Chapter 2: Cylindrical Polar Coordinates

Topics: - cylindvical polar coordinates - Basis (Ēr, Ēo,Ēz) - Kinematres + Kinetics of particles w/ (Ēr, Ēo,Ēz)

2.1 The Glindrial Polar Coordinate System

We will now define the cylindrical polar coordinate system {r, 0, 23 in terms of the Cartesian system {x, y, 23.

θ

Х

Now we can write our position vector r as

Rewriting our position rector:

2.2 Velocity + Acceleration Vectors Velocity

From (x) we know that 4 Combining this with the drain nule (= 0 der/10),

Acceleration

2.3 Kinetics of a Particle

Writing F=ma in cylindrical polar coordinates,

2.4 Planar Pendulum (example)

Given an initial state $\overline{r_0}, \overline{v_0}$, find the tension in the string? rod and the equations of motion.

Massless rod or string of length L

Particle of mass m

2.4.1 Kinematics

Position:

Velocity:

Acceleration:

2.4.2 FBD + Forces

But we do know something about \overline{T} : So

2.4.3 F=ma $F = m\overline{a}$ in the (r, θ, z) -basis:

2.4.4 Analysis The eo equation is an ODE from which we can find $\theta(t)$.

Example (Hibbeler 12-175) A particle P moves along the spiral path r = 10/0 ft, where θ is in radians. If it maintains a constant speed of $v = V_0$, determine V_r and V_0 as function $r = \frac{10}{10}$ θ of $\theta_{.}$