Design Paradigm ^a	#Explicit Designs Tested in Each Family	Average # Residues mutated	Design Pheno- type ^b	Expression ^c	Expression Mismatch WT HC/ Design LC ^c	Expression Mismatch WT LC/ Design HC ^c	Stability ^d
CH1/Cλ Design	IS						
1	2	3	Repack	+	+	+	+
2 (CRD2β)	6	3	Repack	+	-	-	+
3	1	2	Repack	+	+	+	-
4	1	2	Charge	+	+	+	+
5	4	2	Charge	+	+	-	+
6	2	3	Repack	+	+	+	-
7	4	2	Charge	-	n.d. ^e	n.d.	n.d.
8	3	6	Repack	+/-	-	-	+
9	1	7	Repack	+	-	-	-
10	1	8	Repack	-	n.d.	n.d.	n.d.
11	1	6	Repack	-	n.d.	n.d.	n.d.
12	1	10	Both	-	n.d.	n.d.	n.d.
13	2	5	Both	+	+	-	-
14	1	18	Both	-	n.d.	n.d.	n.d.
15	2	18	Both	-	n.d.	n.d.	n.d.
16	1	19	Both	-	n.d.	n.d.	n.d.
17	2	18	Both	-	n.d.	n.d.	n.d.
18	2	9	Both	+	+	+	+
19	4	16	Both	-	n.d.	n.d.	n.d.
20	1	13	Both	-	n.d.	n.d.	n.d.
1+5 (CRD1)	1	5	Both	+	+	-	+
CH1/Cλ CRD2	3 optimization						
1	2	4	Repack	+	-	-	+
2	2	3	Repack	+	-	-	+
3	4	4	Repack	+	-	-	++
VH/VL Designs	5						
1	4	2	Charge	+	-	+	+
2	8	2	Charge	+	-	+	+
3	1	2	Repack	-	n.d.	n.d.	n.d.
4	1	2	Repack	-	n.d.	n.d.	n.d.
5	3	2	Repack	-	n.d.	n.d.	n.d.
6 (VRD2)	3	2	Charge	+	n.d.	n.d.	+
1+2 (VRD1)	1	4	Charge	+	-	-	+

Supplementary Table 1 Rosetta multi-state designs and rational structu	re-based designs of both the
$C_{\rm H} 1/C_{\rm L}$ and the $V_{\rm H}/V_{\rm L}$ interfaces.	

^aEach paradigm is based on a similar design principle focused around a set of residues where variations within each paradigm may include variances in one or more amino acid changes to search for the best combination. ^bDesign phenotypes could rudimentarily be categorized as a repacking of residues within the $C_H 1/C_L$ or V_H/V_L interface (repack) or as a swap or introduction of charge-charge interactions (charge) or both (both). ^cExpression and assembly similar to (+) or worse than (-) WT protein and if worse, then additional measurements were not performed. ^dStability near WT based on residual activity following thermal challenge at temperatures ranging from 50-80 °C. ^eNot determined (n.d.).

			%Assembly ^a	%Assembly ^a	Expression
LC1 I	LC2	нс	(LC1/HC)	(LC2/HC)	(µg/mL)
C _H 1/C _L Specificity	y Designs in IgG-lao	cking V _H /V _L			
$C\lambda_{CRD1} LC$	$C\lambda_{WT} LC$	CH1 _{WT} HC	36	64	24
Cλ _{CRD1} LC	$C\lambda_{WT} LC$	CH1 _{CRD1} HC	96	4	18
Cλ _{CRD1} LC	$C\kappa_{WT} LC$	CH1 _{WT} HC	58	42	28
Cλ _{CRD1} LC	$C\kappa_{WT} LC$	CH1 _{CRD1} HC	100	0	61
$C\lambda_{CRD2} LC$	$C\lambda_{WT} LC$	CH1 _{WT} HC	7±3	93±3	29±18
Cλ _{CRD2} LC	$C\lambda_{WT} LC$	CH1 _{CRD2} HC	99.7±0.3	0.3±0.3	46±30
$C\lambda_{CRD2} LC$	$C\kappa_{WT} LC$	CH1 _{WT} HC	5±5	95±5	47±27
Cλ _{CRD2} LC	$C\kappa_{WT} LC$	CH1 _{CRD2} HC	100±0.1	0±0.1	60±30
C _H 1/C _L Specificity	Designs in IgG wit	h V _H /V _L			
$VL_{WT}C\lambda_{CRD1} LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{WT} HC	6	100	87
$VL_{WT}C\lambda_{CRD1} LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{CRD1} HC	15	100	104
$VL_{WT}C\lambda_{CRD2}LC$	$VL_{WT}C\lambda_{WT}LC$	VH _{WT} CH1 _{WT} HC	50	50	29
$VL_{WT}C\lambda_{CRD2} LC$	$VL_{WT}C\lambda_{WT}LC$	VH _{WT} CH1 _{CRD2} HC	79	21	28
$VL_{WT}C\lambda_{CRD2}LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{WT} HC	78	22	31
$VL_{WT}C\lambda_{CRD2} LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{CRD2} HC	79	21	19
V _H /V _L Specificity	Designs				
$VL_{WT}C\lambda_{WT}LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{WT} HC	18	82	69
$VL_{VRD1}C\lambda_{WT}LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{WT} HC	10	90	73
$VL_{VRD1}C\lambda_{WT}LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{VRD1} CH1 _{WT} HC	61	39	108
$VL_{VRD1}C\kappa_{WT}LC$	$VL_{WT}C\lambda_{WT} LC$	VH _{WT} CH1 _{WT} HC	40	60	132
$VL_{VRD1}C\kappa_{WT}LC$	$VL_{WT}C\lambda_{WT} LC$	VH _{VRD1} CH1 _{WT} HC	69	31	112
$VL_{VRD2}C\lambda_{WT}LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{WT} CH1 _{WT} HC	39	61	94
$VL_{VRD2}C\lambda_{WT}LC$	$VL_{WT}C\kappa_{WT}LC$	VH _{VRD2} CH1 _{WT} HC	56	44	105
$VL_{VRD2}C\lambda_{WT}LC$	$VL_{VRD1}C\kappa_{WT}LC$	VH _{VRD1} CH1 _{WT} HC	23	77	95
$VL_{VRD2}C\lambda_{WT}LC$	$VL_{VRD1}C\kappa_{WT}LC$	VH _{VRD2} CH1 _{WT} HC	71	29	71
Combination of V	$_{\rm H}/{\rm V_L}$ and ${\rm C_H}1/{\rm C_L}~{\rm S}$	pecificity Designs			
$VL_{VRD1}C\lambda_{CRD2}LC$	$VL_{WT}C\lambda_{WT} LC$	VH _{WT} CH1 _{WT} HC	15±18	85±18	42±11
$VL_{VRD1}C\lambda_{CRD2}LC$	$VL_{WT}C\lambda_{WT}LC$	VH _{VRD1} CH1 _{CRD2} HC	73±12	27±12	55±26
$VL_{VRD2}C\lambda_{CRD2}LC$	$VL_{WT}C\lambda_{WT} LC$	VH _{WT} CH1 _{WT} HC	30±24	70±24	49±17
$VL_{VRD2}C\lambda_{CRD2}LC$	$VL_{WT}C\lambda_{WT}LC$	VH _{VRD2} CH1 _{CRD2} HC	84±10	16±10	51±28
$VL_{VRD1}C\lambda_{CRD2}LC$	$VL_{VRD2}C\kappa_{WT}LC$	VH _{VRD2} CH1 _{WT} HC	26±23	74±23	53±29
$VL_{VRD1}C\lambda_{CRD2}LC$	$VL_{VRD2}C\kappa_{WT}LC$	VH _{VRD1} CH1 _{CRD2} HC	73±6	27±6	73±41
$VL_{VRD1}C\lambda_{CRD2}LC$	$VL_{VRD2}C\lambda_{WT}LC$	VH _{VRD2} CH1 _{WT} HC	9±1	91±1	75±4
$VL_{VPD1}C\lambda_{CPD2}LC$	VI AND CANT LC	VH _{VRD1} CH1 _{CRD2} HC	89±4	11±4	76±16

Supplementary Table 2 Ratio of the relative mass spectrometric intensity of two light chains when expressed with a single heavy chain

^aThe percent assembly was calculated based on the relative area under the deconvoluted mass spectrometry peaks (i.e., proportional to the number of counts hitting the detector) of each of the LCs co-purified bound to the HC prior to mass spectrometry analysis. Purified samples were reduced with DTT prior to analysis. ^bGreen highlighted cells indicate the matched LC and HC pairs. The mass spectrometry results are highlighted in green if the matched pair was >50% of

the assembled product when expressed with the mismatched LC and red if the specific assembly was $\leq 50\%$.

