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Representative paths of a particle falling under gravity and subject to a drag force of
v. Some examples of the velocity, v, and acceleration, a, vectors of the particle are also
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Some kinematical quantities pertaining to a particle and its motion.

and opposes the motion of the particle. For a given set of initial conditions, sample
trajectories for the particle can be seen in Figure 1.1. After reading this chapter, you
should be able to show that a representation for the drag force is −mCd ||v||2 v where
the coefficient of drag Cd is a constant, to know how to formulate the differential
equations governing the motion of the particle, and to understand the analytical
solution to the resulting equations when the drag force is absent.

1.2 Kinematics of a Particle

Consider a particle moving in a three-dimensional space E 3. The position vector
of the particle relative to a fixed origin O as a function of time is denoted by

r(t) . That is, given a time t, the location of the particle is determined
r = r(t) (see Figure 1.2). Varying t, r(t) defines the motion and the

of the particle. This path in many cases coincides with a specific curve, for
example, a particle moving on a circular ring or a particle in motion on a circular
helix. Otherwise, the particle is either free or in motion on a surface.

The (absolute) velocity vector v of the particle can be determined by differenti-
with respect to time t:

v = v(t) = dr
dt

= lim
t� 0

r(t + Δ t) − r(t)
Δ t

.

of the particle is given by the magnitude of the velocity vector: v =
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of the particle is given by the magnitude of the velocity vector: v =
. We often denote the time derivative of a function by a superposed dot, for

ṙ. The (absolute) acceleration vector a of the particle is determined by
differentiating the (absolute) velocity vector with respect to time:

a = a(t) = dv
dt

= lim
t� 0

v(t + Δ t) − v(t)
Δ t

.
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Fig. 2.2 The unit vectors er and eθ .

L. This system is a prototypical example of a situation where a polar coordinate
system can be effectively used.

To define a cylindrical polar coordinate system { r, θ , z} , we start with a Cartesian
coordinate system { x, y, z} for the three-dimensional space E
nates, we define r, θ , and z as

r = x2 + y2, θ = tan− 1 y
x

, z

The coordinate r ≥ 0. Apart from the points { x, y, z} = { 0, 0
we can uniquely determine x, y, and z:

x = r cos(θ ) , y = r sin(θ ) , z =

Here, θ is taken to be positive in the counterclockwise direction.
If we now consider the position vector r of a point in this space, we have, as

always,
r = xEx + yEy + zEz.

We can write this position vector using cylindrical polar coordinates by substituting
for x and y in terms of r and θ :

r = r cos(θ )E + r sin(θ )E + zE .



r = r cos(θ )Ex + r sin(θ )Ey + zEz.

Before we use this representation to establish expressions for the velocity and ac-
celeration vectors, it is convenient to introduce the unit vectors

�

�
er
eθ
Ez

�

� =

�

�
cos(θ ) sin(θ ) 0
− sin(θ ) cos(θ ) 0

0 0 1

�

�

�

�
Ex
Ey
Ez

�

�

Two of these vectors are shown in Figure 2.2.
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Fig. 2.3 The planar pendulum and the free-body diagram of the particle of mass m.

2.4.1 Kinematics

We begin by establishing some kinematical results. We note that r = Ler. Differ-
entiating with respect to t, and noting that L is constant, gives us the velocity v.
Similarly, we obtain a from v:

v = L
der

dt
= L

dθ
dt

eθ ,

a = L
d2θ
dt2 eθ + L

dθ
dt

deθ
dt

= L
d2θ
dt2 eθ − L

dθ
dt

2
er.

Alternatively, one can get these results by substituting r = L and z = 0 in the general
expressions recorded in Section 2.2. I do not recommend this approach inasmuch as
it emphasizes memorization.



2.4.2 Forces

Next, as shown in Figure 2.3, we draw a free-body diagram. There is a tension force
Ter and a normal force NEz acting on a particle. The role of the tension force is

to ensure that the distance of the particle from the origin is L and the normal force
ensures that there is no motion in the direction of Ez. These two forces are known
as constraint forces. They are indeterminate (we need to use F = ma to determine
them). One should also note that the gravitational force has the representations

−mgEy = −mgsin(θ )er − mgcos(θ )eθ .
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