P-glycoprotein (P-gp) is an ATP-binding cassette transporter that confers multidrug resistance in cancer cells. It also affects the absorption, distribution and clearance of cancer-unrelated drugs and xenobiotics. For these reasons, the structure and function of P-gp have been studied extensively for decades. Here we present biochemical characterization of P-gp from Caenorhabditis elegans and its crystal structure at a resolution of 3.4 Å. We find that the apparent affinities of P-gp for anticancer drugs actinomycin D and paclitaxel are approximately 4,000 and 100 times higher, respectively, in the membrane bilayer than in detergent. This affinity enhancement highlights the importance of membrane partitioning when a drug accesses the transporter in the membrane. Furthermore, the transporter in the crystal structure opens its drug pathway at the level of the membrane’s inner leaflet. In the helices flanking the opening to the membrane, we observe extended loops that may mediate drug binding, function as hinges to gate the pathway or both. We also find that the interface between the transmembrane and nucleotide-binding domains, which couples ATP hydrolysis to transport, contains a ball-and-socket joint and salt bridges similar to the ATP-binding cassette importers, suggesting that ATP-binding cassette exporters and importers may use similar mechanisms to achieve alternating access for transport. Finally, a model of human P-gp derived from the structure of C. elegans P-gp not only is compatible with decades of biochemical analysis, but also helps to explain perplexing functional data regarding the Phe335Ala mutant. These results increase our understanding of the structure and function of this important molecule.

P-glycoprotein uses the energy from ATP hydrolysis to pump substrates across the cell membrane. Drug transport depends on ATP hydrolysis, and the ATPase activity of P-gp is stimulated by the transported drugs. Caenorhabditis elegans P-gp is 46% identical to human P-gp. To ensure that this level of sequence identity translates into functional similarity, we tested whether substrates of human P-gp also stimulate the ATPase activity of C. elegans P-gp. Among the 30 compounds we screened, actinomycin D, paclitaxel, progesterone, dipryridamole, and valinomycin increased the ATPase activity of C. elegans P-gp more than fivefold. As expected for an ATP-binding cassette (ABC) transporter, both the basal and drug-stimulated levels of ATPase activity are inhibited by vanadate. The ATPase activity plotted as a function of drug concentration shows the characteristic biphasic response: with increasing drug concentration, ATPase activity increases to a maximum value and then decreases. This behaviour has been studied extensively with human P-gp. Like the P-glycoproteins identified in other species, the substrate profile of C. elegans P-gp only partly overlaps with that of human P-gp. Nevertheless, the similarities between their amino-acid sequences and functional properties suggest that the structure of C. elegans P-gp would be a reasonable starting point for a mechanistic understanding of how human P-gp functions as a multidrug pump.

P-glycoprotein is a single polypeptide with two homologous halves, each containing a transmembrane domain (TMD) and a cytoplasmic nucleotide-binding domain (NBD) (Fig. 2a). Crystals of C. elegans P-gp were obtained in the absence of nucleotides and transport substrates. The structure was determined at a resolution of 3.4 Å and the amino-acid assignments were confirmed by 34 selenium-labelled methionines and three mercury-labelled cysteines (Supplementary Fig. 2 and Supplementary Table 1).

Compared with the crystal structure of mouse P-gp determined at a resolution of 3.8 Å, that of C. elegans P-gp shows a similar

![Image](https://example.com/image.png)

**Figure 1** Caenorhabditis elegans P-gp is a multidrug transporter.

a. Cytotoxicity assay. Spodoptera frugiperda S9 cells expressing P-gp were cultured with various concentrations of actinomycin D (ActD, blue line) or paclitaxel (red line). Uninfected cells were cultured in the presence of the same drugs as controls (dashed lines). b. ATPase activity in the presence and absence of 1 mM orthovanadate. c. ATPase activity as a function of substrate concentration. The protein concentration was kept at 0.15 mM for all measurements. Data points represent the means and standard deviations of triplicate measurements from the same preparation.
inward-facing conformation (that is, one open to the cytoplasm), with a larger degree of separation between the two NBDs (Fig. 2b and Supplementary Fig. 3). Superposition of the transmembrane helices individually shows that sequence assignments of six comparable helices (TM1, TM2, TM6, TM7, TM8 and TM11) agree well. The two structures have different conformations in TM9, TM10 and TM12 and these helices thus cannot easily be compared. Helices TM3, TM4 and TM5, which can be compared, show important differences due to register shifts in model building (Supplementary Figs 4–6). As we will discuss later, these corrections in the structure are relevant to the identification of drug-interacting amino acids and an accurate definition of the NBD–TMD interface.