Designs	Protein	Length	EpiMatrix	EpiMatrix
_	Sequence ^b	(#residues)	Hits ^c	Score ^d
C _H 1 Designs				
Wild-Type	IgG1 (-V _H)	329	131	-12.1
CRD1	IgG1 (-V _H)	329	130	-12.3
CRD2	IgG1 (-V _H)	329	128	-14.3
Cλ Designs				
Wild-Type	Cλ (-V _L)	105	29	-33.7
CRD1	Cλ (-V _L)	105	22	-53.4
CRD2	$C\lambda$ (-V _L)	105	26	-42.1
V _H Designs				
Wild-Type	IgG1	448	204	5.7
VRD1	IgG1	448	202	4.6
VRD2	IgG1	448	202	4.2
V _L Designs				
Wild-Type	Kappa LC	212	83	-6.2
VRD1	Kappa LC	212	80	-9.9
VRD2	Kappa LC	212	85	-4.8

Supplemental Table 3 EpiMatrix Immunogenicity Prediction^a

^aA standard set of human major histocompatibility alleles were used for the analysis. ^bProtein Sequence indicates the entire protein that was entered into the program for analysis. IgG1 (-V_H) and C λ (-V_L) indicates that only the constant region IgG and C λ sequences were input into the program for analysis. ^cEpiMatrix Hits indicate the number of EpiMatrix Z scores above a certain threshold criteria.^dEpiMatrix Score is derived from the number and intensity of the EpiMatrix Hits normalized by the protein length. Based on the EpiMatrix manual, numbers above 20 or 30 are considered to have a high immunogenicity risk, while numbers below -20 are deemed to have a low immunogenicity risk.

`````````````````````````````````	Wild-type	CRD1	CRD2 <u>β</u>	Wild-type	VRD2	VRD1_CRD2
	$C_{\rm H}1/C_{\lambda}$	$C_{\rm H}1/C_{\lambda}$	$C_{\rm H}1/C_{\lambda}$	Pertuzumab	Pertuzumab	Pertuzumab
	(4LLD)	(4LLM)	(4LLQ)	Fab (C_{λ})	Fab (C_{λ}) (41 I W)	Fab (C_{λ}) (41 I V) ^a
Crystallization conditions	35% PEG 4K	40% PEG 6K, 10mM tri-Sodium Citrate	39% PEG 6K, 5mM tri-Sodium Citrate	(4LLO)100mMSodiumAcetatepH4.5,10%MPD,30%PEG2000MME,200mMAmmonium	15% PEG 8K, 200mM Ammonium Sulfate	(4LL1)100mMNaCitratetribasic pH 5,30%JeffamineED-2001pH 7
Cryoprotectant	20% PEG 400	20% Ethylene glycol	20% PEG 400	Sulfate 16% Glycerol	20% Ethylene glycol	20% Glycerol
Data collection						
Resolution range (outer shell) (Å)	66.93-1.19 (1.25-1.19) ^b	71.50-1.75 (1.85-1.75)	71.22-1.42 (1.50-1.42)	19.90-2.16 (2.28-2.16)	36.32-1.95 (2.06-1.95)	86.84-1.60 (1.69-1.60)
Space Group	P212121	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	C2	P2 ₁	P1
a (Å)	43.08	44.51	42.74	210.02	85.60	52.83
b (Å)	65.84	61.39	62.59	69.74	71.18	52.91
c (Å)	66.93	71.50	71.22	70.83	90.92	89.58
α (°)	90	90	90	90	90	76.89
β (°)	90	90	90	98.75	99.28	84.34
γ (°)	90	90	90	90	90	85.54
Completeness(%)	97.6 (95.6)	99.8 (99.9)	99.3 (98.6)	97.4 (94.5)	97.9 (97.2)	95.9 (94.3)
Mean redundancy	7.2 (7.0)	7.0 (7.2)	7.2 (7.2)	3.6 (3.6)	3.8 (3.8)	4.0 (3.8)
$R_{sym}(\%)$ ^c	4.3 (52.8)	7.6 (50.3)	5.8 (52.7)	17.5 (67.0)	11.3 (71.9)	8.2 (54.9)
Mean I/sd(I)	23.8 (3.6)	19.1 (5.6)	19.1 (3.7)	5.0 (1.9)	6.0 (1.7)	9.8 (1.8)
Refinement						
Resolution (Å)	46.93-1.19	37.78-1.75	47.01-1.42	19.90-2.16	35.59-1.95	43.42-1.60
R (%) ^d	17.9	17.9	19.0	22.5	21.2	19.9
$R_{\rm free}$ (%) ^e	19.3	22.0	22.0	27.3	26.2	22.9
rmsd bond lengths (Å)	0.007	0.009	0.012	0.011	0.011	0.022
rmsd angles (°)	1.3	1.3	1.3	1.3	1.5	1.5
Core Ramachandran	98.0	98.5	98.5	95.5	96.6	97.2

Supplementary Table 4 Structure determination statistics

Disallowed Ramachandran (%)	0.0	0.0	0.0	0.0	0.1	0.0
Amino Acids	200	202	200	856	843	858
Chains	A,B	A,B	A,B	A,B,C,D	A,B,C,D	A,B,C,D
Chemical Components				Acetate, Sulfate	Sulfate	Magnesium, Glycerol
Waters	330	139	203	245	360	581

^aStructure was a merger of two datasets. ^bValues in parentheses are for the highest resolution shell. ^cR_{sym} = $\Sigma \mid I - \langle I \rangle \mid / \Sigma I$, where I is the observed intensity and $\langle I \rangle$ is the average intensity over all observations of symmetry-related reflections. ^dR = $\mid |F_{obs}| - |F_{calc}| \mid / \Sigma |F_{obs}|$, where $\mid F_{obs} \mid$ and $\mid F_{calc} \mid$ are the observed and calculated structure factor amplitudes, respectively. ^eR_{free} was calculated from a randomly chosen subset of 5% of the reflections.

