12-121.

When the roller coaster is at B, it has a speed of $25 \mathrm{~m} / \mathrm{s}$, which is increasing at $a_{t}=3 \mathrm{~m} / \mathrm{s}^{2}$. Determine the magnitude of the acceleration of the roller coaster at this instant and the direction angle it makes with the x axis.

SOLUTION

Radius of Curvature:

$$
\begin{aligned}
& y=\frac{1}{100} x^{2} \\
& \frac{d y}{d x}=\frac{1}{50} x \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{50} \\
& \rho=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\left|\frac{d^{2} y}{d x^{2}}\right|}=\left.\frac{\left[1+\left(\frac{1}{50} x\right)^{2}\right]^{3 / 2}}{\left|\frac{1}{50}\right|}\right|_{x=30 \mathrm{~m}}=79.30 \mathrm{~m}
\end{aligned}
$$

Acceleration:

$$
\begin{aligned}
& a_{t}=\dot{v}=3 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{n}=\frac{v_{B}^{2}}{\rho}=\frac{25^{2}}{79.30}=7.881 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(a)

The magnitude of the roller coaster's acceleration is

$$
a=\sqrt{a_{t}^{2}+a_{n}^{2}}=\sqrt{3^{2}+7.881^{2}}=8.43 \mathrm{~m} / \mathrm{s}^{2}
$$

Ans.
The angle that the tangent at B makes with the x axis is $\phi=\tan ^{-1}\left(\left.\frac{d y}{d x}\right|_{x=30 \mathrm{~m}}\right)=\tan ^{-1}\left[\frac{1}{50}(30)\right]=30.96^{\circ}$. As shown in Fig. a, \mathbf{a}_{n} is always directed towards the center of curvature of the path. Here, $\alpha=\tan ^{-1}\left(\frac{a_{n}}{a_{t}}\right)=\tan ^{-1}\left(\frac{7.881}{3}\right)=69.16^{\circ}$. Thus, the angle θ that the roller coaster's acceleration makes with the x axis is

$$
\theta=\alpha-\phi=38.2^{\circ} \Sigma
$$

Ans.

[^0]
12-123.

The speedboat travels at a constant speed of $15 \mathrm{~m} / \mathrm{s}$ while making a turn on a circular curve from A to B. If it takes 45 s to make the turn, determine the magnitude of the boat's acceleration during the turn.

SOLUTION

Acceleration: During the turn, the boat travels $s=v t=15(45)=675 \mathrm{~m}$. Thus, the radius of the circular path is $\rho=\frac{s}{\pi}=\frac{675}{\pi} \mathrm{~m}$. Since the boat has a constant speed,
 $a_{t}=0$. Thus,
$a=a_{n}=\frac{v^{2}}{\rho}=\frac{15^{2}}{\left(\frac{675}{\pi}\right)}=1.05 \mathrm{~m} / \mathrm{s}^{2}$
Ans.

*13-52.

A girl, having a mass of 15 kg , sits motionless relative to the surface of a horizontal platform at a distance of $r=5 \mathrm{~m}$ from the platform's center. If the angular motion of the platform is slowly increased so that the girl's tangential component of acceleration can be neglected, determine the maximum speed which the girl will have before she begins to slip off the platform. The coefficient of static friction between the girl and the platform is $\mu=0.2$.

SOLUTION

Equation of Motion: Since the girl is on the verge of slipping, $F_{f}=\mu_{s} N=0.2 N$. Applying Eq. 13-8, we have

$$
\begin{gathered}
\Sigma F_{b}=0 ;
\end{gathered} \begin{array}{r}
N-15(9.81)=0 \quad N=147.15 \mathrm{~N} \\
\Sigma F_{n}=m a_{n} ; \\
0.2(147.15)=15\left(\frac{v^{2}}{5}\right) \\
v=3.13 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Ans.

*13-72.

The ball has a mass of 30 kg and a speed $v=4 \mathrm{~m} / \mathrm{s}$ at the instant it is at its lowest point, $\theta=0^{\circ}$. Determine the tension in the cord and the rate at which the ball's speed is decreasing at the instant $\theta=20^{\circ}$. Neglect the size of the ball.

