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ME 230: Kinematics and Dynamics
Spring 2014 — Section AD

Final Exam Review: Rigid Body Dynamics Practice Problem

A rigid uniform flat disk of mass m, and radius R is moving in the plane towards a
wall with linear velocity V while rotating with angular velocity w, as shown in the
figure below. Assuming that the collision in the normal direction is elastic and
that no slip occurs at the wall, find the velocity (of the center of mass) of the disk
after it collides with the wall.
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Section AA
ME 230
Finals review

ME230 Kinematics and Dynamics

Rigid Body Dynamics
1) O'Reilly 9.3 Consider the cart shown below,
2b
E,
p l PE,

. . 2a Suppose that the applied force P = 0, but the

o ) front wheels are driven. The driving force on
N the respective front wheels is assumed to be
Smooth horizontal surface FZ = ,MNZ,]/EJC/ F3 — ,MN3,]/EX
* ’ where yu is a constant. Calculate the resulting

0 b PE, _ acceleration vector of the center of mass of the

) . [ . cart.
E. . - - 2

As for the example shown in the book, we first start by with the kinematics and choose a Carte-
sian coordinate system to describe the position of the center of mass, xc,

Xc = xE, + yoﬁy + ZOEZ,

where 1y and z( are constants because we consider the case where all 4 wheels of the cart never
leave the ground.
The resultant force acting on the system is given by,

F= ],th,yﬁx + “LlN3,yEx — mgﬁ“y

—mgE,
+ (N1y + Noy + N3y + Nuy ) Ey
+ (N2 + Noz 4 N3z + Ny )E;
®c
Resultant moment about center of mass is given by,
F2 + F3 A A
M = uNaE; + N3 yakE;
/ + C(_Nl,y — Nz,y + Ngly + N4,y)ﬁx

- a(Nl,z + NZ,Z + N3,z + N4,Z)Ex
+b(N1z — Npz — N3z + Ni2))E,
+b(—N1y + Noy + N3y — N4,y)ﬁZ

N; +Ny N2 +N3



Use force and moment balance for the cart rigid body we have the following six equations

u(Nay + Nay) = mic
Nl,y + NZ,]/ + N3,y + N4/y —mg =20
Nl,z + N2,z + N3,z + N4,z =0
]/I(Nzly + N3,y)ﬂ + b(_Nl,y + Nz,y + N3,y — N4,y) =0
C(_Nl,y — Nz/y + N3,y + N4,y) — a(NLZ + Np, + N3, + N4,Z) =0
b(N1z—Np;— N3, +Ny.)) =0

(1)
(2)
€)
(4)
(5)
(6)

Since we have 9 unknowns and only 6 equations,, the system is indeterminate and we need to
make some assumptions to come up with extra equations or eliminate some unknowns. We

make the following assumption
Nl,y - N4,y = Nfront/ NZ,y = N3,y = Nrear/ Nl,z - NZ,Z - N3,z - N4,z =0

This gives us the following equations

2Nfrons = mic
2Nf1’01’1t -I_ 2Nreur - mg — 0

.u(Nfront)a + b(Nfront - Nrear) =0

where we have 3 equations and 3 unknowns which we can solve. Thus, from (9) we have,

b
ment = (IMLZ T b) Nrear
Using above in (8) we have,

_ ((pa+b\mg B b mg
Nrear = ( ) = | Nfront = (ya+2b) 2

Using this in (7) we have,

. (_mMbg \ _
xc_(ya+2b>—K

which is the acceleration of the center of mass of the cart.

()
(8)
©)

(10)



2) Euler’s Disk (spinning/rolling)

Link to a video depicting the motion of the Euler’s disk:
https://www.youtube.com/watch?v=qdYS8Py0Z7w

As can be seen from the video, the spinning/rolling action of the Euler’s disk is similar to what
happens when you spin a coin on a flat surface. The disk spins faster and faster as time goes
on before eventually hitting the ground and stopping.

How is it that the angular momentum of the disk keeps increasing with time, seemingly going
against our ideas of conservation of angular momentum and energy?

To analyze the dynamics behind the motion of the Euler’s disk, we first draw a schematic of the
disk as shown on the right, making the following simplifying assumptions:

1. wy, the rate of precession, ws, the rate of
spin, 6, the angle the disk makes with the

horizontal, are assumed constant (valid Wp |
since the rate at which these quantities w a/

change with time are small).