(%)

C _H 1 position	C _L position	V _H position	V _L position
120	116	37	36
122	118	39	38
124	121	44	43
139	123	45	44
141	124	47	46
143	129	89	49
145	131	91	85
146	133	93	87
169	135	103	98
172	137	106	100
174	160		101
175	162		
177	165		
186	167		
188	168		
190	174		
192	176		
221	178		
	180		

Supplementary Table 5 Interface positions considered for design

This table lists positions tested for mutation in multistate design. The first column denotes $C_{\rm H}1$ residues from PDB 3TV3 that were allowed to mutate in at least one multistate design experiment.

Supplementary Figure 1 Properties of the IgG1(-Fv) protein that lacks V_H and V_L domains and was used for screening the $C_H 1/C_L$ interface redesigns. (a) Schematic diagram of the domain architecture of the IgG1(-Fv) protein. Ovals represent the individual Ig-domains and the brown lines represent the disulfide bonds formed in the hinge and between the $C_H 1$ and C_L domains. (b) SDS-PAGE analysis of the non-reduced heterotetramer (95 kDa – Lane 2) protein and the reduced HC (37.5 kDa) and C_L (12 kDa) proteins (Lane 4). (c) Analytical SEC of the WT pertuzumab IgG1, IgG1(-Fv), and pertuzumab IgG1 Fab with the solution molecular weights measured by static light scattering. (d) DSC analysis of the IgG1(-Fv) protein indicating the stability and cooperativity of folding of the $C_H 1/C_L$ heterodimeric unit.

WT C1	WT C _H 1	WT V _L	WT V _H
CRD1 C1	CRD1 C _H 1	VRD1 V _L	VRD1 V _H
CRD2 C1	CRD2 C _H 1	VRD2 V _L	VRD2 V _H
9 5 2 3 3 5 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 2 4 0 ASTKGPSVEPLAPSSKSTSGGTAALGCLVKAYFPEDVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV 9 ASTKGPSVEPLAPSSKSTSGGTAALGCLVKAYFPEDVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV 9 ASTKGPSVEPLAPSSKSTSGGTAALGCLVKAYFPEDVTVSWNSGALTSGVHTTPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV ASTKGPSVEPLAPSSKSTSGGTAALGCLVKAYFPEDVTVSWNSGALTSGVATGPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV	1 DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAMYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC RIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAMYQDKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAMYQDKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC	א פיqlvesggglvqpggslrlscaasgetftdytmdwy <mark>rq</mark> apgkglewyad vnpnsggs i yn <mark>qr</mark> fkgrftlsvdrskntlylqmnslraedtavyyc evqlvesggglvqpggslrlscaasgetftdytmdwy <mark>rk</mark> apgkglewyad vnpnsggs i ynq <mark>r</mark> fkgrftlsvdrskntlylqmnslraedtavyyc evqlvesggglvqpggslrlscaasgetftdytmdwy <mark>rk</mark> apgkglewyad vnpnsggs i ynq <mark>r</mark> fkgrftlsvdrskntlylqmnslraedtavyyc

Supplementary Figure 2 Sequence alignment of WT, VRD1_CRD2, and VRD2 Fab HCs and LCs. The designed residues are highlighted in yellow and labeled.

Supplementary Figure 3 Schematic demonstrating the pre-prolyl trans-cis peptide bond isomerization between C_H1_F174G and C_H1_P175 present in the crystal structure of design CRD2 β . Panel a shows a schematic of CRD2 β (compare Figure 2, panels c and d). Panel b shows, in green, a WT C_H1/C_L interface (repacked, from 3TV3) and, in blue, the design model for CRD2 β . Panel c shows the same design model along with the crystal structure of CRD2 β (4LLQ) in yellow. Notice the peptide bond isomerization between C_H1_F174G and C_H1_P175 and the incorrectly predicted C_L_S176W rotamer. Panel d shows the

final crystal structure CRD2 (4LLY) in magenta compared with the CRD2 β design model. The mutations added to CRD2 bring the C_LS176W rotamer and C_H1_F174G-C_H1_P175 backbone back in line with the design model. Notice that Rosetta could not have predicted the backbone isomerization because that bond was not free to isomerize during modeling. (e-g) Additional characterization of the specificity afforded by CRD1 and CRD2 in the IgG1(-Fv) format. SDS-PAGE analysis of WT IgG1(-Fv) (depicted in green, lane 1), IgG1(-Fv) with the CRD1 (e) or CRD2 (f) design in C_H1/C_L (depicted in blue, lane 2), and the mismatched pairs (lanes 3-4). Relative stability using a thermal challenge assay of WT IgG1(-Fv) (grey squares), IgG1(-Fv) with CRD1 (g) or CRD2 (h) (black triangles) and mismatched pairs (open circles = CRD HC/WT LC, open diamonds = WT HC/CRD LC). In the thermal challenge assay, the protein samples were heated for 1 h at the specified temperatures, cooled, and assessed for their presence using an anti-Fc/anti-C_L ELISA.

Supplementary Figure 4 In each panel, our WT Fab structure is in green, and a mutant structure is in blue. Panels A and B are V_H/V_L dimers (with the CDR loop region at the top), and Panels C and D are the $C_H 1/C_L$ dimer. Mutations are highlighted. In Panel A, we compare the VRD1 mutation in the V_H/V_L dimer. There is very little global structural change (0.37 Å RMSD), with a small change to the loop containing the Q39K mutation, which is opposite the CDR region. Panel B shows design VRD2, again with a small change in the loop conformation containing Q39Y, and little global change (0.39 Å RMSD). Panel C shows design CRD1, with a small 0.72 Å RMSD due to a minor rotation of the rigid body orientation of the two halves of the dimer. Panel D shows design CRD2, with a global RMSD of 0.67 Å. The apparent change in the helix in the lower right corner of Panel D is due to a crystal contact in the CRD2 design crystal (blue). Some of the sidechain atoms were modeled in D1R in VRD1 and D146K in CRD1 due to missing electron density.

Supplementary Figure 5 Analytical SEC (a) and DSC (b) of WT pertuzumab IgG1 and pertuzumab variants containing both VRD1 and CRD2 or VRD2. (c) Kinetic biacore analyses of WT (top), VRD2 (middle), and VRD1_CRD2 (bottom) pertuzumab Fabs binding to immobilized HER-2 antigen. Fab concentrations were 50, 35, 20, 10, 5, 2, 1 nM. Results of fits to a 1:1 kinetic binding model are shown above each experiment. Except for the DSC, $C\lambda$ was in both LCs.

Supplemental Figure 6 Sequence alignments of all the HC and LC sequences utilized in the generation of the IgG1 BsAbs described in **Table 1**. The variable domains (including D and J linkers) are highlighted in yellow. The constant domains are highlighted in blue. Mutations that enable HC/LC specificity are highlighted in red. The V_H and V_K germline family from which each variable domain is derived is listed next to the wild-type sequences. The constant domain (CLambda or CKappa) that was used in each LC is also listed.

