNPs registered in the NHGRI GWAS catalogue (outside of the MHC region),
we defined the region on the basis of 625 kb of the SNP or the neighbouring
SNP positions in moderate linkage disequilibrium with it in Europeans or
Asians (r2 . 0.50). We defined ‘region-based pleiotropy’ as two phenotype-
associated SNPs sharing part of their genetic regions or any UCSC hg19
reference gene(s) partly overlapping with each of the regions. We defined
‘allele-based pleiotropy’ as two phenotype-associated SNPs in linkage
disequilibrium in Europeans or Asians (r2 . 0.80). b, Region-based pleiotropy
of the RA risk loci. We found two-thirds of RA risk loci (n 5 66) demonstrated
region-based pleiotropy with other human phenotypes. Phenotypes which
showed region-based pleiotropy with RA risk loci are indicated (P , 0.05).
c, Allele-based pleiotropy of the RA risk loci. Allele-based pleiotropy with

discordant directional effects to RA risk SNPs are indicated in grey. d, Relative
proportions of pleiotropic effects (that is, regions and alleles that influence
multiple phenotypes) between RA risk loci and 311 phenotypes from the
NHGRI GWAS catalogue. Representative examples of disease and biomarker
phenotypes are shown. One-quarter of the observed region-based pleiotropic
associations (26% 5 54/207) were also annotated as having allele-based
pleiotropy, although their proportions and directional effects varied among
phenotypes. e, Allele-based pleiotropy of IL6R 358Asp (rs2228145 (A))5

on multiple disease phenotypes, including increased risk of RA, ankylosing
spondylitis and coronary heart disease (asterisks indicate associations obtained
from the literature29,30) and protection from asthma, as well as levels of
biomarkers (increased C-reactive protein (CRP) and fibrinogen but
decreased soluble interleukin-6 receptor (sIL6R)).
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Extended Data Figure 5 | Overlap of RA risk SNPs with biological
resources. a, Missense variants in linkage disequilibrium (r2 . 0.80 in
Europeans or Asians) with RA risk SNPs. When multiple missense variants
are in linkage disequilibrium with the RA risk SNP, the highest r2 value is
indicated. b, Functional annotation of the SNPs in 100 non-MHC RA risk loci,
including the relative proportion of heritability explained by SNP annotations.
Although 44% of all RA risk SNPs had cis-eQTL, 9 of them overlapped with
missense or synonymous variants but 35 of them did not overlap as indicated by
asterisks. A list of cis-eQTL SNPs and genes can be found in Extended Data
Table 2. c, Overlap of RA risk genes with human PID and defined categories.

d, Overlap of RA risk genes with cancer somatic mutation genes. In addition to
the categories of all cancers, haematological cancers and non-haematological
cancers, cancer types that showed overlap with $2 of RA risk genes are
indicated. e, Overlap of RA risk genes with knockout mouse phenotypes.
Knockout mouse phenotypes that satisfied significant enrichment with RA risk
genes are indicated in bold (P , 0.05/30 5 0.0017). f, Molecular pathway
analysis of RA GWAS results. Molecular pathways that showed significant
enrichment in either the current stage 1 trans-ethnic GWAS meta-analysis or
the previous GWAS meta-analysis of RA2 are indicated in bold (FDR q , 0.05).
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Extended Data Figure 6 | Prioritization of biological candidate genes from
RA risk loci. a, Prioritization criteria of biological candidate genes from
RA risk loci. b, Histogram distribution of gene scores. The 98 genes with
score $2 (orange) were defined as ‘biological RA risk genes’. c, Correlations
of biological candidate gene prioritization criteria. d, Change in the overlapping

proportions of genes with H3K4me3 peaks by cell type according to score
increases. When RA risk SNP of the locus (or SNP in linkage disequilibrium)
overlapped with H3K4me3 peaks, genes in the locus were defined as
overlapping.
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Extended Data Figure 7 | Overlap of all genes in the RA risk loci with drug
target genes. a, Approved RA drugs and target genes. DMARDs, disease-
modifying antirheumatic drugs. b, Overlap analysis stratified by immune-
related and non-immune-related drug target genes. We made a list of 583
immune-related genes based on Gene Ontology (GO) pathways named
‘immune-’ or ‘immuno-’ and found that the majority of drug target genes
(791/871 5 91%) were not immune-related. c, Overlap of all 377 genes included
in 100 RA risk loci (outside of the MHC region) plus 3,776 genes in direct PPI

with them and drug target genes. We found overlap of 19 genes from the 27
drug target genes of approved RA drugs (2.3-fold enrichment, P , 1.0 3 1025).
All 871 drug target genes (regardless of disease indication) overlap with 329
genes from the PPI network, which is 1.3-fold more enrichment than expected
by chance alone (P , 1.0 3 1025), but less than 1.7-fold enrichment compared
with RA drugs (P 5 0.0059). We note that this enrichment of drug–gene
pairs was less apparent compared with that obtained from the expanded
PPI network generated from 98 biological candidate genes (Fig. 3b).
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Extended Data Figure 8 | Connection between RA risk genes and approved
RA drugs. Full lists of the connections between RA risk SNPs (blue boxes),
biological candidate genes from each risk locus (purple boxes), genes from the
expanded PPI network (green boxes) and approved RA drugs (orange boxes).

Black lines indicate connections. Only IL6R is a direct connection between
an SNP–biological gene–drug (tocilizumab)19,20; all other SNP–drug
connections are through the PPI network.
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Extended Data Table 1 | Characteristics of the study cohorts

a, Characteristics of the cohorts and subjects enrolled in the study. b, Genotype and imputation methods of the studies. CCP, anti-citrullinated peptide antibody; chrom, chromosome; N.A., not available;
PC, principal component; QC, quality control; RF, rheumatoid factor.
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Extended Data Table 2 | cis-eQTL of RA risk SNPs

a, cis-eQTL of PBMCs in the RA risk SNPs. Significant cis-eQTLs of RA risk SNPs is indicated (FDR q , 0.05). SNPs and positions are based on the positive strand of NCBI build 37. Linkage disequilibrium of the proxy
SNPs evaluated in the eQTL study and the best cis-eQTL SNP in the region with the RA risk SNPs is indicated as r2 values. When the expression probe was not assigned to any genes, the eQTL gene is labelled with a
dash. b, cis-eQTL of T cells and monocytes in the RA risk SNPs. Significant cis-eQTLs of RA risk SNPs are indicated in bold (gene-based permutation P , 0.05).
* cis-eQTL of the proxy SNP (rs3807307, r2 5 0.96) was evaluated.
{ cis-eQTL of the proxy SNP (rs11557466, r2 5 0.98) was evaluated.
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