Appendix B: LaboratoryExercise Handouts

This appendix contains handouts for the various laboratory exercises as follows:

NOTES ON STRAIN GAGES

STRAINS, DEFLECTIONS AND BEAM BENDING
STRESSES IN STRAIGHT AND CURVED BEAMS

MECHANICAL PROPERTIES & PERFORMANCE:
OF MATERIALS: tension, hardness, torsion, impact

STRESS CONCENTRATIONS
FRACTURE

COMPRESSION AND BUCKLING
TIME-DEPENDENT FAILURE: FATIGUE

TIME-DEPENDENT DEFORMATION: CREEP

STRUCTURES

(used for various laboratory exercises
involving strain gages)

(laboratoryhandout for formal, written
report)

(laboratory handout for preformatted
report)

(laboratory handout for formal, written
report)

(laboratory handout for preformatted
report)

(laboratory handout for preformatted
report)

(laboratory handout for preformatted
report)

(laboratory handout for preformatted
report)

(laboratory handout for formal, written
report)

(laboratory handout for formal, written
report)
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ME 354, MECHANICS OF MATERIALS LABORATORY
NOTES on Strain Gages
RESISTANCE FOIL STRAIN GAGES

In 1856 Lord Kelvin reported that the electrical resistance of copper and iron wires
increased when subjected to tensile stresses. This observation ultimately led to the
development of the modern "strain gage" independently at California Institute of
Technology and Massachusetts Institute of Technology in 1939. The underlying concept
of the strain gage is very simple. In essence, an electrically-conductive wire or foil (i.e. the
strain gage) is bonded to the structure of interest and the resistance of the wire or foil is
measured before and after the structure is loaded. Since the strain gage is firmly bonded
to the structure, any strain induced in the structure by the loading is also induced in the
strain gage. This causes a change in the strain gage resistance thus serving as an
indirect measure of the strain induced in the structure.
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Originally, strain gages were made of wire and, in fact, wire strain gages are still in use
under special circumstances. However, today foil strain gages are most widely used. A
typical strain gage is shown in the sketch below. The strain sensing region of the strain
gage is called the "gage grid." The grid is etched from a thin metallic foil. The orientation
of the grid defines the strain sensing axis of the strain gage. Electrical connections are
made by soldering lead wires to the strain gage "solder tabs." The entire strain gage is
bonded to a thin polymeric backing which helps protect and support the delicate metal
foil.

Foil strain gages are available in literally hundreds of shapes and sizes. The strain gage
shown is called a "uniaxial strain gage." Other common strain gage configurations are:

Biaxial strain gages which consist of two individual strain gage elements oriented
precisely 90° apart, allowing strain measurements in two orthogonal directions.

Rectangular, three-element strain gage rosettes which consist of three individual strain
gage elements oriented precisely 45° apart, allowing the resolution of principal strains
and principal directions regardless of the orientation of the rosette or the applied
stress/strain.

Delta, three-element strain gage rosettes which consist of three individual strain gage
elements oriented precisely 60° apart, allowing the resolution of principal strains and
principal directions regardless of the orientation of the rosette or the applied stress/strain.
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FIGURE 1 - lllustration of a typical, uniaxial resistance foil strain gage




STRAIN GAGE RESISTANCE

Strain gage manufacturers produce strain gages with three standard resistances: 120 Q,
350 Q, and 1000 Q. The user specifies the desired resistance when ordering the strain

gage. The 120 Q resistance is the most commonly used, although 350 Q and 1000 Q
strain gages are widely available.

As discussed previously, strains are sensed by bonding a strain gage to a structure of
interest and subsequently measuring the strain gage resistance before and after the
structure is loaded. Consider the magnitude of the resistance change which must
typically be measured. Assume a measurement resolution of 10 x 106 m/m = 10 pm/m is
required (a typical measurement). The change in resistance which corresponds to a
strain of 10 ym/m can be calculated using Eq. 1:

AR, =(F,)(R,)(g,)=(2.00)(120€2)(10x1 0°m/m)=0.0024Q (1)

where AR, is the change in resistance, F, is the gage factor, R, is the initial gage

resistance, and ¢, is the strain in the strain gage. Thus, a resistance change from 120 Q

to 120.0024 Q must measured...a very small change indeed!!! In fact, it is very difficult to
measure such small changes in resistance using "normal" ohmmeters. Instead, special
“strain gage circuits" are used to measure these small resistance changes accurately and
precisely. The most widely used strain gage circuit is the "Wheatstone bridge" and is
described in the following section.

THE WHEATSTONE BRIDGE

As show in Fig. 2, the Wheatstone bridge circuit consists of four "arms." Each arm
contains a resistance (i.e. resistances, R1, Ro, R3, and R4). An excitation voltage Vex
(typically 2 to 10 volts) is applied across junction A-C and a voltmeter is used to measure

the resulting potential across junctions B-D (voltage AE). If all the resistances are equal

(i.e. R1= Ro=R3=R4) then AE =0 and the bridge is said to be balanced.
A
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B

FIGURE 2 - Schematic Diagram of a Wheatstone Bridge



Typically, a 1/4 (quarter) arm Wheatstone bridge circuit is used for individual strain gages
where resistance R1 is the strain gage (i.e., R1 = Rg) and the other three resistances are

precision resistors equal to the nominal resistance of Rg (e.g. R2 =Rz = R4=120 Q)1 . If the
strain gage experiences a strain, the strain gage resistance changes, causing the bridge

to become unbalanced. The resulting voltage, AE is given by:

AR
AE = Ve | 21, 2).
4| R,
Combining Egs. 1 and 2 yields:
£y = i{ﬁ} @)
Fyl Ve

Equation 3 is an important result. It shows that the strain in the strain gage, ¢,,, is related

to the quantities, Fg, AE, and Vex. Generally though, Eq. 3 is not applied directly, Instead,
strain gage amplifiers which have been calibrated according to Eq. 3 are used to provide
a direct readout of strain.