Pertuzumab_HC	
Pertuzumab_WT_VH3	EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVR <u>Q</u> APGKGLEWVADVNPNSGGSIY
Pertuzumab_VRD1CRD2	EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVR <mark>K</mark> APGKGLEWVADVNPNSGGSIY
Pertuzumab_VRD2	EVQLVESGGGLVQPGGSLRLSCAASGFTFTDYTMDWVR <mark>Y</mark> APGKGLEWVADVNPNSGGSIY
Pertuzumab_WT_VH3	NQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPSFYFDYWGQGTLVTVSS <mark>A</mark>
Pertuzumab_VRD1CRD2	NQ <mark>E</mark> FKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPSFYFDYWGQGTLVTVSS <mark>A</mark>
Pertuzumab_VRD2	NQRFKGRFTLSVDRSKNTLYLQMNSLRAEDTAVYYCARNLGPSFYFDYWGQGTLVTVSS <mark>A</mark>
Pertuzumab_WT_VH3	STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
Pertuzumab_VRD1CRD2	STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV <mark>A</mark> T <mark>G</mark> PAVLQSSG
Pertuzumab_VRD2	STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
Pertuzumab_WT_VH3	LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
Pertuzumab_VRD1CRD2	LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
Pertuzumab_VRD2	LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
Pertuzumab_LC	
Pertuzumab_WT_VK1CLambda	DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQQKPGKAPKLLIYS
Pertuzumab_VRD1CRD2	R <mark>IQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQ</mark> DKPGKAPKLLIYS
Pertuzumab_VRD2_VK1CKappa	A DIQMTQSPSSLSASVGDRVTITCKASQDVSIGVAWYQ <mark>R</mark> KPGKAPKLLIYS
Pertuzumab_WT_VK1CLambda	ASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYTFGQ
Pertuzumab_VRD1CRD2	ASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYTFGQ
Pertuzumab_VRD2_VK1CKappa	ASYRYTGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYIYPYTFGQ
Pertuzumab_WT_VK1CLambda	GTKVEIKGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK
Pertuzumab_VRD1CRD2	<mark>GTKVEIK</mark> GQPKAAPSVTLFPPSSEELQANKATLVC <mark>Y</mark> ISDFYPGAVTVAWK
Pertuzumab_VRD2_VK1CKappa	A GTKVEIK-RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK
Pertuzumab_WT_VK1CLambda	ADSSPVKAG-VETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHE
Pertuzumab_VRD1CRD2	ADSSPVKAG-VETTTPSKQSNNKYAA <mark>W</mark> SYLSLTPEQWKSHRSYSCQVTHE
Pertuzumab_VRD2_VK1CKappa	NDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQ
Pertuzumab_WT_VK1CLambda	GSTVEKTVAPTEC
Pertuzumab_VRD1CRD2	GSTVEKTVAPTEC
Pertuzumab_VRD2_VK1CKappa	GLSSPVTKSFNRGEC
Matuzumab HC	
Matuzumab_WT_VH1	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSHWMHWVRQAPGQGLEWIGEFNPSNGRTNY
Matuzumab_VRD1CRD2	QVQLVQSGAEVKKPGASVKVSCKASGYTFTSHWMHWVR <mark>K</mark> APGQGLEWIGEFNPSNGRTNY
Matuzumab_VRD2 🤇	2VQLVQSGAEVKKPGASVKVSCKASGYTFTSHWMHWVR <mark>Y</mark> APGQGLEWIGEFNPSNGRTNY
Matuzumab_WT_VH1	IEKFKSKATMTVDTSTNTAYMELSSLRSEDTAVYYCASRDYDYDGRYFDYWGQGTLVTVS
Matuzumab_VRD1CRD2	IE <mark>E</mark> FKSKATMTVDTSTNTAYMELSSLRSEDTAVYYCASRDYDYDGRYFDYWGQGTLVTVS
Matuzumab_VRD2 1	IEKFKSKATMTVDTSTNTAYMELSSLRSEDTAVYYCASRDYDYDGRYFDYWGQGTLVTVS
Matuzumab_WT_VH1 S	SASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
Matuzumab_VRD1CRD2	ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV <mark>A</mark> T <mark>C</mark> PAVLQS
Matuzumab_VRD2	ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
Matuzumab WT VH1	SGLYSLSSVVTVPSSSLGTOTYICNVNHKPSNTKVDKKVEPKSC

SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC

Matuzumab_VRD1CRD2

Matuzumab_VRD2

Matuzumab_LC

Matuzumab_WT_VK1CLambda Matuzumab_VRD1CRD2 Matuzumab_VRD2

METMAb_HC

MetMAb_WT_VH3 MetMAb_VRD1CRD2

MetMAb_WT_VH3 MetMAb_VRD1CRD2

MetMAb_WT_VH3 MetMAb_VRD1CRD2

MetMAb_WT_VH3 MetMAb_VRD1CRD2

METMAb_LC

MetMAb_WT_VK1CLambda MetMAb_VRD1CRD2

MetMAb_WT_VK1CLambda MetMAb_VRD1CRD2

MetMAb_WT_VK1CLambda MetMAb_VRD1CRD2

MetMAb_WT_VK1CLambda MetMAb_VRD1CRD2

Anti-Axl_HC

Anti_Axl_WT_VH3 Anti_Axl_VRD2

Anti_Axl_WT_VH3 Anti_Axl_VRD2

Anti_Axl_WT_VH3 Anti_Axl_VRD2

Anti_Axl_WT_VH3 Anti_Axl_VRD2 DIQMTQSPSSLSASVGDRVTITCSASSSVTYMYWYQQKPGKAPKLLIYDT RIQMTQSPSSLSASVGDRVTITCSASSSVTYMYWYQD DIQMTQSPSSLSASVGDRVTITCSASSSVTYMYWYQRKPGKAPKLLIYDT

SNLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSHIFTFGQG SNLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSHIFTFGQG SNLASGVPSRFSGSGSGTDYTFTISSLQPEDIATYYCQQWSSHIFTFGQG

TKVEIK<mark>GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKA TKVEIK</mark>GQPKAAPSVTLFPPSSEELQANKATLVC<mark>M</mark>ISDFYPGAVTVAWKA TKVEIK<mark>GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKA</mark>

DSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGS DSSPVKAGVETTTPSKQSNNKYAA<mark>M</mark>SYLSLTPEQWKSHRSYSCQVTHEGS DSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGS

EVQLVESGGGLVQPGGSLRLSCAASGYTFTSYWLHWVRQAPGKGLEWVGMIDPSNSDTRF EVQLVESGGGLVQPGGSLRLSCAASGYTFTSYWLHWVR<mark>K</mark>APGKGLEWVGMIDPSNSDTRF

NPNFKDRFTISADTSKNTAYLQMNSLRAEDTAVYYCATYRSYVTPLDYWGQGTLVTVSS<mark>A</mark> NP<mark>E</mark>FKDRFTISADTSKNTAYLQMNSLRAEDTAVYYCATYRSYVTPLDYWGQGTLVTVSS<mark>A</mark>

STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV<mark>A</mark>T<mark>S</mark>PAVLQSSG

LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC

> DIQMTQSPSSLSASVGDRVTITCKSSQSLLYTSSQKNYLAWYQQKPGKAPKLLIYWASTR R<mark>IQMTQSPSSLSASVGDRVTITCKSSQSLLYTSSQKNYLAWYQ</mark>DKPGKAPKLLIYWASTR

> ESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYAYPWTFGQGTKVEIK<mark>GQPKAAP</mark> ESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYAYPWTFGQGTKVEIK<mark>GQPKAAP</mark>

> SVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA SVTLFPPSSEELQANKATLVC<mark>Y</mark>ISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA

ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTEC AMSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTEC

EVQLVESGGGLVQPGGSLRLSCAASGFSLSGSWIHWVRQAPGKGLEWVGWINPYRGYAYY EVQLVESGGGLVQPGGSLRLSCAASGFSLSGSWIHWVR<mark>Y</mark>APGKGLEWVGWINPYRGYAYY

ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAREYSGWGGSSVGYAMDYWGQGTL ADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCAREYSGWGGSSVGYAMDYWGQGTL

VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA VTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA

VLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC VLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC

Anti-Axl_LC Anti_Axl_WT_VK1CLambda

DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYS

Anti_Axl_VRD2	DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQ <mark>R</mark> KPGKAPKLLIYS
Anti_Axl_WT_VK1CLambda	ASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPPTFGQ
Anti_Axl_VRD2	ASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTTPPTFGQ
Anti_Axl_WT_VK1CLambda	<mark>GTKVEIK</mark> GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK
Anti_Axl_VRD2	<mark>GTKVEIK</mark> GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWK
Anti_Axl_WT_VK1CLambda	ADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEG
Anti_Axl_VRD2	ADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEG
Anti_Axl_WT_VK1CLambda	STVEKTVAPTEC
Anti_Axl_VRD2	STVEKTVAPTEC
BHA10_HC BHA10_WT_VH1 QVQLVQSGA BHA10_VRD2 QVQLVQSGA	EVKKPGSSVKVSCKASGYTFTTYYLHWVRQAPGQGLEWMGWIYPGNVHAQY EVKKPGSSVKVSCKASGYTFTTYYLHWVR <mark>Y</mark> APGQGLEWMGWIYPGNVHAQY
BHA10_WT_VH1 NEKFKGRVT	ITADKSTSTAYMELSSLRSEDTAVYYCARSWEGFPYWGQGTTVTVSS <mark>ASTK</mark>
BHA10_VRD2 NEKFKGRVT	ITADKSTSTAYMELSSLRSEDTAVYYCARSWEGFPYWGQGTTVTVSS <mark>ASTK</mark>
BHA10_WT_VH1 GPSVFPLAP	SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
BHA10_VRD2 GPSVFPLAP	SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
BHA10_WT_VH1 LSSVVTVPS	SSLGTQTYICNVNHKPSNTKVDKKVEPKSC
BHA10_VRD2 LSSVVTVPS	SSLGTQTYICNVNHKPSNTKVDKKVEPKSC
BHA10_LC BHA10_WT_VK1CKappa DIQ BHA10_VRD2 DIQ	MTQSPSSLSASVGDRVTITCKASQNVGINVAWYQQKPGKAPKSLISSASYRYSGVPS MTQSPSSLSASVGDRVTITCKASQNVGINVAWYQ <mark>R</mark> KPGKAPKSLISSASYRYSGVPS
BHA10_WT_VK1CKappa RFS	GSGSGTDFTLTISSLQPEDFATYFCQQYDTYPFTFGQGTKVEIK <mark>RTVAAPSVFIFPP</mark>
BHA10_VRD2 RFS	GSGSGTDFTLTISSLQPEDFATYFCQQYDTYPFTFGQGTKVEIK <mark>RTVAAPSVFIFPP</mark>
BHA10_WT_VK1CKappa SDE	QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
BHA10_VRD2 SDE	QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
BHA10_WT_VK1CKappa LSK	ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
BHA10_VRD2 LSK	ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
Trastuzumab_HCTrastuzumab_WT_VH3Trastuzumab_VRD1CRD2	VQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRY VQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVR <mark>K</mark> APGKGLEWVARIYPTNGYTRY
Trastuzumab_WT_VH3 A	DSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVS
Trastuzumab_VRD1CRD2 A	D <mark>E</mark> VKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVS
Trastuzumab_WT_VH3 A	STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS
Trastuzumab_VRD1CRD2 A	STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV <mark>A</mark> T <mark>G</mark> PAVLQS
Trastuzumab_WT_VH3 G	LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
Trastuzumab_VRD1CRD2 G	LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
Trastuzumab_LC Trastuzumab_WT_VK1CKappa Trastuzumab_VRD1CRD2	DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYS RIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAW <mark>F</mark> QDKPGKAPKLLIYS

Trastuzumab_WT_VK1CKappa Trastuzumab_VRD1CRD2 ASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQ ASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQ Trastuzumab_WT_VK1CKappa Trastuzumab_VRD1CRD2

Trastuzumab_WT_VK1CKappa Trastuzumab_VRD1CRD2

Trastuzumab_WT_VK1CKappa Trastuzumab_VRD1CRD2 <mark>GTKVEIK</mark>RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKV <mark>GTKVEIK</mark>RTVAAPSVFIFPPSDEQLKSGTASVVC<mark>Y</mark>LNNFYPREAKVQWKV

DNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQG DNALQSGNSQESVTEQDSKDSTYSL<mark>M</mark>STLTLSKADYEKHKVYACEVTHQG

LSSPVTKSFNRGEC LSSPVTKSFNRGEC

Non-deconvoluted mass mpectra of two IgG BsAbs, EGFRxcMET (top half) and (HER2^PxHER2^T (bottom half), expressed while varying transfection ratios of the HC LC pairs within each BsAb. The transfections were performed in HEK293F cells using four separate expression plasmids, one expressing each HC and LC within the BsAb. The HC:LC ratio of each half of the IgG BsAb was maintained at a constant 1:2 transfection ratio. Only the ratio of each HC_LC pair was varied. Overexpression of either half of the IgG BsAb led to the accumulation of "Half-Antibody" (a HC_LC pair without a disulfide bonded partner) that was visible at a lower molecular weight in the Mass Spectra as well as in SDS-PAGE analyses. Transfection ratios could be found for minimizing the level of Half-Antibody for all the BsAbs that were tested.

The level of correctly assembled IgG BsAb is shown to the left of each IgG BsAb mass envelopes. Interestingly, varying the transfection ratios the HC_LC pairs did not impact significantly the level of correctly assembled IgG BsAb.