In the crystal structure, the drug transport pathway is open to the cytoplasmic surface and is continuous with the membrane inner leaflet (Fig. 2c). Thus, in principle, drugs could gain access to the transport pathway from the aqueous phase as well as the membrane. It has been proposed that P-gp interacts with drugs from the inner leaflet of the membrane instead of the cytoplasm (the ‘hydrophobic vacuum’ model). On the basis of this hypothesis, P-gp would be expected to be more sensitive to drug stimulation in membranes than in detergents, because most P-gp substrates are highly concentrated in the membrane, with partition coefficients ranging from 100 to 10,000 (ref. 24). In detergents, 400 μM actinomycin D or 10 μM paclitaxel was required to obtain the maximum ATPase activity of purified P-gp (Fig. 1c). The addition of lipid molecules does not change the apparent drug affinities. Using membranes from yeast cells overexpressing C. elegans P-gp, we showed that both drugs stimulate the ATPase activities at a concentration of 0.1 μM (Fig. 2d), which is a 4,000-fold increase in sensitivity for actinomycin D and a 100-fold increase for paclitaxel. The degree of stimulation was lower when using the membrane sample than when using purified P-gp in detergent, probably owing to baseline activity of other cellular ATPases in the yeast cell membranes. We note that the dependence on drug concentration of ATPase stimulation in membranes matches well the concentration dependence observed in the cell protection assay (Figs 1a and 2d). The shift in drug sensitivity in membranes supports the hypothesis that drugs enter the transporter through the membrane’s inner leaflet. Such a mechanism, whereby transport depends on an elevated local drug concentration due to membrane partitioning, also implies that the intrinsic affinity of drugs for the transporter itself is low, consistent with the ability of P-gp to transport many different compounds.

The structure of C. elegans P-gp presents an interesting variation on the theme of membrane access, in that only one lateral opening is patent (Fig. 2c). An amino-terminal helical hairpin is inserted into the other lateral opening observed in the bacterial exporter MsbA (ref. 25) and mouse P-gp between TM4 and TM6 (Fig. 2b). A truncation mutant devoid of the helical hairpin functions similarly to the full-length protein in a cytotoxic assay (Supplementary Fig. 7a) but has a reduced maximum level of stimulation in an ATPase activity assay (Supplementary Fig. 7b). The dependence on drug concentration, however, is unaltered for the truncation mutant (Supplementary Fig. 7b).

Another notable feature of C. elegans P-gp is a discontinuity of helices TM10 and TM12 lining the lateral opening (Fig. 2c). We can think of two possible reasons why the helical secondary structure gives rise to more-disordered loop structures in this region. The first is that a breakdown of secondary structure creates a greater number of possible interactions between protein atoms and drugs entering the pathway. In other transporters where discontinuous transmembrane helices have been observed, the loops inside the membrane have been shown to bind substrates26. Thus, loops flanking the lateral opening could assist drug recognition and entry. The second possible reason is that these loop regions could function as flexible hinges to gate the pathway, mediate conformational changes associated with drug transport or both.

The NBD–TMD interface is important in ABC transporters because it transmits conformational changes associated with ATP hydrolysis to substrate translocation. In all ABC importers for which structures have been determined, the TMD is connected to the NBD through a ‘ball-and-socket’ joint. This joint consists of a cytoplasmic helix from the TMD known as the coupling helix or EAA loop (the ball), which docks into a cleft on the NBD surface (the socket) (Fig. 3a). A similar
A structural feature is observed in P-gp, in which intracellular helices IH2 and IH4 on the TMDs resemble the coupling helices and engage the same surface of the NBDs (Fig. 3b, c). In addition to the ball-and-socket joint, ABC exporters, including P-gp, have an additional set of interactions in which IH1 and IH3 also interact with the NBDs, creating a more extensive interaction surface between the TMDs and the NBDs (Fig. 3b, c). The importance of this interface in P-gp to both structure and function is underscored by the high degree of amino-acid conservation, which approaches 80% identity between C. elegans and human P-gp (Supplementary Figs 8 and 9).