THE GAGE FACTOR

Strain gage manufacturers perform standard calibration measurements for each lot of
strain gages they produce. When a user purchases a strain gage, the manufacturer
provides the results of these measurements in the form of several calibration constants.
One of these constants is the "gage factor." The gage factor allows the user the convert
the change in gage resistance to the corresponding strain level. Specifically, the strain
measured in an individual strain gage is related to the change in the strain gage

resistance such that:
AR
£y = |~ 2 (4)
F | R

g g

The value of the gage factor depends on the metallic alloy used and varies slightly from
lot to lot, typically being in the range of 2.0 to 2.1.

THREE-ELEMENT STRAIN GAGE ROSETTES

Three-element strain gage rosettes are used when it is desired to measure €y, €y, and Yxy,
induced at a point (or equivalently, when the principal strains and principal directions are
unknown). Referring to the x-y coordinate system in Fig. 3, recall that the normal strain
induced in an arbitrary direction from the x-axis defined by angle 0 (strain €g) is related to
the strains in the x-y coordinate system according to:

gy = £,008%0 + ¢, sin” 6 + 7, cOsHsing (5)

1 Actually, the resistances need not be identical. Instead, all that is required is that (R1/R2) = (R3/R4).
However, for the present purposes, it is sufficient to assume (R1=R2= R3=R4)



e
7 >
X
FIGURE 3 - Single Strain Arbitrarily Oriented to the X-Y Coordinate System.

The strain, €9, can be measured by simply mounting a strain gage in the direction defined
by angle 6. In solving Eq. 5, g and 0 are known but there are still three unknowns, &, €y,
and Yxy. Thus, to solve for the unknowns, two more equations are required for a total of

three equations (i.e. three equations, three unknowns). If a total of three strain gages are

mounted in three distinct but arbitrary directions (04, 62, and 03) as shown in Fig. 4, then
Eq. 5 can be applied three times such that:

€g1 = £,008%0, + ¢, sin’ 0, + 7, COSH;siNG, (6a)
€9p = £,008%0, + £, sin” 6, + ,,C050,8in6, (6b)
€93 = £,008°0; + £, sin® O, + ¥,,C0S0,sin6, (6¢)
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FIGURE 4 - Three Strains Arbitrarily Oriented to the X-Y Coordinate System.

Equations 6a-6¢ are called the general rosette equations. If 64 is set equal to 0°, 6> to

45° and 03 to 90° the resulting strain gage configuration is called a rectangular rosette as
shown in Fig. 5a. The resulting equations for a rectangular rosette are:



&, = £,08%(0°) + £,8in*(0°) + 7,,c0s(0°)sin(0°) (7a)

€45- = £,C08%(45°) + £,8in°(45°) + 7,,€0s(45°)sin(45°) (7b)

Eo0- = £,€08%(90°) + £,8in*(90°) + 7,,c0(90°)sin(90°) (7¢)
which can be reduced to:

g, = & (8a)

€, = Eqpe (8b)

Yoy = 2€450 — (Ege + Egp) (8c)

Similarly, if 64 is set equal to 0°, 62 to 60° and 63 to 120°, the resulting strain gage
configuration is called a delta rosette as shown in Fig. 5b. The resulting equations for a
delta rosette are:

&, = £,08%(0°) + £,8in*(0°) + 7,,€0s(0°)sin(0°) (9a)
Eo0- = £,008%(60°) + £,5in?(60°) + 7,,c0s(60°)sin(60°) (9b)

€200 = £,008%(120°) + £,sin*(120°) + 7,,c0s(120°)sin(120°)  (9c)

which can be reduced to:

£, = &y (10a)
1
€, = 5[2(6‘600 + E500) — Eg- | (10Db)
243
Y = T[EGO" - 8120°] (10c)
45° 60°

N
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a) Rectangular Rosette b) Delta Rosette c) Biaxiial Strain Gage

FIGURE 5 - Rectangular and Delta Rosettes as well as a Biaxial Strain Gage.
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STRAINS, DEFLECTIONS AND BEAM BENDING LABORATORY*
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PURPOSE

The purposes of this exercise are a) to familiarize the user with strain gages and
associated instrumentation, b) to measure deflections and strains and to compare these
to predicted values, and c) to verify certain aspects of stress-strain relations and simple
beam theory.

EQUIPMENT

* Simply-supported 6061-T6 aluminum channel beam instrumented with uniaxial and
rosette strain gages.

* Strain gage conditioning equipment and readout unit for an analog strain conditioning
system

* A deflectometer (dial indicator) and a ring load cell.

PROCEDURE
* Read the reference document "NOTES on Strain Gages."

* Carefully examine attached Figs. 1 to 3. Note that a total of 10 Wheatstone bridge
circuits are involved. ldentify all strain gage circuits and strain gage channel numbers
on the Fig.s 1 to 3 as well as on the aluminum beam itself.

* Record the location along the beam length of the turnbuckle loading device.

* Loosen the turnbuckle and prepare the strain gage conditioning equipment according to
the manufacturer's instructions. (Note: Use the Fg appropriate for the strain gages and
circuit).

* |f not already done so, balance each strain gage circuit to zero or a reasonable minimum
value. Record this offset strain (starting value with no force applied) on the data sheet for
each channel.

* Record the starting reading of the dial indicator on the data sheet and note its position
along the beam.

* Apply a modest concentrated force to the beam by tightening the turnbuckle to achieve a
reading of ~400 um/m for the ring load cell (channel 10).

* Record the reading for each channel on the data sheet.