Supplementary Figure 8 Characterization of the EGFRxcMet and HER2^PxHER2^T IgG BsAbs from 1 L cultures. Five days after transient transfection in HEK293F cells with the BsAbs, the cells were spun down and filtered. BsAbs proteins in the cell supernatants were captured onto a MAbSelect (protein A, GE Healthcare) affinity column using an AKTA Explorer FPLC, washed

extensively, and eluted using 0.1 M glycine pH 3.0. The proteins were neutralized using 1 M TrisHCl, pH 8.5 and dialyzed exhaustively against PBS. Panel (a) represents analytical SEC traces of parental monovalent IgG1 MAbs and the EGFR×cMet and HER2^P×HER2^T IgG1 BsAbs. The data indicates that both BsAbs produced at the 1 L scale are predominately monomeric similar to the parental MAbs. The two BsAbs were concentrated to 20 or 30 mg/mL, respectively, with no significant increases in aggregation or loss of protein using VIVASPIN500, 10 K MWCO filtration devices (Sartorius). Panel (b) shows SDS-PAGE analysis of the IgG BsAbs under non-reducing and reducing (1 mM DTT) conditions. For the analysis, proteins (3-5 µg each) were run onto a NuPAGE 4-12% Bis-Tris gel with MES running buffer (Life Technologies) according to manufacturer protocols. Panels (c) and (d) are the raw (top) and deconvoluted (bottom) mass spectra of the EGFR×cMet and HER2^P×HER2^T IgG1 BsAbs. Proteins were analyzed as described in the methods. The integrated area of the 'Half-Antibody' was 8% and 11%, respectively, for each sample. The average level of correct IgG BsAb assembly (i.e., correct HC/LC pairings) is provided in Table 1. Panels (e) and (f) are DSC thermograms of the EGFR×cMet and HER2^P×HER2^T IgG1 BsAbs, respectively. For the EGFR×cMet BsAb (pairing Matuzumab and MetMAb), combining Vκ1 domains with Cλ domains resulted in reduced stability of the Fab peak ($T_m \sim 62$ °C). The HER2^P×HER2^T BsAb (Pertuzumab and Trastuzumab) was produced using fully kappa LCs.

Supplementary Figure 9 Further characterization of the assembly of the EGFRxcMet (*a-c*) and $HER2^{P} \times HER2^{T}$ (*d-f*) IgG1 BsAbs. Panels (*a*) and (*d*) are deconvoluted mass spectra of the Fabs liberated from the EGFR×cMet and $HER2^{P} \times HER2^{T}$ IgG1 BsAbs, respectively, by papain digestion. For the digestions, 5 mg of each BsAb was dialyzed into 100 mM Tris, 2 mM EDTA pH 7.0 (no salt) and 20 mg papain (Roche cat#10814) was added. The reaction was allowed to

continue for 1.5 hrs at room temperature with gentle rotary mixing. The reaction solution was then passed over an IgSelect column (GE Healthcare) that selectively binds only the Fc fragment. The papain liberated Fabs were passed through the column and were collected, while undigested and Fc-containing material bound the solid support. The collected solutions were immediately analyzed by mass spectrometry as described in the methods. Papain selectively cuts the hinge region of IgG1 MAbs (and BsAbs) between the His and Thr residues (...CDKTH_cut_TCPPC...) enabling theoretical mass calculation of both correctly and incorrectly assembled HC/LC pairs. The top panels are the entire deconvoluted spectra (10-55 kDa) while the bottom panels are the regions of interest for determining Fab assembly. Panels (b), (c), (e), and (f) show solution-based antibody-antigen binding studies using surface plasmon resonance for detection. The method is described in (Day et al., 2005 Biochemistry 44, 1919-31). The MAbs and BsAbs are titrated into a solution with constant antigen. All antigens were purchased as Fc-fusion proteins from R&D systems. EGFR-Fc was 30 nM; cMet-Fc was 45 nM; and HER2-Fc was 20 nM. The titrated solutions were passed over sensorchip surfaces containing high levels of each parental MAb. The initial slope (Vi) of antigen association is linearly dependent on the concentration of antigen and can be utilized to determine [antigen]_{free}. The data obtained is sensitive to both binding affinity and stoichiometry. Results of fitting the data for the affinity and the number of binding arms of each MAb or BsAb are shown in the table below each set of curves. The affinity of some of the molecules was too strong to be measured accurately; however, the X-intercept could be used to determine stoichiometry in all cases. The MAbs demonstrated bivalency toward their respective antigens, while the BsAbs demonstrated monovalency.

Supplemental Figure 10 In vivo pharmacokinetic analysis of the HER2×EGFR and EGFR×cMet IgG BsAbs in Balb/c mice. Plotted values represent mean +/- standard error (n= 3 or 4); error bars are plotted for all data points.

mAb or BsAb	Elimination half-	AUC	Clearance	Vss
	life	(hr*ug/mL)	(mL/hr)	(mL)
	$t_{1/2}\beta(hr)$			
Pertuzumab	241.6 ± 15.5	$32,374 \pm 1,315$	0.007 ± 0.0003	2.36 ± 0.07
Matuzumab	294.8 ± 15.3	$64,215 \pm 2,315$	0.0035 ± 0.0001	1.47 ± 0.03
MetMab	82.5*	15,977*	0.014*	1.72*
HER2×EGFR	197.3 ± 15.2	$31,429 \pm 1,390$	0.007 ± 0.0003	1.99 ± 0.09
BsAb				
cMet×EGFR	137.6 ± 21.2	$18,224 \pm 1,613$	0.012 ± 0.001	2.39 ± 0.23
BsAb				

Pharmacokinetic parameters are shown for MAbs and BsAbs. Data fitted to the IV bolus model represent estimated mean \pm standard error. *Data fitted by non-compartmental analysis represent estimated mean.

Supplementary Protocol 1. PREPACK. This is a Rosetta3 command line which will perform the prepacking rotamer relaxation used in this work. This is expected to take a few minutes on a single processor. Command line: /path/to/rosetta/source/bin/fixbb.<os><mode>release @options The options file consists of: #begin options #database path -database /path/to/rosetta/database #input path -s input.pdb #use extra rotamers -ex1 -ex2 -ex_cutoff 0 #use the crystal rotamer if it is superior -use_input_sc #do not design -packing:repack_only #perform 10 repacks but only output the best -ndruns 10 #end options

Supplementary Protocol 2. Multistate design script. Specifications necessary to run heterodimer-to-orthogonal-heterodimer multistate design calculations via Rosetta's mpi_msd application. This example is drawn from the experiment used to create design CRDl1². Extensive reference to Rosetta's mpi_msd documentation and examples published with the code is strongly suggested. Use in MPI is strongly suggested. The number of processors should be an even divisor of (preferably equal to) the number of states (10 in this example).

Command line: /path/to/rosetta/source/bin/mpi_msd.<os><mode>release @options

The options file consists of:

#begin options

#mpi_msd options - refer to its documentation -entity_resfile entity.resfile -fitness_file fitness.daf -ms::pop_size 100 -ms::generations 240 -ms::numresults 10 -use_input_sc -ms::fraction_by_recombination 0.025 #-msd::double_lazy_ig_mem_limit 800

-database /path/to/rosetta/database

#write the rosetta version and options to the log file
-options:user
-run:version

#write each processor to its own file, for organization
-mpi_tracer_to_file proc

#this exclusion reduces memory use but is not important -chemical:exclude_patches LowerDNA UpperDNA Cterm_amidation SpecialRotamer protein_cutpoint_upper protein_cutpoint_lower VirtualBB ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect sc_orbitals pro_hydroxylated_case1 pro_hydroxylated_case2 ser_phosphorylated thr_phosphorylated tyr_phosphorylated tyr_sulfated lys_dimethylated lys_monomethylated lys_trimethylated lys_acetylated glu_carboxylated cys_acetylated tyr_diiodinated N_acetylated C_methylamidated MethylatedProteinCterm

#scorefunction corrections, notice these have been superseded in the time before publication -corrections::score::scorel2prime -no_his_his_pairE

#end options

File fitness.daf. This is the main setup file for mpi_msd. The nomenclature "LpHp", with p for "prime", means light chain and heavy chain mutant. Lack of prime means the wild type sequence - the undesired mixed products.