SOLUTION

$+\Sigma \Sigma F_{n}=m a_{n} ; \quad T-30(9.81) \cos \theta=30\left(\frac{v^{2}}{4}\right)$
$+\nearrow \Sigma F_{t}=m a_{t} ; \quad-30(9.81) \sin \theta=30 a_{t}$
$a_{t}=-9.81 \sin \theta$
$a_{t} d s=v d v$ Since $d s=4 d \theta$, then
$-9.81 \int_{0}^{\theta} \sin \theta(4 d \theta)=\int_{4}^{v} v d v$
$\left.9.81(4) \cos \theta\right|_{0} ^{\theta}=\frac{1}{2}(v)^{2}-\frac{1}{2}(4)^{2}$
$39.24(\cos \theta-1)+8=\frac{1}{2} v^{2}$
$\operatorname{At} \theta=20^{\circ}$
$v=3.357 \mathrm{~m} / \mathrm{s}$
$a_{t}=-3.36 \mathrm{~m} / \mathrm{s}^{2}=3.36 \mathrm{~m} / \mathrm{s}^{2} \quad \swarrow$
$T=361 \mathrm{~N}$
Ans.

Ans.

*13-84.

The 5-lb collar slides on the smooth rod, so that when it is at A it has a speed of $10 \mathrm{ft} / \mathrm{s}$. If the spring to which it is attached has an unstretched length of 3 ft and a stiffness of $k=10 \mathrm{lb} / \mathrm{ft}$, determine the normal force on the collar and the acceleration of the collar at this instant.

SOLUTION

$y=8-\frac{1}{2} x^{2}$
$-\frac{d y}{d x}=\tan \theta=\left.x\right|_{x=2}=2 \quad \theta=63.435^{\circ}$
$\frac{d^{2} y}{d x^{2}}=-1$
$\rho=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}{\left|\frac{d^{2} y}{d x^{2}}\right|}=\frac{\left(1+(-2)^{2}\right)^{\frac{3}{2}}}{|-1|}=11.18 \mathrm{ft}$
$y=8-\frac{1}{2}(2)^{2}=6$
$O A=\sqrt{(2)^{2}+(6)^{2}}=6.3246$
$F_{s}=k x=10(6.3246-3)=33.246 \mathrm{lb}$
$\tan \phi=\frac{6}{2} ; \phi=71.565^{\circ}$

$+\swarrow \Sigma F_{n}=m a_{n} ; \quad 5 \cos 63.435^{\circ}-N+33.246 \cos 45.0^{\circ}=\left(\frac{5}{32.2}\right)\left(\frac{(10)^{2}}{11.18}\right)$
$N=24.4 \mathrm{lb}$
$+\searrow \Sigma F_{t}=m a_{t} ; \quad 5 \sin 63.435^{\circ}+33.246 \sin 45.0^{\circ}=\left(\frac{5}{32.2}\right) a_{t}$
$a_{t}=180.2 \mathrm{ft} / \mathrm{s}^{2}$
$a_{n}=\frac{v^{2}}{\rho}=\frac{(10)^{2}}{11.18}=8.9443 \mathrm{ft} / \mathrm{s}^{2}$
$a=\sqrt{(180.2)^{2}+(8.9443)^{2}}$
$a=180 \mathrm{ft} / \mathrm{s}^{2}$

Ans.

HWば 3 ME z30，Spring 2014
o＇reilly：3．6，3．9，4．i，4．3
H：bleter： $12-121,12-123,13-52,13-72,13-84$

$$
\begin{aligned}
& \frac{\text { O'Rilly } 3.6}{r=r(s(t))} \\
& \vec{v}=\frac{d \vec{r}}{d t}=\frac{d r}{d s} \cdot \frac{d s}{d t} \text { where that } \vec{v}=v \hat{e}_{+}, \vec{a}=\dot{v} \hat{e}_{+}+K v^{2} \hat{e}_{n} \\
& \vec{v}=v \hat{e}_{+} \\
& \vec{a}=\frac{d r}{d s}=\hat{e}_{t} \\
& d t
\end{aligned}=\frac{d v}{d t} \hat{e}_{t}+v \frac{d \hat{e}_{t}}{d t}=\dot{v} \hat{e}_{+}+v \frac{d \hat{e}_{t}}{d s} \frac{d s}{d t} \quad \text { where } \frac{d \hat{e}_{+}}{d t}=K \hat{e}_{n}, \frac{d s}{d t}=v
$$

