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Abstract 
 
The lumped capacitance assumption for transient conduction was tested for three 
heated spheres; a gold plated copper sphere, a black painted copper sphere, and a 
rubber sphere. The assumption was validated for the gold plated copper and the black 
painted copper spheres and the lumped capacitance method was used to quantify the 
total heat loss through natural convection and radiation exchange with the surroundings. 
The measured heat loss was compared to the predicted heat loss from empirical 
correlations and found to be within 9% for the gold plated copper sphere and within 8% 
for the black painted copper sphere on average, over the entire time history. 
 
 
Introduction 
 
The lumped capacitance method for transient conduction analysis is developed under 
the assumption that the temperature distribution within a solid is spatially uniform during 
the entire heating or cooling process. From Fourier’s law of thermal conductivity, a 
uniform spatial temperature gradient is not possible for a real system; however, if the 
internal conduction resistance of the solid is very small compared to the convection and 
radiation resistances at the surface, the lumped capacitance method provides a 
reasonable approximation for the temperature throughout the solid at any given time. 
The Biot number, a dimensionless ratio of the conduction resistance to the convection 
and radiation resistances at the surface, is used to check the validity of the lumped 
capacitance method. For a sphere, the Biot number is: 
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where h (W/m2-K) is the effective heat transfer coefficient, ro (m) is the radius of the 
sphere, and k is the thermal conductivity of the solid (W/m-K). To calculate the 
experimental heat transfer coefficient from measured data, the temperature as a 
function of time is normalized: 
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where T(t)r=0 is the measured temperature at the center of the sphere, Ti is the initial 
temperature at the center of the sphere and T∞ is the temperature of the surroundings 
and ambient air. The natural logarithm of the dimensionless temperature ratio in (2) is 
then plotted as a function of time and the slope of the line tangent to the curve is used 
to obtain the overall effective heat transfer coefficient, comprised of both convection and 
radiation heat transfer effects. The lumped capacitance method is valid when the 
following criteria is satisfied: 
 



 𝐵𝑖 ≪ 0.1 (3) 
  
If the Biot number is less than 0.1 and there is no thermal energy generation within the 
sphere, an energy balance on a lumped control volume yields: 
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where qtotal,m (in Watts) is the measured total heat transfer rate, ℎ!""!#$%&!  is the overall 
effective heat transfer coefficient, As is the surface area of the solid, T is the measured 
temperature as a function of time, 𝑇! is the ambient and surrounding room temperature, 
ρ (kg/m3) is the density of the sphere, V (m3) is the volume of the sphere, c (J/kg-K) is 
the specific heat of the sphere and dT/dt is the derivative of the measured temperature 
of the sphere with respect to time. The total predicted heat transfer is the sum of the 
predicted convection and predicted radiation heat transfer: 
 

 𝑞!"!#$,! = 𝑞!"#$%!&'"#,! + 𝑞!"#$"%$&',! (5) 
 
where qtotal,p (in Watts) is the predicted total heat transfer rate. For natural convection, 
the empirical heat transfer rate is dependent on the non-dimensional Rayleigh number: 
 

 𝑅𝑎! =
𝑔𝛽 𝑇! − 𝑇! 𝐷!
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where g (m/s2) is acceleration due to gravity, D (m) is the diameter of the sphere, Ts (K) 
is the surface temperature, T∞ is the temperature of the ambient air and surroundings, ν 
(m2/s) is the kinematic viscosity, α (m2/s) is the thermal diffusivity, and β (1/K) is the 
volumetric thermal expansion coefficient.  For an ideal gas, this is: 
 

 𝛽 =
1
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where Tf is the film temperature: 
 

 𝑇! =
𝑇! + 𝑇!