#begin fitness.daf

#Light chain, mutant, by itself STATE_VECTOR Lp Lp.states #Heavy chain, mutant, by itself STATE_VECTOR Hp Hp.states #mutant pair STATE VECTOR LpHp LpHp.states #cross pair STATE_VECTOR LHp LHp.states #cross pair STATE_VECTOR LpH LpH.states #constant states do not need to be modeled POSE_ENERGY bestL 3TV3_CL.pdb POSE_ENERGY bestH 3TV3_CH1.pdb POSE_ENERGY bestLH 3TV3_CH1CL.pdb # extract the lowest-energy from each vector of state energies SCALAR_EXPRESSION bestLp = vmin(Lp) SCALAR_EXPRESSION bestHp = vmin(Hp) SCALAR_EXPRESSION bestLpHp = vmin(LpHp) SCALAR_EXPRESSION bestLHp = vmin(LHp) SCALAR_EXPRESSION bestLpH = vmin(LpH) # now compute the binding energies SCALAR_EXPRESSION dGbind_LpHp = bestLpHp - bestLp - bestHp SCALAR_EXPRESSION dGbind_LHp = bestLHp - bestL - bestHp SCALAR EXPRESSION dGbind LpH = bestLpH - bestLp - bestH SCALAR_EXPRESSION dGbind_LH = bestLH - bestL - bestH #-12 is the energy cap, determined empirically as the rough value of redocked binding energy for the worst mutations SCALAR_EXPRESSION clipped_dGbindLHp = ite(lt(dGbind_LHp, -12.0), $dGbind_LHp$, ($-12.0 + 0 * dGbind_LHp$)) SCALAR_EXPRESSION clipped_dGbindLpH = ite(lt(dGbind_LpH, -12.0), dGbind_LpH, (-12.0 + 0 * dGbind_LpH)) #this file counts the number of mutations and penalizes for too many ENTITY FUNCTION cstE 3TV3.entfunc #this is the final fitness function FITNESS 1.0 * bestLpHp - 0 * dGbind_LpHp + 0.5 * (clipped_dGbindLpH + clipped dGbindLHp) + 1.0 * cstE #end fitness.daf File 3TV3.entfunc. This file, referenced in fitness.daf, controls for the number of mutations. #begin 3TV3.entfunc #ee_1 is L-L135 SET_CONDITION eelnat = ee_1 in { L } #ee 2 is L-S165 SET_CONDITION ee2nat = ee_2 in { S } #ee 3 is L-A174 SET_CONDITION ee3nat = ee_3 in { A } #ee_4 is L-S176

SET_CONDITION ee4nat = ee_4 in { S } #ee_5 is H-H172 SET_CONDITION ee5nat = ee_5 in { H } #ee 6 is H-F174 SET_CONDITION ee6nat = ee_6 in { F } #ee 7 is H-P175 SET_CONDITION ee7nat = ee_7 in { P } #ee_8 is H-S188 SET_CONDITION ee8nat = ee_8 in { S } #ee_9 is H-V190 SET_CONDITION ee9nat = ee_9 in { V } #count the number of mutations SUB_EXPRESSION nnat_L = 0 + ee5nat + ee6nat + ee7nat + ee8nat + ee9nat SUB_EXPRESSION nnat_H = 0 + eelnat + ee2nat + ee4nat #penalize after 3 mutations per chain; SUB_EXPRESSION mut_H_penalty = ite(lt(nnat_H, 2), 2 - nnat_H, 0) SUB_EXPRESSION mut_L_penalty = ite(lt(nnat_L, 1), 1 - nnat_L, 0) SCORE 3 * (mut_H_penalty + mut_L_penalty) #end 3TV3.entfunc The states files, specified in fitness.daf, correlate what states exist, which input PDB files provide the backbone for each state, and how to correlate the mutable positions onto each backbone. Each file contains two clones of the same setup, to ensure that rare failures of simulated annealing do not poison the results. These input PDBs are not provided. #begin Hp.states 3TV3_CH1.pdb Hp.corr Hx.2resfile 3TV3_CH1.pdb Hp.corr Hx.2resfile #end Hp.states #begin LHp.states 3TV3_CH1CL.pdb LHp.corr LxHx.2resfile 3TV3_CH1CL.pdb LHp.corr LxHx.2resfile #end LHp.states #begin LpHp.states 3TV3_CH1CL.pdb LpHp.corr LxHx.2resfile 3TV3_CH1CL.pdb LpHp.corr LxHx.2resfile #end LpHp.states #begin LpH.states 3TV3_CH1CL.pdb LpH.corr LxHx.2resfile 3TV3_CH1CL.pdb LpH.corr LxHx.2resfile #end LpH.states #begin Lp.states 3TV3_CL.pdb Lp.corr Lx.2resfile

3TV3_CL.pdb Lp.corr Lx.2resfile #end Lp.states The corr (correspondence) files determine which positions on the backbone map to the mutable positions defined in entity.resfile. Wild-type positions in the mixed wild-type/mutant and mutant/wild-type structures are unrepresented in these files - that is why they do not mutate. #begin Hp.corr 5 172 H 6 174 H 7 175 H 8 188 H 9 190 H #end Hp.corr #begin LHp.corr 5 172 H 6 174 H 7 175 H 8 188 H 9 190 H #end LHp.corr #begin Lp.corr 1 135 L 2 165 L 3 174 L 4 176 L #end Lp.corr #begin LpH.corr 1 135 L 2 165 L 3 174 L 4 176 L #end LpH.corr #begin LpHp.corr 1 135 L 2 165 L 3 174 L 4 176 L 5 172 н 6 174 н 7 175 H 8 188 H 9 190 H #end LpHp.corr

File LxHx.2resfile is a Rosetta resfile that represents a listing of all repackable positions in the desired interface. It contains extra packing instructions encoded in the resfile; these could equivalently be encoded in the options file. Files Lx.2resfile and Hx.2resfile, which are necessary, are not reproduced here for brevity. They represent only the header and L-chain or H-chain portions of LxHx.2resfile.