* Record the reading of the dial indicator

* Repeat the force application and data recording for a total of 3 forces. (Note: use
absolute (after correcting for any initial offset) values for the load cell ring of ~400, ~800,

and ~1200 pm/m).

* Loosen the turnbuckle after completing all force cases.



ANALYSIS

The force (reaction force) at the load cell support is calculated as:

Pric (N) = C x €10 (Hm/m). (1)

C is the calibration constant for the load cell in units of N / um/m. Note that the readout for
channel number 10 (€1¢) is in micro strain (u M/m=106 m/m) for a full strain gage bridge
(i.e., four strain gages) adhered to the load cell ring. Note that Pgr.¢ is the reaction force at
the ring load cell and not the applied force from tightening the turnbuckle.

As part of the laboratory report, include the following.

Prepare shear and moment diagrams for the aluminum channel beam test specimen.

Determine the moment of inertia and position of the neutral axis for the aluminum
channel beam.

Determine the principal strains induced at the sites of the rectangular and delta strain

gage rosettes at each force level. Also determine the orientation of the principal strain
coordinate system with respect to the longitudinal axis of the beam, X (see Figs. 1 and
2).

According to beam theory, a bending moment, M, causes a uniaxial stress given by
Eq. 2. Since the stress is uniaxial, use Eq. 3 to predict the uniaxial strain from the
measured force. Compare predicted strains to those measured with the strain gages
at cross section A-A (See Figs. 1 and 3).

o, =Y @
g, = % (3)

Plot the measured strains (i.e., strains from strain gages 7, 8 and 9) across this cross
section as a function of distance from a fixed reference such as the bottom of the
beam. Compare the distance at which the measured strain is zero to the theorectical
calucation of the distance for the neutral axis. Comment on the strain (or stress
distribution) for a beam in bending. What happens at the neutral axis?

According to beam theory, the vertical deflection of the beam at any longitudinal
location can be related to the applied force, the moment of inertia, the beam
dimensions. The relation for this deflection will also be dependent on the type of
reaction supports. Use your knowledge of mechanics of materials (or look up tables)
to determine the deflection relation for this setup. Compare predicted deflection and
measured deflection at each force.

Can the measured or calculated strains at edge (sometimes called outer fiber strain) of
the beam be related to the deflection? In other words, could you measure deflection of
the beam and relate this to the strains (and stresses) in the beam. If so, what is this
relation and show how you would develop it.

Compare the analytical and numerical models demonstrated in class to the
experimental results. What, if any, are the advantages and disadvantages of using
each method for predicting (or measuring) bending response?

* REFERENCES
ME354 NOTES on Strain Gages




LABORATORYREPORT

In the analysis of the test data, use the test results recorded on the data sheet.
1. At a minimum, include the following information in the laboratory report.

a. Raw data (typed in tabular form)
b. Shear and Moment diagrams
c. Moment of inertia

d. Position of neutral axis
e. Principal strains (€ pls €p2, €

3) and angles (0,1 , O2) for the rosette strain gages
f. Measured deflectlons and ?

eflectlon calcualted from the appropriate relation

Force #1 Force #2 Force #3

Applied Force (N)
Rectangular | g,; (um/m)
rosette €p2 (U M/m)

€p3 (U m/m)
Relative to X | 0, ()
Relative to X _622 ©)
Delta €p1 (U m/m)
rosette 8[)2 (u m/m)

€p3 (W m/m)
Relative to X [0, ()
Relative to X |0, ()

Note: Reaction force is Pg ¢ (N)

=C x €10 (M m/m). Applied force is determined from the free body diagram.

g. Uniaxial strains and deflections at each force

Force #1

Strain Gage #7 € (p m/m)
Strain Gage #8 € (u m/m)
Strain Gage #9 € (u m/m)
Deflection (mm)

Force #2

Strain Gage #7 € (u m/m)
Strain Gage #8 € (4 m/m)
Strain Gage #9 € (p m/m)
Deflection ( m/m)

Force #3

Strain Gage #7 € (p m/m)
Strain Gage #8 € (u m/m)

Strain Gage #9 € (y m/m)
Deflection ( mm)

Calculated value Measured value % Difference

Calculated value Measured value % Difference

Calculated value Measured value % Difference

g. Discuss the relation of stress and strain to the neutral axis, the state of stress at
the surfaces (i.e. plane stress or plane strain), the applicability or appropriateness
of uniaxial Hooke's law and beam bending relations (including deflection
relations).

. Include the following information in the appendix of the laboratory report. THIS MAY
NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to this list.)

a. Original data sheets and printouts
b. All supporting calculations. Include sample calculations if using a spread sheet
c. This laboratory handout.



STRAIN, DEFLECTIONS, AND BEAM BENDING LABORATORY
DATA SHEET

ME 354, MECHANICS OF MATERIALS LABORATORY
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EQUIPMENT
IDENTIFICATION

STRAIN CONDITIONER CHANNEL NUMBER*

Test Reaction

No. SG | SG | SG | SG | SG | SG | SG | SG | sG SG Deflection| Force
1 2 3 4 5 6 7 8 9 10
(vm/m) | (pm/m) | (um/m) | (pm/m) | (pm/m) | (pm/m) | (pm/m) | (um/m) | (Um/m) PrF;:ixi;g (mm) (N)

(pm/m)

Initial

Offset

1

2

3

* The load cell is connected to channel 10. Strain gages are connected to the remaining
nine channels as shown in Figs. 2 and 3.
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FIGURE 1 - Overall view of Test Specimen Geometry and Setup
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FIGURE 2 - Top View of Specimen Geometry Showing Orientations
of 3-Element Strain Gage Rosettes. Note: Strain Gage
Channel Numbers are Shown in Parentheses.
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a) Side View of Uniaxial Strain
Gage Locations.

b) Cross Section of Beam

FIGURE 3 - Strain Gage Locations and Cross Sectional Dimensions of the Beam.
Note: Strain Gage Channel Numbers are Shown in Parentheses.