2. The disk rolls on the flat surface without

slipping.
E;
3. The disk is thin relative to its radius. e
. . I
4. The disk rolls such that the diameter of o E, a(t) A

the circular path traversed by point A ap-
proaches the diameter of the disk itself, as
6 becomes small. This implies, we can as- g a
sume the distance of G from the E, axis,

rc = a—rcosf = 0 in the figure to the

right.

v

Now, the angluar velocity of the disk with respect to the ground frame of reference is given by,
W = wssin0éy + (ws cos § — wp)E"z (11)

where, [éy,é,,¢,] is the rotating frame of reference while [Ex, Ey, EZ] is the fixed global frame of


https://www.youtube.com/watch?v=qdYS8PyOZ7w

reference. In the above, &, = E,. We have the relation between the two frames of reference as,

&y cos¢p —sing 0] [Ex
éy| = |sing cos¢ O |E,
é, 0 0 1| |E,
and also,
@ _ 5w, = 5, X 6y) = b 12
dé, L R .
dé; _
and 77 = 0.

Now, the angular acceleration of the disk with respect to the ground is given by,

L do  dlwssingé,] d[(wscost — wp)é;]
A T TR dt

A

. déy,
= ws sin QE +0 (14)

since, ws, 0, wy and &, = E. are assumed to be constant with respect to time. Now, using (3) in
(4) we have,
A = wswp sin 6, (15)

Now consider the point A on the disk. The linear velocity of A is given by,

—

Ua = UG + ws(sin0é, + cos 6é;) x r(cos B¢, — sin 6e;)

and,
Thus, we have
U4 = (awp — rws)éy

For pure rolling, the point A has zero velocity. This implies,
aCUp = rWws

Also, a = rcos 0 (from assumption 4) which gives us the relation between the rate of precession

and the rate of spin as,

Ws
— 1
Wr cos 6 (16)

Now, for the condition that 7. = 0, the point G (the center of mass of the disk) is stationary,
implying that the acceleration of the point G is zero. Thus, the normal force acting at point A,
N = N¢, balances the gravitational force, —mgé, giving,

N =mg
Also, the torque due to this normal force results in,

T = r(cos 08, —sin ;) x mg(&;) = It



where, I, = mr? /4 for the thin disk and # is given by (5). Thus, we have,

mr?
mgr cos 0é, = Twswp sin 6é, 17)
Using (6) in (7) we have,
4
2 38
“r = rsind

| 4g
=@ = rsin 6

This implies that as & — 0 we have that w, — oo due to the sin term in the denominator.
This is consistent with the rapid increase in the angular velocity we see in a real Euler’s disk
as 6 becomes small. In reality, there is a bit of slipping (friction) at point A (along with rolling
friction) which results in the disk losing energy. This results in an equal loss in potential energy
(conservation of energy) leading to a loss in height of the center of mass, G (leading to a decrease
in 0). Thus, w;, keeps increasing as 6 keeps decreasing upto the point where the disk hits the
ground and is suddenly brought to a stop.

Although we have neglected friction, angular momentum is still not conserved about the
center of mass G due to the net external torque acting about G due to the normal reaction force
from the ground at point A. .




3) Stick and ball collision

Given a long narrow uniform stick of length |
and mass m which lies motionless on a friction-
less surface (the figure on the right is the top
view). The center of mass of the stick is at the
geometric center of the stick and its moment of
inertia about CM, .k is Icpr = ml?/12. A ball
has the same mass m and slides without spin-
ning on the on the surface with a velocity 7; to-
ward the stick, hits one end of the stick, and
attaches onto it. Assume that the radius of the
ball is much smaller than the length of the stick
and so that the moment of inertia of the ball
about its center is negligible compared to Icy,;.

m m
%CMstick SCMstick
CMesgtick+
s CMastick+ball 2 sticksball D Wou
Vem
Vi
m
— |
BEFORE AFTER
COLLISION COLLISION

(a) How far from the midpoint of the stick is the center of mass of the stick-ball combination

after the collision?

(b) What is the linear velocity Tcpy,¢ of the center of mass of the stick-ball combination after

the collision?

(c) Is mechanical energy conserved during the collision? Explain your reasoning.

(d) What is the angular velocity ¢y, s of the stick-ball combination after the collision?

(e) How far does the stick’s center of mass move during one rotation of the stick?