NATE	RO						
stai	rt						
#L							
114	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
115	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
116	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
117	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
118	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
119	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
120	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
121	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
122	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
123	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
124	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
125	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
126	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
127	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
129	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
131	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
133	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
134	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
135	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
136	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
137	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
138	L	NATAA	ΕX	1	ΕX	2	USE_INPUT_SC
158	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
160	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
161	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
162	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
163	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
164	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
165	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
166	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
167	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
168	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
170	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
173	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
174	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
175	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
176	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
177	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
178	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
180	L	NATAA	ΕX	1	ΕX	2	USE INPUT SC
#H							
120	Н	NATAA	ΕX	1	ΕX	2	USE INPUT SC
121	Н	NATAA	ΕX	1	ΕX	2	USE INPUT SC
122	н	NATAA	ΕX	1	ΕX	2	USE INPUT SC
123	Н	NATAA	EX	1	ΕX	2	USE INPUT SC
124	Н	NATAA	EX	1	EX	2	USE INPUT SC
125	н	NATAA	EX	1	EX	2	USE INPUT SC
126	Н	NATAA	EX	1	EX	2	USE INPUT SC
134	н	NATAA	EX	1	EX	2	USE INPUT SC
137	Н	NATAA	EX	1	EX	2	USE INPUT SC
138	н	NATAA	EX	1	EX	2	USE INPUT SC
				_		-	0

139 H NATAA EX 1 EX 2 USE_INPUT_SC 140 H NATAA EX 1 EX 2 USE_INPUT_SC 141 H NATAA EX 1 EX 2 USE_INPUT_SC 142 H NATAA EX 1 EX 2 USE_INPUT_SC 143 H NATAA EX 1 EX 2 USE INPUT SC 145 H NATAA EX 1 EX 2 USE INPUT SC 146 H NATAA EX 1 EX 2 USE INPUT SC 167 H NATAA EX 1 EX 2 USE_INPUT_SC 168 H NATAA EX 1 EX 2 USE INPUT SC 169 H NATAA EX 1 EX 2 USE_INPUT_SC 170 H NATAA EX 1 EX 2 USE_INPUT_SC 172 H NATAA EX 1 EX 2 USE_INPUT_SC 173 H NATAA EX 1 EX 2 USE_INPUT_SC 174 H NATAA EX 1 EX 2 USE INPUT SC 175 H NATAA EX 1 EX 2 USE_INPUT_SC 176 H NATAA EX 1 EX 2 USE_INPUT_SC 177 H NATAA EX 1 EX 2 USE_INPUT_SC 178 H NATAA EX 1 EX 2 USE_INPUT_SC 179 H NATAA EX 1 EX 2 USE_INPUT_SC 180 H NATAA EX 1 EX 2 USE_INPUT_SC 181 H NATAA EX 1 EX 2 USE_INPUT_SC 186 H NATAA EX 1 EX 2 USE_INPUT_SC 187 H NATAA EX 1 EX 2 USE INPUT SC 188 H NATAA EX 1 EX 2 USE_INPUT_SC 189 H NATAA EX 1 EX 2 USE_INPUT_SC 190 H NATAA EX 1 EX 2 USE_INPUT_SC 192 H NATAA EX 1 EX 2 USE INPUT SC 221 H NATAA EX 1 EX 2 USE_INPUT_SC 225 H NATAA EX 1 EX 2 USE_INPUT_SC 228 H NATAA EX 1 EX 2 USE_INPUT_SC #end LxHx.2resfile

entity.resfile is a multistate design resfile which controls how many positions are mutable, and how they can be mutated.

#begin entity.resfile
9
ALLAAwc EX 1 EX 2 USE_INPUT_SC
start
#no body to the file - all 9 positions obey the header
#end entity.resfile

Supplementary Protocol 3. Docking protocol. Individual docking trajectories are very fast (order of 30s per trajectory) and are independent, so manyprocessor MPI is suggested. Rosetta command line: /path/to/rosetta/source/bin/rosetta scripts.<os><mode>release @options The options file consists of: #begin options #database path -database /path/to/rosetta/database #input path; pdblist is an endline-delimited list of paths to pdb files (one PDB per line) -l pdblist #perform 2 repacks but only output the best each cycle -ndruns 2 #allow 100 attempts to pass docking filters -jd2:ntrials 100 #perform 750 trajectories per input -nstruct 750 #docking settings -docking:dock_pert 2 4 #minimization settings -run::min_type dfpmin_armijo_nonmonotone #packing settings -ex1 -ex2 -use_input_sc #scoring corrections, probably superseded by the time of publication -no_his_his_pairE -corrections::score::score12prime #write the rosetta version and options to the log file -options:user -run:version #this exclusion reduces memory use but is not important -chemical:exclude_patches LowerDNA UpperDNA Cterm_amidation SpecialRotamer protein_cutpoint_upper protein_cutpoint_lower VirtualBB ShoveBB VirtualDNAPhosphate VirtualNTerm CTermConnect sc_orbitals pro_hydroxylated_case1 pro_hydroxylated_case2 ser_phosphorylated thr_phosphorylated tyr_phosphorylated tyr_sulfated lys_dimethylated lys_monomethylated lys_trimethylated lys_acetylated glu_carboxylated cys_acetylated tyr_diiodinated N_acetylated C_methylamidated MethylatedProteinCterm #output controls

-out:file:silent docking_lrf.out

```
-out:file:silent_struct_type binary
#quiet mode
-mute all
#script to define docking
-parser:protocol lrf docking.xml
#end options
The lrf_docking.xml file controls the docking protocol.
#begin lrf_docking.xml
<ROSETTASCRIPTS>
        <SCOREFXNS>
        <sl2_prime weights="score12prime"/>
        </SCOREFXNS>
      <TASKOPERATIONS>
        <RestrictToInterfaceVector name=vectorTask chain1_num=1 chain2_num=2
CB_dist_cutoff=10.0 nearby_atom_cutoff=5.5 vector_angle_cutoff=65.0
vector_dist_cutoff=8.0/>
        <RestrictChainToRepacking name=repack1 chain=1/>
        <RestrictChainToRepacking name=repack2 chain=2/>
        <RestrictToRepacking name=repackonly/>
        <InitializeFromCommandline name=cmdTask/>
        <IncludeCurrent name=currentTask/>
        </TASKOPERATIONS>
        <FILTERS>
        <Rmsd name=rms threshold=50.0 confidence=1/>
      </FILTERS>
        <MOVERS>
        <Prepack name=prepack scorefxn=s12_prime jump_number=1 min_bb=0
task_operations=vectorTask,repackonly,cmdTask,currentTask/>
        <DockingProtocol name=dockprotocol docking_local_refine=1</pre>
docking_score_high=s12_prime ignore_default_docking_task=1
task_operations=vectorTask,repack1,repack2,cmdTask,currentTask/>
        <TaskAwareMinMover name=minmover scorefxn=s12_prime chi=1 bb=1 jump=1
task operations=vectorTask,cmdTask,currentTask/>
        <InterfaceAnalyzerMover name=fullanalyze scorefxn=score12 packstat=0</pre>
pack_input=0 jump=1 tracer=0 use_jobname=1 resfile=0 />
        </MOVERS>
        <APPLY TO POSE>
        </APPLY TO POSE>
        <PROTOCOLS>
        <Add mover_name=prepack/>
        <Add mover_name=dockprotocol filter_name=rms/>
        <Add mover_name=minmover filter_name=rms/>
        <Add mover_name=fullanalyze/>
        </PROTOCOLS>
</ROSETTASCRIPTS>
#end lrf_docking.xml
```