STRESSES IN STRAIGHT AND CURVED BEAMS
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STRESSES IN STRAIGHT AND CURVED BEAMS
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PURPOSE

The purpose of this exercise is to the study the limitations of conventional beam bending
relations applied to curved beams and to use photo elasticity to determine the actual
stresses in a curved beam for comparison to analytical and numerical solutions.

The exercise has two main efforts: 1) Experimental Procedures to determine the fringe
values for the straight beam of "calibrating"” the birefringent test material and 2) Work
Sheet calculations of stresses for comparison of analytically-determined stresses with
experimental (photoelastic) and numerical (FEA) results.

EQUIPMENT

« Straight beam of a birefringent material.

» Curved beam of the same birefringent material as the straight beam.

 Four-point flexure loading fixture with load pan and suitable masses (straight beam)
* Line-loading fixture with load pan and suitable masses (curved beam)

» Circular polariscope with monochromatic light source

EXPERIMENTAL PROCEDURES
Procedure 1. Straight Beam in Pure Bending to Determine ("calibrate™) the Stress-Optical
Coefficient of the Material

i) Install the straight beam (see Fig. 1) in the four-point flexure loading fixture

i) Attach the load pan (Note: The combined pan/fixture mass is ~0.980 kg)

i) Apply two 10-kg masses one at a time to the load pan.

iv) With polarizer and analyzer crossed (dark field), focus the camera, record the image
v) Determine the maximum fringe orders at the top and bottom of the beam including
estimates of fractional fringes orders by counting the fringes.

vi) The stress-optical coefficient can be calculated using the following relation:

= (0" 0,) 1)

where f is the stress-optical coefficient, N is the average fringe order, t is the model
thickness, and o,and o, are the plane-stress principal stresses.

Procedure 2 Curved Beam in Tension and Bending

i) Install the curved beam (see Fig. 2) in the line loading fixture

i) Attach the load pan (Note: The combined pan/fixture mass is ~0.454 kg)

iii) Apply one 5-kg mass to the load pan. (Note: Do not apply more than 5 kg at any time).
iv) With polarizer and analyzer crossed (dark field), focus the camera, record the image.
v) Determine the maximum fringe orders at point A at the inside of the straight part of the
"arms," at point B at the inside of the curve, and at point C at the outside of the curve.

vi) The stress in the beam can be calculated using the relation:

(0, 02) =1 % @

where f is the stress-optical coefficient determined previously, N is the fringe order, t is the
model thickness, and o,and o, are the plane-stress principal stresses.

* REFERENCES

Manual on Experimental Stress Analysis, J.F. Doyle & J.W. Philips, eds, Society for Exper. Mechanics, 1989
Experimental Stress Analysis, J.W. Dally and W.F. Riley, McGraw-Hill, Inc., 1990

Handbook on Experimental Mechanics, A.S. Kobayashi, ed., Prentice Hall, Inc.,1992

Mechanics of Materials, A. Higdon, E.H. Ohlsen, W.B. Stiles, J.A. Weese, W.F. Riley, ed., Wiley&Sons,1978




BACKGROUND FOR RESULTS

When loads are applied to a solid body, such as part of a structure or a machine
component, stresses which vary from point to point, are set up in the body. By combining
an understanding of engineering statics and mechanics of materials for planar elements
(that is, beams) subjected to lateral loading (that is, bending) the well known beam
bending relations can be developed (assuming pure bending, constant cross section,
linear elastic material, and initially straight beam):

e =-L
i (1)
o,=-EL=py—M - MW
D EQyidA |

where ¢, is the normal strain in the x-direction (longitudinal as shown in Fig. 1), y is the
vertical direction and distance from the neutral axis (transverse as shown in Fig. 1), p is
the radius of curvature of the neutral axis due to bending, o, is the normal stress in the x-

direction, E is the elastic modulus, M is the applied moment, and I:(‘)ysz is the moment
of inertia with respect to the z-axis.

The relations developed in Eq. 1 assume among other things that all longitudinal
elements have the same initial length (for example, a "straight beam"). These
assumptions lead to the linear variation of strain across the cross section (that is,
e, =-Yy/p). A more general case of beam bending relations can be developed for the
case of an initially "bent" beam (assuming pure bending, constant cross section, linear
elastic material and a constant initial radius of curvature):

o = B 0Y

X € r ﬂh

G = %Y _ My
©fr Ph o (ytpAY
where ¢, is the normal strain in the x-direction (longitudinal as shown in Fig. 2), R is the
outer radius of the initially curved beam, r is the variable for the radius of the point in
question, ht is the height of the tensile section of the beam, ¢, is the longitudinal strain at
the outer surface of the initially curved beam (that is, r=R)), y is the vertical direction and

distance from the neutral axis (transverse as shown in Fig. 2), o, is the normal stress in

(2)

b

Figure 1 Nomenclature for a straight beam with rectangular cross section in pure bending.
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Note: ht! hc

Figure 2 Nomenclature for a curved beam with rectangular cross section in pure bending.

the x-direction, o, is the longitudinal stress at the outer surface of the initially curved
beam (that is, r=R ), M is the applied moment, p is the radius of curvature of the neutral

axis, Ay is the first moment of the first section (in this case the tensile section) about the
neutral axis such that Ay = QvdA. (Note that y can also be thought of as the distance from

the centroid of the first section to the neutral axis of the cross section [a.k.a. eccentricity
such that y=R- p where R:centroid:(R, +R)/2]). For a rectangular cross section,

__R-R
In(R,/ R)

The mathematical solutions for strains and stress in beams (Eqs 1 and 2) provide
valuable information regarding the stress distributions in beam-like components with
simple geometries and loadings. In more complicated problems, commercially available
two- and three-dimensional computer programs for finite element analysis (FEA) and
boundary element method (BEM) can be used to determine and visualize stress
distributions.