2  (8) 

 
The film temperature is calculated from the sphere surface and surrounding air 
temperatures recorded over the entire time history. All properties for the Rayleigh 
number and the convection coefficient are evaluated at the film temperature. For 
spheres in fluids with a Prandtl number greater than or equal to 0.7 and a Rayleigh 
number equal to or less than 1011, the average Nusselt number correlation from 
Churchill is recommended: 
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in which the spatially averaged convection heat transfer coefficient is related to the 
Nusselt number, diameter of the sphere, and thermal conductivity of the fluid: 
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This heat transfer coefficient is related to the predicted convection heat transfer rate 
through Newton’s law of cooling: 
 

 𝑞!"#$%!&'"#,! = ℎ𝐴! 𝑇! − 𝑇!  (11) 
 
where As (m2) is the surface area of the object. The predicted radiation heat transfer 
rate is calculated from: 
 

 𝑞!"#$"%$&',! = 𝜀𝜎𝐴! 𝑇!! − 𝑇!!  (12) 
 
where ε is the surface emissivity and σ (W/m2-K4) is the Stefan-Boltzmann constant. 
 
The experimental system consisted of a temperature controlled hot water bath, a gold 
plated copper sphere, a black painted copper sphere, a rubber sphere, and a mounting 
rig for the spheres. Each of the spheres was fitted with a hollow mounting stem and 
drilled cavity. The hollow stem and drilled cavity allowed a thermocouple to be routed 
down the stem into the cavity and seated at the center of the volume to record the 
sphere’s core temperature. Additionally, one thermocouple measured the hot water bath 
temperature and a second thermocouple measured the ambient, surrounding air 
temperature.  
 
 
Procedure 
 
The following steps were performed for data collection: 
 

1. The water bath was heated and temperatures were monitored until steady state 
was reached.  

 
2. Once the hot water bath reached stead state, one of the three spheres was 

selected and the thermocouple was fed down the stem and seated at the center 
of the sphere. The sphere was then positioned on the mounting rig, covered with 



a plastic sheath, and submerged in the hot water bath until the sphere 
thermocouple temperature and the water bath thermocouple reached the steady 
state water bath set point temperature. 

 
3. Once the sphere reached steady state, it was removed from the hot water bath, 

and the plastic sheath was removed. The ambient temperature and sphere 
temperatures were recorded at 0.5-second intervals. The process was repeated 
for the remaining two spheres. 

 
 
Results 
 
Temperatures at the core as a function of time for the gold plated copper sphere, the 
black painted copper sphere, and the rubber sphere are presented respectively in 
Figure 1, Figure 3, and Figure 5. The natural logarithm of the normalized temperature is 
plotted as a function of time for the same three spheres in Figure 2, Figure 4, and 
Figure 6. The effective heat transfer coefficients, Biot numbers, and validity or invalidity 
of the lumped capacitance method for the three spheres are shown in Table 1. 
 
 

 

Figure 1. Core temperature as a function of time for the gold plated copper 
sphere. 



 

 
 

 

 

Figure 2. Natural logarithm of the normalized temperature at the core as a 
function of time for the gold plated copper sphere. 

Figure 3. Core temperature as a function of time for the black painted copper 
sphere. 



 

 
 
 
 
 

 

Figure 4. Natural logarithm of the normalized temperature at the core as a 
function of time for the black painted copper sphere. 

Figure 5. Core temperature as a function of time for the rubber sphere. 



 

 
Table 1. Experimentally obtained overall heat transfer coefficient, Biot number, 

and validity / invalidity of the lumped capacitance method for each sphere. 
 

 Gold Plated Copper 
Sphere 

Black Painted 
Copper Sphere Rubber Sphere 

Effective Heat Transfer 
Coefficient (W/m2-K) 8.7 13.9 11.3A 

Biot Number 1.78 x 10-4 2.85 x 10-4 1.51B 

Lumped Capacitance 
Valid (Yes/No) Yes Yes No 

A. A plot of the natural logarithm of normalized temperature versus time is non-linear and yields 
variable h, with a value of heffective obtained from a line tangent to the curve as shown in Figure 6. 