Multiple crystal structures of the maltose importer show that the transition between different structures is accompanied by rotations of the EAA loop inside the cleft\(^8\). Salt bridge interactions seem to be central to the pivot point in these conformational changes; elimination of the salt bridges by double mutations results in a non-functional transporter and dissociation of the MalK subunit\(^28\). For the elimination of the salt bridges by double mutations results in a defective transporter and dissociation of the MalK subunit. The transitions between different structures are accompanied by rotations of the EAA loop inside the cleft\(^27\).

Salt bridge interactions are observed in the NBD2–TMD interface, involving residues Arg 286 (IH2), Asp 846 (IH3) and Tyr 1129 (NBD2) (Fig. 3c). It is likely that these interactions in P-gp have a role similar to the salt bridge interactions in importers such as the maltose transporter.

To assist structural and functional analysis of human P-gp, we generated a homology model of human P-gp based on the structure of the C. elegans P-gp determined in this study. The modelled structure is consistent with a large body of biochemical and biophysical data on human P-gp (Fig. 4 and Supplementary Fig. 10). For example, pairs of residues in the TMDs shown by cysteine mutagenesis to form disulphide bonds\(^6,7\) are located in close proximity to each other (Fig. 4b, c). The NBD–TMD interfaces are consistent with data showing that Ala 266 in TMD1 is in close proximity to Phe 1086 in NBD2\(^29\) and that cysteines introduced at positions 443 and 474 in NBD1 crosslink with residues 909 and 905 in TMD2, respectively\(^12\) (Fig. 4d, e). Residues protected by drug substrates from inhibition by thiol-reactive analogues are suggested to form the drug-binding region\(^15,22\). In the modelled structure, 17 of the 19 residues are distributed on the surface of the drug-translocation pathway (Fig. 4f).

Most of these residues are non-polar, consistent with the hydrophobic nature of the substrates. In contrast, the 17 residues that were not protected by substrate, and therefore are presumed to be not involved in drug binding\(^11\), are scattered throughout the TMDs (Fig. 4f). Previously, the orientations of TM3, TM4 and TM5 with respect to the drug-translocation pathway predicted by arginine-scanning mutagenesis were incompatible with the crystal structure of mouse P-gp\(^20\). On correction of amino-acid registry (Supplementary Figs 5 and 6), these biochemical data are now consistent with the homology-modelled human P-gp (Supplementary Fig. 10).

The atomic structure of P-gp offers insights into functional data that otherwise are difficult to explain. For example, mutants that enhance
drug-stimulated ATPase activity often show stronger resistance to the same drug, probably owing to an increased affinity for the drug. However, this correlation does not hold for the Phe335Ala mutant, which has a higher ATPase activity but confers lower or similar drug resistance. The structure shows that Phe 335 is located at the apex of the drug transport pathway, making van der Waals contacts with the extracellular side of the membrane. Mutating the phenylalanine to alanine, if doing so destabilized the inward-facing conformation, would facilitate the transition to the outward-facing conformation and thus give rise to higher basal and drug-stimulated ATPase activities. In this description, the Phe335Ala mutant would be reminiscent of mutants identified in the maltose transporter that allow constitutive ATP hydrolysis in the absence of the binding protein.

The structure of C. elegans P-gp provides an accurate model with which to interpret decades of functional and biochemical data on P-gp. The functional data complement the crystal structure to support a picture in which P-gp uses the energy from ATP hydrolysis to expel lipophilic molecules from the inner leaflet of the membrane. Many details of this molecule, such as how substrate binding activates the ATPase activity, how ATP hydrolysis is coupled to substrate flipping and how multiple substrates are recognized by a single transporter, remain to be elucidated.