P but in general can be found by solving the relation (‘)r-TpdA: 0.

These theoretical and numerical results are exact solutions to problems which may or
may not model the actual situations (usually due to assumptions about loads, load
applications and boundary conditions). This uncertainty in modeling often requires
experimental verification by spot checking the analytical or numerical results. A frequently
cited example involves a threaded joint which seldom produces uniform contact at the
threads. Contact analyses based on the idealized boundary condition of uniform contact
will grossly underestimate the actual maximum stress concentration at the root of the
overloaded thread. The uncertainty in the contact condition requires a stress analysis of
the actual threaded joint experimentally despite the proliferation of FEA and BEM
programs. Experimental stress analysis is also necessary to study nonlinear structure
problems involving dynamic loading and/or plastic/viscoplastic deformations. Available
FEA programs cannot provide detailed stress analysis of three-dimensional dynamic
structures. Constitutive relations for plastic/viscoplastic materials are still being developed

One such experimental procedure often applied to empirically determine stress states is
photoelasticity.  Photoelasticity is a relatively simple, whole-field method of elastic
stress analysis which is well suited for visually identifying locations of stress
concentrations. In comparison with other methods of experimental stress analysis, such
as a strain gage technique which is a point measurement method, photoelasticity is
inexpensive to operate and provides results with minimum effort.




Photoelasticity consists of examining a model similar to the structure of interest using
polarized light. The model is fabricated from transparent polymers possessing special
optical properties. When the model is viewed under the type (but not necessarily
magnitude) of loading similar to the structure of interest, the model exhibits patterns of
fringes from which the magnitudes and directions of stresses at all points in the model can
be calculated. The principle of similitude can be used to deduce the stresses which exist
in the actual structure.

A disadvantage of photoelasticity is the necessity to test a polymer model which may not
be able to withstand extreme loading conditions such as high temperature and/or high
strain rates. Although photoelasticity is generally applied to elastic analysis, limited
studies on photo plasticity and photo viscoelasticty indicate the potential of extending the
technigue to nonlinear structural analysis. Further details of photoelasticity can be found
in listed references.

In this exercise, show all work and answers on the Worksheet, turning this in as the In-
class Laboratory report.
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WORKSHEET
NAME DATE

EQUIPMENT
IDENTIFICATION

1) Confirmation of Birefringent Test Material: The properties of two birefringent
polymers often used for photoelasticity are shown in Table 1. Note which material is
used for these laboratory exercises.

Table 1 Selected Properties of Two Birefringent Polymers for Photoelastic Experiments

Homolite 911 a.k.a.. CR-39 (allyl diglycol) Epoxy (Araldite, Epon)
Selected Properties (R.T.) Selected Properties (R.T.)
Elastic Modulus, E(GPa) 1.7 Elastic Modulus, E(GPa) 3.3
Proportional Limit 65 (MPa) 21 Proportional Limit 55 (MPa) 55
Poisson's ratio, v 0.40 Poisson's ratio, v 0.37
Stress Optical Coefficient, f 16 Stress Optical Coefficient, f 11
(MPa-mm/fringe)* (MPa-mm/fringe)*
Figure of Merit Q=E / f (1/m) 106,250 Figure of MeritQ=E / f (1/m) 300,000

* in green light with wavelength 546 nm

2) Confirmation of Dimensions: For the two beams and loading fixtures, confirm the
following information. See Figs. 3 and 4 for nomenclature.

Table 2 Dimensions and Loading for Straight and Curved Photoelastic Beams

Straight beam Curved Beam
Calibration Force, Fg Test Force, Ft
=(Mweight*+Mfixture +Mpan) *g (N) =(Mweight*Mpan) * g (N)

Outer Span, Lg (mm) Outer Radius, Rg (mm)

Inner Span, Lj (mm) Inner Radius, Rj (mm)

Height (straight), hg (mm) Height (straight), hg (mm)

Thickness, b (mm) Thickness, b (mm)
Average Radius, R = (Rp + Rj)/2 (mm)
Height (curve), he (mm)

Note: The calibration and test forces must include the masses of the fixture and pan as well as the added
masses (a.k.a. weights) in kg. Gravitational constant is g=9.816 kg ¢ m/s2.

hs=height of
straight section

- h=height
Li=inner span h
<4 > i c 4 4‘ n ‘4
I |:| > Ro= outer radius O
n
IL Ri= inner radius 2
Lo=outer span > . < x
< > @ I=length of le
%
Force, Fo= (Mw+Mf+Mp)g =
1
]

Force, Ft=(Mw+Mp)g

a) Straight Beam Details b) Curved Beam Details
Figure 3 Nomenclature for the Beams
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3) Determination of Stress Optical Coefficient for Material and Setup
A unique aspect of the four-point flexure loading arrangement is that the region of

interest (the section of the beam within the inner loading span) undergoes a pure
bending moment as shown in Fig. 4.

T_f

Mmax

M

Figure 4 Free Body, Shear and Moment Dlagrams for Four-Point Flexure Loading

a) For the straight beam, determine the following if at the outer free edge of the beam
(y=c=h/2) the stress state is uniaxial.

. . bh?
Moment of Inertia for the rectangular cross section beam, | :E = mm#4
. . . I:o(Lo B LI)
Maximum moment due to calibration force, Fg, M, :T = Nemm
Maximum distance to outer edge of the beam from neutral axis, c=h/2 = mm

Maximum uniaxial bending stress at the outer free edge of the beam
M.c
=—2 = MPa.