B. Based on heffective and material properties for the rubber sphere, the Biot number indicates that the 
lumped capacitance method is not valid. 

 
 
 
The empirical natural convection coefficients, Nusselt numbers, and predicted 
convective heat losses for the gold plated copper sphere are presented respectively in 
Figure 7, Figure 8, and Figure 9.  

Figure 6. Natural logarithm of the normalized temperature at the core as a 
function of time for the rubber sphere. 
 



 

 
 
 
 

 
 
 

Figure 7. Empirical convection coefficients as a function of time for the gold 
plated copper sphere. 

Figure 8. Empirical Nusselt numbers as a function of time for the gold plated 
copper sphere. 



 

 
 
 
The empirical natural convection coefficients, Nusselt numbers, and predicted 
convective heat losses for the black painted copper sphere are presented respectively 
in Figure 10, Figure 11, and Figure 12.  
 

Figure 9. Predicted convective heat loss as a function of time for the gold 
plated copper sphere. 

Figure 10. Empirical convection coefficients as a function of time for the black 
painted copper sphere. 



 

 
 
 
 

 

Figure 11. Empirical Nusselt numbers as a function of time for the black 
painted copper sphere. 

Figure 12. Predicted convective heat loss as a function of time for the black 
painted copper sphere. 
 



Predicted total heat loss (radiation and convection) and measured total heat loss rates 
are plotted in Figure 13 for the gold plated copper sphere and in Figure 14 for the black 
painted copper sphere. 

 
 
 

 

Figure 13. Predicted and measured total heat loss rates as a function of time for 
the gold plated copper sphere. 

Figure 14. Predicted and measured total heat loss rates as a function of time 
for the black painted copper sphere. 



Discussion 
 

1. Is the lumped capacitance model appropriate? Why or why not? 
 

If the Biot number is less than 0.1, it can be assumed with reasonable accuracy 
that spatial variations of temperature within the solid are negligible and the 
lumped capacitance method is valid. As presented in Table 1, the lumped mass 
model is valid for both the gold plated copper sphere and the black painted 
copper sphere, as both have Biot numbers much less than 0.1. From Table 1, the 
lumped mass model is not valid for the rubber sphere, as a corresponding Biot 
number of 1.51 indicates the conduction resistance is not negligible compared to 
the convection resistance.  Therefore, significant temperature gradients are 
present within the rubber sphere. 
 

2. The variation of h with time. 
 

For natural convection, the convection coefficient is related to the temperature 
difference between the sphere surface and ambient temperature. As shown in 
Equation 6 and Equation 9, the Nusselt number and corresponding convection 
coefficient are dependent on the Rayleigh number. The Rayleigh number 
represents the ratio of the buoyant to viscous forces multiplied by the ratio of the 
momentum to thermal diffusivity. As indicated by the numerator of the Rayleigh 
number, the buoyant force due to a fluid density gradient is proportional to the 
temperature difference between the sphere surface and the ambient 
temperature. Therefore, as this temperature difference and driving potential 
decay while the sphere approaches an equilibrium state with its surroundings, 
the convection coefficient must also decay as shown in Figure 7 and Figure 10. 
  

3. Core and surface temperatures during cooling. 
 

The core temperature time history for the gold plated copper sphere, black 
painted copper sphere, and rubber sphere are presented in Figure 1, Figure 3, 
and Figure 5, respectively. For the two copper spheres, the center temperature 
profile is an exponential decay over time that asymptotically approaches the 
ambient, surrounding temperature. The temperature of the black painted copper 
sphere decays at a faster rate than the gold plated copper sphere due to the 
increased effect of radiation heat loss. Since the lumped capacitance model is 
valid for the two copper spheres, the surface temperature time history would 
mirror this exponential decay trend with nearly identical temperature magnitudes. 
The temperature magnitudes are not exactly identical due to the fact that copper 
has a finite rather than infinite thermal conductivity. Due to its geometry and the 
material properties of the rubber sphere, its core temperature decays at a faster 
rate than the two copper spheres, but it also asymptotically approaches the 
ambient, surrounding temperature. Since the lumped capacitance model is not 
valid for the rubber sphere, its surface temperature does not directly mirror the 
magnitude or the trend of the core temperature. To determine the surface 



temperature of the rubber sphere, an exact, infinite series solution is needed over 
the entire time history of the experiment. 
 