METHODS SUMMARY
The gene encoding C. elegans P-gp was synthesized and optimized for expression in yeast and insect cells (Bio Basic Inc.). Native protein was expressed in Pichia pastoris strain SMD1163 and selenomethionine-substituted protein was expressed in Hi5 cells. The cytotoxicity assays were performed using baculovirus-infected S. frugiperda Sf9 cells and the ATP/NADH coupled assays were carried out at 25 °C. Crystals were obtained at 4 °C by the vapour diffusion method. Diffraction data were collected at the Advanced Photon System at Argonne National Laboratory. The initial phase was obtained by molecular replacement (PHASER, CCP4) using separate domains of Sav1866 and mouse P-gp structures as search models. The molecular replacement phase was combined with single-wavelength anomalous dispersion phasing (PHASEREP, CCP4) to identify selenomethionine-substituted residues and mercury-labelled cysteines. The model was built in COOT and refined using CNS and REFMAC5. The human P-gp model was generated using MODELLER (http://salilab.org/modeller/about_modeller.html).

Full Methods and any associated references are available in the online version of the paper.

Received 3 March; accepted 27 July 2012.
Published online 23 September 2012.


Supplementary Information is available in the online version of the paper.

Acknowledgements We thank the beamline staff of the GM/CA CAT at the Advanced Photon System for assistance with data collection, J.-K. Cho for assistance with protein purification and A. Davidson for comments on the manuscript. We also thank the beamline staff of the GM/CA CAT at the Advanced Photon System for assistance with data collection, Y.-K. Cho for assistance with protein purification and A. Davidson for comments on the manuscript. We also thank the beamline staff of the GM/CA CAT at the Advanced Photon System for assistance with data collection, Y.-K. Cho for assistance with protein purification and A. Davidson for comments on the manuscript.

Author Contributions All authors helped design the study and analysed the data. M.S.J. and M.L.O. determined the crystal structure. M.S.J. and Q.Z. performed the biochemical experiments. M.S.J., M.L.O. and J.C. wrote the manuscript.

Author Information Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 4FAC. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to J.C. (chenjue@purdue.edu).

©2012 Macmillan Publishers Limited. All rights reserved
METHODS

Cloning, expression and purification. A synthetic gene encoding the full-length C. elegans P-gp (pgp-1; GenBank accession code, AB012321.1) was subcloned into the pPICZ (Invitrogen) and pVL1393 (BD Biosciences) vectors. The carboxy terminus of P-gp was fused to enhanced green fluorescence protein (eGFP) plus a deca-histidine tag or the Protein A tag derived from pEZZ18 (GE Healthcare). A PreScission protease cleavage site was engineered between P-gp and the C-terminal tag.

Native protein was expressed in P. pastoris strain SMD1163 (Invitrogen). Cells were grown at 28 °C in minimal methanol medium and induced with 0.5% methanol for 24 h. After collection by centrifugation (4,000g for 15 min), the cells were frozen in liquid nitrogen and broken by cryomilling (Retsch model MM400). Broken cells were resuspended in lysis buffer containing 50 mM Tris-HCL, pH 8.0, 150 mM NaCl, 20% glycerol, 5 mM MgCl2, 1 mM PMSF, 1 mM benzamidine, 0.1 mg ml-1 trypsin inhibitor, 3 μg ml-1 DNase, 1 μg ml-1 pepstatin A, leupeptin and aprotonin. Membranes were solubilized by adding 1% (w/v) n-dodecyl-β-D-maltopyranoside (DDM, Affymetrix) to the lysis buffer and incubating at 4 °C for 2 h. Insoluble membrane was removed by centrifugation at 80,000g for 40 min and supernatant was loaded onto cobalt affinity resin (Clontech). After on-column cleavage by PreScission protease, protein was eluted and reloaded onto a GST column to remove the GST-tagged PreScission protease. Protein was concentrated and continued to grow to full size in one week. Crystals were dehydrated and cryoprotected by a serial increase in PEG concentration in 5% steps in the reservoir (final 30%) for 48 h followed by 2.5% steps in the drop (final 35%) for 2 h. Crystals were flash-frozen in liquid nitrogen. Diffraction data were collected at the 23-ID beamline at the Advanced Photon System. Diffraction images were indexed, integrated and scaled with the HKL2000 package (HKL Research Inc.).