L=
I

0,=0

b) The photoelastic relation can be used to determine the stress optical coefficient
directly from the beam bending relation.

From the Experimental Procedure, the average fringe value at the upper and lower
outer edges of the beam determined at the calibration force is N =

Calculated stress optical coefficient for the material, f = %(01): MPa-
mm/fringe.

4) Compare the calculated value of the "calibrated" stress value to that shown in Table 1
for the material used in this exercise. How do the values compare? Discuss any
discrepancies and possible reasons (Note: Do not panic if the calculated stress optical
coefficient differs from the value listed in Table 1....differences in optical test setup,
environmental effects in the material, etc. all require the "calibration" of the material)



5) Experimentally-Measured Stresses in the Curved Beam Using
Photoelasticity

At the free edges of selected locations of the curved beam (A, B and C in Figure 3b),
the stress states are uniaxial and the photoelastic relation can be used to calculate the
normal stresses using the relation between the fringe order at the free edge, the stress
optical coefficient for the material, and the test specimen thickness.

Fill in the table with values for the loaded test specimen that are used in the following
calculations.

Fringe Value Counted at A, N,
Fringe Value Counted at B, N,
Fringe Value Counted at C, N,

Thickness, b (mm)
Calcualte Stress Optical Coefficient, f
(MPa-mm/fringe)

a) At"A", the fringe value at the free edge of the curved beam determined at the test
force is N, =

: . . f
The photoelastically-determined total normal stress at "A" is o, = TA = MPa.

b) At"B", the fringe value at the free edge of the curved beam determined at the test
force is Ng=

: : _ fN
The photoelastically-determined total normal stress at "B" is o = TB = MPa.

c) At "C", the fringe value at the free edge of the curved beam determined at the test
force is N, =

: . . fN
The photoelastically-determined total normal stress is o, = TC = MPa.



6) Analytically-Determined Stresses Using Straight Beam Relations
One approach to analytically determine stresses in the curved beam is to assume that
the relations for straight beams apply (that is, Eq. 1).

Fill in the table with values for the loaded test specimen that are used in the following
calculations.

Applied Test Force, Ft (N)

Length of Straight Leg, ¢ (mm)
Height of Straight Leg, hs (mm)
Thickness of Straight Leg, b (mm)
Outer Radius, Rg (mm)

Inner Radius, Rj (mm)

"Height" of Curve, h¢ (mm)
Thickness of Curve, b (mm)

a) At"A", the moment is determined as the applied force, Ft, multiplied by the length of

the leg, 7, such that Ma= Ft*/ = Nemm.
The moment of inertia is calculated from the height of the beam, hg, and the thickness
bh?
of the beam, b, such that I, = 123 = mm4.
The distance from the neutral axis to point "A" is c=hg/2= mm.
: . rai -M,c
The normal stress at "A" for a straight beam assumption is o} SRELUSE MPa.

| —
(Confirm that the normal stress at "A" should be tension (i.e. +o))
b) At"B", the moment is determined as the applied force, Ft, multiplied by the length

of the leg, /, mm plus the average radius, R = (Rg + Rj)/2= mm such that Mp=
Fe*(/+R) = Nemm.
The moment of inertia at B-C is calculated from the height of the beam, h¢, and the
3
thickness of the beam, b, such that I, = bh mm4,

The distance from the assumed neutral axis (centroid) to point "B" is ¢ = h¢/2
= mm (note that c is positive outward from the center of radius).
The assumed normal bending stress at "B" for a straight beam assumption is

- -MgcC
og”a'g“t:—lB = MPa.

(Confirm that the normal stress at "B" should be tension (i.e. + )

c) At"C", the moment is the same as at "B" such that Mc=Mp = Nemm. (see 6b)
N . bh?

The moment of inertia at B-C is I, = 1—2°= mm#. (see 6b)

The distance from the assumed neutral axis to point "C" is c= h¢/2 = mm (note

that c is positive outward from the center of radius).

The assumed normal bending stress at "C" for a straight beam assumption is
straight: 'MCC: MPa

c
I

(Confirm that the normal stress at " C" should be compression (i.e. - o))



7) Analytically-Determined Stresses Using Curved Beam Relations

For the curved part of the beam (in this case points "B" and "C" the analytical
calculation must take into account the initial curvature of the beam (Eq. 2).

Fill in the table with values for the loaded test specimen that are used in the following
calculations.

Applied Moment, Mg=M¢c (N*mm)
Outer Radius, Rg (mm)

Inner Radius, Rj (mm)

Average radius, R = (Rp + Rj)/2 (mm)
"Height" of Curve, h¢ (mm)
Thickness of Curve, b (mm)

a) At the line in the curve connecting "B" and "C", the radius of the neutral axis for a
rectangular cross section can be calculated from the outer radius, Rp, and the inner

R-R _

radius Rj, such that p = = mm.

In(R,/ R)
The eccentricity, y, can be calculated from the average radius of the centroid, R, and
the radius of the neutral axis, p = mm such that y=e= R-p = mm.

The cross sectional area is calculated from the thickness, b, and the curved beam
height, hc, such that A=bshc= mm2. (Note that the distance from the
average radius (centroid) to the point of interest is y=R-r).

b) At"B", r=Rj, therefore yg=Rj-p = mm.
i H curvi -M
The curved beam, normal bending stress at "B" is o §""® = ——2£ — s% - MPa.
AY(Ys +p)
c) At"C", r=Ro, therefore yc=Rgp-p = mm.
1 n n o curved __ -Mcyc _
The curved beam, normal bending stress at "C" is o, =~ = ———— MPa.