4. The effect of radiation. 
 

The effect of radiation cannot be neglected and accounts for a significant portion 
of the total heat loss from both of the copper spheres. The time history of heat 
loss rates due to convection, radiation, and the total heat loss for the gold plated 
copper sphere are presented in Figure 15.  The convective, radiation and total 
heat loss rates are plotted in Figure 16 for the black painted copper sphere. For 
the gold plated copper sphere, the heat loss due to radiation accounts for 
approximately 17% of the total heat loss with an emissivity value of 0.20. Heat 
loss due to radiation accounts for approximately 48% of the total heat loss for the 
black painted copper sphere with an emissivity value of 0.90.  
 
 
 
 
 

 
 
 
 
 
 
 

Figure 15. Total heat loss, heat loss due to convection, and heat loss due to 
radiation as a function of time for the gold plated copper sphere. 



 

 
 
 

5. How reasonable are the emissivity estimates? 
 

Emissivity values were estimated at 0.20 for the gold plated copper sphere and 
0.90 for the black painted copper sphere. There is a large variation in emissivity 
estimates for gold and gold plating [2]. Emissivity estimates for gold and various 
platings are dependent on level of polishing, level of oxidation, and application 
method, with emissivity values as low as 0.02 – 0.04 for highly polished gold 
plating. A larger emissivity estimate of 0.20 was utilized to account for the recent 
lack of polishing, defects in the gold plating, and any oil or grease present on the 
surface of the plating. There is less variation in the emissivity estimates for black 
paint with an emissivity of 0.90 [2] being within the typical range. 

 
6. Discuss differences between measured and predicted values of qtotal. 

 
Predicted values of the total heat loss rate were on average within 9% of 
measured values for the gold plated copper sphere, and within 8% for the black 
painted copper sphere, over the full time history of the experiments. To estimate / 
predict values of radiation heat losses, emissivity values were assumed for both 
spheres. As previously discussed, although these values are within the published 
ranges for each case, the remaining uncertainty in the actual emissivity of each 
surface is a contributing factor to the difference between measured and predicted 
heat loss rates. The use of empirical Nusselt number correlations introduces 

Figure 16. Total heat loss, heat loss due to convection, and heat loss due to 
radiation as a function of time for the black painted copper sphere. 



additional uncertainty of around 20% in predicted convection heat loss rates. In 
calculating the Rayleigh number, the volumetric thermal expansion coefficient 
was evaluated at the film temperature at each time step, but the fluid properties 
were only resolved at the average film temperature with the same average 
properties utilized over the entire time history.  This introduces an additional 
uncertainty in predicted convection heat loss rates.  
 

 
Conclusion 
 
The lumped capacitance model for transient conduction was tested for three heated 
spheres; a gold plated copper sphere, a black painted copper sphere, and a rubber 
sphere. The assumption was validated for the gold plated copper and the black painted 
copper spheres, and the lumped capacitance method was used to quantify the total 
heat loss through natural convection and radiation exchange with the surroundings. The 
measured heat loss rates were compared to predicted heat losses and were found to be 
within 9% for the gold plated copper sphere and within 8% for the black painted copper 
sphere. The differences between predicted and measured total heat losses can be 
attributed to the use of an empirical correlation for the convection coefficient, the 
assumed surface emissivity, and the use of fluid properties evaluated at the average 
film temperature.  
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