$$
\xrightarrow[\text { O'Rilly } 3.4]{ }
$$

$$
\vec{r}=R \hat{e}_{r}+\alpha R \theta \hat{E}_{z} \quad \vec{F}=-m y \hat{E}_{z} \quad \text { show that } s(\theta)=R \sqrt{1+\alpha^{2}}\left(\theta-\theta_{0}\right)+s(\theta)
$$

$$
\text { Wion } \vec{E} \text { 促 }
$$

$$
\text { Wsing } \overrightarrow{F=m e n}+\text { results from Section 3.4, shew that }
$$

$$
\vec{F} \cdot \hat{\ell}_{t}=-\frac{m \alpha^{\alpha}}{\sqrt{1+\alpha}}=m R \sqrt{1+\alpha^{2}} \dot{\theta}
$$

$$
\vec{F} \cdot \hat{e}_{n}=N_{n}=m R \dot{\theta}^{2}
$$

$$
\stackrel{\rightharpoonup}{F} \cdot \hat{e}_{b}=N_{b}-\frac{m g}{\sqrt{1+\alpha^{2}}}
$$

$$
\text { wher } N_{n} \hat{e}_{n}+N_{b} \hat{e}_{6} \text { is the manal }
$$

fone exerted on the particle.

$$
\frac{d \vec{r}}{d t}=\dot{R} \hat{e}_{r}+R \dot{\hat{e}}_{r}+\alpha \dot{R} \theta \hat{E}_{z}+\alpha R \dot{\theta} \hat{E}_{z}
$$

$$
=\dot{R} \hat{e}_{r}+R \dot{\theta} \hat{e}_{\theta}+\alpha(\dot{R} \theta+R \dot{\theta}) \hat{E}_{z}
$$

$$
\text { If } \dot{R}=0: \frac{d \vec{r}}{d t}=R \frac{d \theta}{d t} \hat{e}_{\theta}+\alpha R \frac{d \theta}{d t} \hat{E}_{z}
$$

$$
\frac{d \vec{r}}{d t}=R \frac{d \theta}{d t}\left(\hat{e}_{\theta}+\alpha \hat{E}_{z}\right)
$$

$$
\frac{d s}{d t}=\left|\frac{d \vec{r}}{d t}\right|=\sqrt{R^{2}\left(\frac{d g}{d t}\right)^{2}\left(1^{2}+\alpha^{2}\right)}
$$

$$
\frac{d s}{d t}=R \frac{d \theta}{d t} \sqrt{1+\alpha^{2}} \quad \text { with } R=\text { coast. } \rightarrow r \ddot{s}=R \ddot{\theta} \sqrt{1+\alpha^{2}}
$$

$$
d s=R \sqrt{1+x^{2}} d \theta
$$

$$
\begin{aligned}
& S(\theta)-S_{0}(\theta)=R \sqrt{1+\alpha^{2}}\left(\theta-\theta_{0}\right) \\
& S(\theta)=R \sqrt{1+\alpha^{2}}\left(\theta-\theta_{0}\right)+S\left(\theta_{0}\right)
\end{aligned}
$$

O'Reilly 3.9 (continued)
From Section 3.4:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{F} \cdot \hat{e}_{1}=m \frac{d^{2} s}{d t^{2}}=m R \sqrt{1+x^{2}} \ddot{\theta}=-m g\left(\frac{\alpha}{\sqrt{1+\alpha}}\right) \\
& \vec{F} \cdot \hat{e}_{n}=m K\left(\frac{d s}{d t}\right)^{2}=m K\left(R^{2} \dot{\theta}^{2}\left(1+\alpha^{2}\right)\right)
\end{aligned}
$$

$$
K=\frac{1}{R\left(1+\alpha^{2}\right)} \text { for a circular heliz (0'Reilly section 3.3) }
$$

$$
\vec{F} \cdot \hat{e}_{n}=\frac{m R^{2} \dot{\theta}^{2}\left(1+\alpha^{2}\right)}{R\left(1+\alpha^{2}\right)}=m R \dot{\theta}^{2}
$$

(O'Reilly Section 3.3)

O'Reilly 3.9 (continued)
From Section 3.4: $\vec{F} \cdot \hat{e}_{1}=m \frac{d^{2} s}{d t^{2}}=m R \sqrt{1+\alpha^{2}} \ddot{a}=-m g\left(\frac{\alpha}{\sqrt{1+\alpha}}\right)$

$$
\vec{F} \cdot \hat{e}_{n}=m K\left(\frac{d s}{d t}\right)^{2}=m K\left(R^{2} \dot{\theta}^{2}\left(1+\alpha^{2}\right)\right)
$$