AY(ye +p)



8) Additional Axial Normal Stress Component

Because the bending moment at "B-C" is produced by a transverse force (that is , not
a pure bending moment), the total normal stress at "B-C" has two components: a
tensile axial (in the loading direction) stress and a tensile/compressive bending stress.

a) The tensile axial stress is calculated from the applied test force, Ft= N and
the cross sectional area, A=b h¢ = mm2-

axial __

The axial tensile stress is o MPa (Confirm that this axial

—t=
A
normal stress is tension (i.e. + o))

9) Comparisons of Total Normal Stress ( bending and axial) at "B" and "C"

a) At"B", the total calculated stress using the straight beam assumption is

total (straight) _ _axial straight _
Og =0" " +og = MPa.
Percent difference between the actual photoelastically-measured stress and the
total(straigh)
. -0
calculated stress is 100—= 8= %.
O
b) At"B", the total calculated stress using the curved beam relation is
0':;)tal (curved) — 0_axial + 0_;urved — MPa
Percent difference between the actual photoelastically-measured stress and the
total (curved) _ o
calculated stress is 100—2 8 = %.
GB
c) At"B", the numerically-determined (from the finite element analysis (FEA)) normal
stress in the y-direction is of™ = MPa.
Percent difference between the actual photoelastically-measured stress and the
FEA
. . . -0
numerically-determined stress is 100 =——2 = %.
O'B
d) At"C", the total calculated stress using the straight beam assumption is
0g)tal (straight) — 0a><|a| +0(s:tra|ght: MPa.
Percent difference between the actual photoelastically-measured stress and the
total(straigh) _ o
calculated stress is 100—=< <= %.
Oc

e) At"C", the total calculated stress using the curved beam relation is

O_E(:)tal (curved) — O_axial + O_(c;urved — MPa
Percent difference between the actual photoelastically-measured stress and the
total (curved) _ o
C —

calculated stress is 100—= %.

Oc

f) At"C", the numerically-determined (from the finite element analysis (FEA)) normal

stress in the y-direction is og " = MPa.
Percent difference between the actual photoelastically-measured stress and the
FEA
. : . o. -0
numerically-determined stress is 100 —=——=< = %.

Oc



10) Comparisons of Normal Stress ( bending) at "A"

a) At"A", the total calculated stress using the straight beam relation is
0itraight:O,i\’[raight: MPa.

Percent difference between the actual photoelastically-measured stress and the
straight _ o
calculated stress is 100 24—+~ = %.
OA

b) At"A", the numerically-determined (from the finite element analysis (FEA)) is
FEA
O, = MPa.

Percent difference between the actual photoelastically-measured stress and the

0_FEA -0
numerically-determined stress is 100 4——-2
Oa

= %.

11) Discussion of Analytical, Experimental, and Numerical Results

Comment on similarities and differences between the experimental (photoelasticity),
the analytical (straight and curved beam relations) and the numerical (FEA) at points
"A","B",and "C." Does the straight-beam assumption give a conservative (i.e., over
predict stresses) or non conservative (i.e., under predict stresses) result?



Extra effort: Compare the neutral axis positions in the curved part of the beam for the
photoelastic and the FEA results. Are they quantitatively and qualitatively similar?

Extra effort: Using the fringe values from the photoelastic analysis, plot the stresses
across the curved cross section from "B" to "C". Plot the results from the FEA analysis on
the same plot. Finally, calculate the stresses from "B" (r=Rj) to "C" (r=Rp) for the relation

0:E+—__Mcy :E+—__M0(r_ P) :
A AV +p) A AY(r-p]+p)
relation linear or non linear? Would you expect the straight beam assumption to give a

linear or non linear relation? Would the straight beam assumption over or under predict
stresses.

Compare the results. Is the stress vs. distance
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ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
OVERVIEW

01 Januarly 2000 / mgj

PURPOSE

The purpose of this exercise is to obtain a number of experimental results important for
the characterization of the mechanical properties and performance of materials. Four
different types of tests will be performed over the course of two weeks A single laboratory
report will be written focusing on materials testing in general, but keying on each type of
test in specific sub sections.

First Week

Tensile test - the most fundamental test for obtaining information about materials for
design
Hardness test - a superficial test for quality control and to determine degree of heat
treatments

Second Week

Torsion test - application of pure shear to determine performance of material in plastic
range

Impact test - determination of notch + temperature sensitivities of materials under high
strain rates

EQUIPMENT and PROCEDURE
Each test is described in detail in the appropriate laboratory hand out.

ANALYSIS
The analysis of the raw data is described in detail in the appropriate hand out.

LABORATORY REPORT

One laboratory report on Mechanical Properties and Performance of Materials should be
prepared. This report should contain the results of all four tests. The report should
provide descriptions, discussions, presentations of test results, and discussions and
conclusions in sufficient detail so as to allow an engineering manager to make
comparative decisions about the usefulness and applicability of each type of materials
test.

The basic layout of the report follows the required format for the course. The Title and
Objectives sections should key on materials testing in general. However, the each of the
sections on Test Description, Results, and Discussion/Conclusions should be divided into
four subsections each. Each subsection should focus on the particular test.

Total score for the report will be 200 points to reflect the four tests being included in the
report.



ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
TENSILE TESTING*

01 January 2000 / mgj

PURPOSE

The purpose of this exercise is to obtain a number of experimental results important for
the characterization of the mechanical properties and performance of materials. The
tensile test is a fundamental mechanical test for material properties which are used in
engineering design, analysis of structures, and materials development.

EQUIPMENT

* Reduced gage section tensile test specimens of 6061-T6 aluminum

* Reduced gage section tensile test specimens of hot-rolled 1018 or A36 steel

* Reduced gage section tensile test specimens of polymethymethacrylate (PMMA(acrylic))
* Reduced gage section tensile test specimens of polycarbonate (Lexan™ (PC))

* Clip-on extensometer

* Tensile test machine with grips, controller, and data acquisition system

e Calipers

PROCEDURE
per ASTM E8M "Standard Test Methods of Tension Testing of Metallic Materials [Metric]"

For each material, perform the following steps.