Solution

(a) Note that we are considering the configurations before and after collisions as ones immediately

before and after collision. This implies the location of the ball is the same in both the con-

tigurations.

The position vector of the center of mass of a system of particles is given by,

oM =

Y mit;

Y.im;

(CMstick>

dcm -

Mstickdstick + Mpaidpatt _ 0+ ml/2 1

Mstick + Mpgal m+m 4

In this case, let us first define the coordinate system as the Cartesian
coordinate system with the origin at CMg;, shown in the figure.
Thus, the distance of the center of mass of the stick-ball combina-
tion from CMgjc (d; = CM; — CMgjc) is given by,

(18)



(b) Since there is no external force acting on the system (comprising of the ball and the stick)

(©)

(d)

we have by Newton’s second law,

= d 7l -

Fexternal = d_i) =0, = p = constant (19)
which implies that the linear momentum of the system is conserved before and after colli-
sion. The initial linear momentum is just due to the ball since the stick is stationary. It is
given by,

ﬁi = mz?i = mviEx (20)

And the linear momentum of the system after the collision is given by,
pr=(m+m)Tey = vacmlfﬁx (21)

Where we know that the direction of the linear velocity of the center of mass of the system
is only along E.. This is because CMick . par Was initially moving along E. as shown in red
in the figure, and there is no external force to change its direction. Thus, after collision it
continues to move in the same direction.

Thus, using (21) and (20) in (19) we have,

Ui
mv; = 2M0¢y, f, = U, f = 5

Thus, the linear velocity of the center of mass of stick-ball combination after collision is
given by

— vl -
Z7cm,f - EEx

Given that the ball gets attached to the stick after collision. This implies that the velocity of
the ball and that of the stick at that point are the same. Now, the coefficient of resititution
for the collision is defined as,

. relative velocity of departure after collision  {Ustickatf — {Oparrty 0
 relative velocity of approach before collision v }i — {Vstick A }i v

=0

Thus, the collision is completely inelastic, which means that some portion of the mechan-
ical energy is lost. Thus, mechanical energy is NOT conserved. We will see this explicitly
at the part (d) after computing the angular velocity of the stick-ball combination after col-
lision. L

Similar to the arguments for the linear momentum conservation, the angular momentum

is also conserved since there is no external torque acting on the system (consisting of the
ball and the stick). That is,

dL -
Toxternal = T 0, = L = constant (22)

Consider the angular momentums about CMgyjck1pe;. The initial angular momentum of
the system is only due to the ball and is given by,

. B B B B i R . ! 4
Li = Phant X Pratt + Tstick X Pstick = 7 (—Ey) x mv;(Ex) +0 = mo; E; (23)

7



and similarly, the angular momentum of the system about CMgjci4pan after collision is
given by,

Lt = Lem,sys@Wm f (24)
where oy sys is the moment of inertia of the stick+ball about the axis passing through
CMystick+pan and parallel to E.. Now, by the parallel axis theorem we have for the stick,

ml?

ml? N2 7
Icm,stick - H + mdgm = 6 +m (Z) = _ml2

and, for the ball about C M.+ pa; We have,

NN 1
Ley,pan = m (Z) = —ml?

Thus, the moment of inertia of the combined system is given by,
7 24 1 2
Icm,sys = Llem,stick + Icm,ball Eml Eml = —ml (25)

Thus, using (25) in (24) and assuming the direction of @&, r as E,, we have

Lf = 5 ml wcmez (26)

Thus, using (26) and (23) in (22) we have,

5 l 601'
4 24711 wcmf = wcmf ﬁ

Thus, the angular velocity of the stick-ball system is given by,

mo;—

- 60; ~
Wem,f = 5_llEz

We can now see if the argument that the mechanical energy of the system being NOT
conserved is actually true. The energy of the system before (T;) and after collision (Ty) are
given by,

1
T, = Emv%,
1 2 1 2
Tf E(m + m) cmf + ICm Syswcmf
1 6v;
= _-(2m !
o 3 -1 (30#) (5)
mo? 36 x 5 2
= +
4 18x25""
2
= gmvlz
Thus, we see that T; # Ty and hence, proved that the mechanical energy of the system is
not conserved. -



(e) The time taken for once complete rotation of the stick+ball system after collision is given
by,
2 10 1

T = =
6 0

C‘7cm,f

Thus, the distance moved by the center of mass of the stick-ball system in this time is given

by,
v; (107 1 5n
ton = v T= 5 () =
1
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