Structure determination and homology modelling. The structure was determined by molecular replacement (PHASER, CCP4)24 using separate domains of bacterial Sav1866 and mouse P-gp structures as search models. The molecular replacement phase was combined with single-wavelength anomalous dispersion phasing (PHASEREP, CCP4) to identify methionine and cysteine sites. The model was built by iterative modelling in COOT26 and refined using CNS31 and REFMACS25. The crystallographic statistics are summarized in Supplementary Table 1. Residues of the N terminus (1–3, 52–54), the linker region (666–715) and the C terminus (1307–1321) were not visible in the electron density map and were not included in the final structure. No residues lie in the disallowed region of the Ramachandran plot. The homology model of human P-gp was generated by the program MODELLER on the basis of the structure of C. elegans P-gp in which the N-terminal region and the linker region were excluded because of low sequence conservation (Supplementary Fig. 9). All figures were generated using the program PyMOL (http://www.pymol.org/).

ATP hydrolysis assay. The ATPase activity of C. elegans P-gp was analysed using a coupled assay in which the regeneration of hydrolyzed ATP was coupled to the oxidation of NADH30. Purified protein was added to the ATPase reaction buffer (50 mM potassium HEPES, pH 8.0, 10 mM MgCl2, 60 μg ml-1 pyruvate kinase, 32 μg ml-1 lactate dehydrogenase, 4 mM phosphoenolpyruvate, 0.3 mM NADH and 5 mM ATP) at 25 °C in the presence or absence of drug substrates. For vanadate inhibition, the protein samples were mixed with 1 mM vanadate in the presence of ATP-Mg for 10 min at room temperature (22 °C) before measuring the ATPase activity. To determine the drug-stimulated ATPase activity of P-gp in the membrane, microsomes (5 μg) were pre-incubated in the reaction buffer with actinomycin D or paclitaxel for 5 min at room temperature. The fold increase in ATP hydrolysis in the presence of vanadate (1 mM) from that in the absence of vanadate.

Crystalization and data collection. Native crystals were obtained by mixing 1 μl of protein sample (10 mg ml-1) and 1 μl of reservoir solution containing 100 mM HEPES, pH 6.6–7.2, 200 mM sodium malonate and 19–22% PEG2000MME at 4 °C using the sitting-drop vapour diffusion method. Mercury-labelled crystals were prepared by adding 1 mM methyl mercury chloride (t) into crystal-containing drops for 4 h at 4 °C. Crystals of selenomethionine-substituted protein were obtained with 100 mM HEPES, pH 6.6–7.2, 200 mM ammonium phosphate monobasic and 19–22% PEG1500 at 4 °C. All crystals appeared within 2 d and continued to grow to full size in one week. Crystals were dehydrated and cryoprotected by a serial increase in PEG concentration in 5% steps in the reservoir (final 30%) for 48 h followed by 2.5% steps in the drop (final 35%) for 2 h. Crystals were flash-frozen in liquid nitrogen. Diffraction data were collected at the 23-ID beamline at the Advanced Photon System. Diffraction images were indexed, integrated and scaled with the HKL2000 package (HKL Research Inc.).

Structure determination and homology modelling. The structure was determined by molecular replacement (PHASER, CCP4) using separate domains of bacterial Sav1866 and mouse P-gp structures as search models. The molecular replacement phase was combined with single-wavelength anomalous dispersion phasing (PHASEREP, CCP4) to identify methionine and cysteine sites. The model was built by iterative modelling in COOT and refined using CNS and REFMACS. The crystallographic statistics are summarized in Supplementary Table 1. Residues of the N terminus (1–3, 52–54), the linker region (666–715) and the C terminus (1307–1321) were not visible in the electron density map and were not included in the final structure. No residues lie in the disallowed region of the Ramachandran plot. The homology model of human P-gp was generated by the program MODELLER on the basis of the structure of C. elegans P-gp in which the N-terminal region and the linker region were excluded because of low sequence conservation (Supplementary Fig. 9). All figures were generated using the program PyMOL (http://www.pymol.org/).


©2012 Macmillan Publishers Limited. All rights reserved