$K=\frac{1}{R\left(1+\alpha^{2}\right)}$ for a circular heliz (0^{\prime} Reilly section 3.3)

$$
\begin{aligned}
\vec{F} \cdot \hat{l}_{n} & =\frac{m R^{2} \dot{\theta}^{2}\left(1+\alpha^{2}\right)}{R\left(1+\alpha^{2}\right)} \\
\frac{-\alpha \hat{e}_{\theta}+\hat{E}_{z}}{\sqrt{1+\alpha^{2}}} & \text { given } \vec{F}=-m g \vec{E} \cdot \hat{e}_{b}
\end{aligned}=\frac{-m g}{\sqrt{1+\alpha^{2}}}+N b, ~ l
$$

(O'Reilly Section 3.3) $\hat{e}_{b}=\frac{-\alpha \hat{l}_{\theta}+\hat{E}_{z}}{\sqrt{1+\alpha^{z}}}$. given $\vec{E}=-m g \hat{E}_{z}+\overline{N_{b} \hat{e}_{b}}$

O'Reilly 4.1
$\vec{r}=R \hat{e}_{r} \quad$ show that $\vec{F}_{f}=-\mu d\|\vec{N}\| \frac{\dot{\theta}}{|\dot{\theta}|} \hat{e}_{\theta} \quad, N=N r \hat{e}_{r}+N_{z} \hat{e}_{z}$
In general for a particle on a space core:

$$
\begin{aligned}
& \vec{F}_{f}=-\mu d\|\vec{N}\| \frac{\vec{V}_{n} \mid}{\left\|\vec{V}_{r e}\right\|} \quad \text { (O'Reily Section 4.2.2) } \\
& \left.\frac{d \vec{r}}{d t}=\dot{P}_{r}+R \dot{\theta} \hat{e}_{\theta}=R \dot{\theta} \hat{e}_{\theta} \quad \vec{V}_{r e} \right\rvert\,=\frac{d \vec{r}}{d t}-\sigma=R \dot{\theta} \hat{e}_{\theta} \\
& \vec{F}_{f}= \mu d\|\vec{N}\| \frac{R \dot{\theta} \hat{e}_{\theta}}{|R \dot{\theta}|}=-\mu d\|\vec{N}\| \frac{\dot{\theta} \hat{e}_{\theta}}{|\dot{\theta}|}
\end{aligned}
$$

O'Reilly 4.3
$\vec{r}=k \hat{e}_{r}$ show that $\vec{F}_{f}=F_{f} \hat{e}_{A} \quad \vec{N}=N_{r} \hat{e}_{r}+N_{z} \hat{E}_{z},\left|F_{f}\right| \leq \mu_{s} \sqrt{m_{r}^{2}+N_{z}}$
In queral, for a particle on a space curve:
$\vec{F}_{f}=F_{f} \hat{e}_{+}$for a particle with $\vec{r}=\operatorname{Re}_{r}, \hat{e}_{\theta}=\hat{e}_{t}$,
equizclent to:

$$
-h_{S} \sqrt{N_{r}+N_{z}^{2}} \leq F_{f} \leq \mu_{S} g \sqrt{N_{T}^{2}+N_{z}^{2}}
$$

so $\vec{F}_{f}=F_{f} \hat{l}_{\theta}$.
$\vec{N}=N \hat{n} \rightarrow \vec{N}=N_{r} \hat{e}+N_{z} \hat{E}_{z}$ for a partick sitting in the
$\left|F_{f}\right| \leq \mu_{s}\|\vec{N}\|$ where $\|\vec{N}\|^{2}=\vec{N} \cdot \vec{N}$

$$
\left|F_{f}\right| \leq \mu_{s} \sqrt{N_{r}^{2}+N_{z}^{2}}
$$

$$
\|\vec{N}\|^{2}=N_{r}^{2}+N z^{2}
$$

equivalent to

$$
\|\vec{N}\|= \pm \sqrt{N_{r}^{2}+N_{z}^{2}}
$$ gives $\|\vec{W}\|$ to be positive or regatives giving the twa equivalent statenemtst F_{f}.

[^0]: © 2013 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
 photocopying, recording, or likewise. For information regarding permission(s), write to:
 Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