* Measure the diameter of the gage section for each test specimen to 0.02 mm.

* Measure the marked gage length of the gage section (in this case 50.8 mm).

* Zero the force output (balance).

* Activate force protect (~500 N) on the test machine to prevent overloading the test
specimen during installation.

* Install the one end of the tensile test specimen in the top grip of the test machine while
the test machine is in displacement control.

* Install the other end of the tensile test specimen in the lower grip of the test machine.

* In displacement control adjust the actuator position of the test machine to achieve nearly
zero force on the test specimen.

* Attach the extensometer to the gage section of the test specimen, centering it in the gage
section. Zero the output from the strain conditioner.

* Deactivate force protect.

* Initiate the data acquisition and control program.

* Enter the correct file name and specimen information as required.

* |nitiate the test sequence via the computer program.

» At maximum force (i.e. after some amount of necking in the gage section), only if
necessary, remove the extensometer to avoid damage to the extensometer at fracture.

 Continue the test until test specimen fracture.

* Measure the smallest diameter of the gage section at the location of failure. Measure the
final length between the marks which denoted the original gage length of the test
specimen.



ANALYSIS

The analysis is conducted from the raw data [P, force (kN) vs. AL, change in length (mm)]
which are available in either computer readable text files or on hard copy text files.

Plot or determine ALL of the following for ALL of the materials.

* Plot engineering stress (o = A£ MPa) versus engineering strain (use %, m/m or ym/m for

4

8zL—)

* Determine the following from the engineering stress vs. engineering strain plots.
a) proportional limit stress, Gp=0o
b) 0.2% offset yield stress, Syp
c) ultimate tensile strength, Syts
)

o
d) modulus of elasticity (by approximate formula ( E = —) and/or numerical
€
p

method (E=m from linear regression of G vs €))

e) modulus of resilience (by approximate formula (U, = jode =~ %O'oea)and/or
0

£, i=n@g¢,
numerical method (U, = jode > (%ITJFG")(SM -¢)))
0 i=l
£

f) modulus of toughness. (by approximate formula U, = _[Gde =~ we‘f and/or
0

£y i=n@¢,
numerical method (U, = [ode ~ Y (G’*‘TJrGij(ei+1 -£,)))
0 i=1

* From the diameter and length measurements, determine the following.

a) true fracture stress, S; = %
f

. A, - A,

b) percent reduction in area, %RA =g = 100T

4

[

_ L-L
c) percent elongation, %el = g =100

[

Plot or determine ALL of the following for ONLY the aluminum alloy.

* Plot the true stress, s, versus true strain, e, curve along with the engineering stress, G,
versus engineering strain, €, on the same graph from 0 to maximum force only.
Determine the true stress at maximum force and the true uniform strain (i.e., true strain at
maximum force, prior to onset of necking). (Note: s = o(1+ ¢) and e =1n(1 + €)) for region
of uniform strain.



* Construct a plot of log true stress versus log true strain and determine, using linear
regression, the 'best' values of n and K (or H) for the approximate constitutive relation:

s=Ke" =He" (1)

where s is the true stress, e is the true plastic strain, K or H is the strength coefficient, n is
the strain hardening exponent per ASTM E646 "Standard Test Method for Tensile Strain-
Hardening Exponents (n-Values) of Metallic Sheet Materials."

* Add the plot of this constitutive approximation (i.e. calculate the stress using K, n, and
measured strain) to the plots of measured true stress versus measured true strain and
measured engineering stress versus measured engineering strain. Determine the
percent error between the true stress calculated from the approximate constitutive
relation (Eq. 1) and the measured true stress at measured true strain values of 0.1%, 1%,
and 5%.

* REFERENCES

Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
E8 Standard Test Methods of Tension Testing of Metallic Materials
E8M Standard Test Methods of Tension Testing of Metallic Materials [Metric]

E646 Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of
Metallic Sheet Materials




LABORATORY REPORT

1. Include the following information in the laboratory report.

proportional limit stress (MPa).........
0.2 % offset yield strength (MPa).....
ultimate tensile strength (MPa)........
modulus of elasticity (GPa)......[AF]

modulus of elasticity (GPa)......[NM]
% difference.......ccccceeceevceniencneieeenn
modulus of resilience (J/m3)....[AF]

modulus of resilience (J/m3)....[NM]
% difference........cccoecceeeeeeeieeeieeeeen
modulus of toughness (J/m3)...[AF]

modulus of toughness (J/m3)...[NM]
% difference........cccceceeienniniiiieeen,
true fracture strength (MPa)..............
% reduction in area..........cccceeeeeeeenn.
% elongation..........cccoceeeeveeeieerieeennen.
true stress @ maximum force(MPa)
true uniform strain...........ccccceeeiieee
strain hardening exponent, n...........
strength coefficient, K (MPa)...........

true stress at 0.1% true strain(MPa)
O =Kg" at 0.1% true strain (MPa)....
% difference........cccceceeviininiieieee,
true stress at 1% true strain (MPa)..
O =KE" at 1% true strain (MPa).......
% difference.......ccccceeceeicnneninceeen,
true stress at 5% true strain (MPa)..
O =KE" at 5% true strain (MPa).......
% difference........cccoeeceeeccveieeeceeeenn

1018 (HR) or
A36 steel

6061-T6
aluminum

PMMA
(acrylic)

PC
(polycarbonate)

Note: AF = approximate formula. NM = numerical method (least squares or numerical integration).

2. Include the following information in the laboratory report.

a. Engineering stress vs. engineering strain for all materials. .
b. Englneerln%stress vS. engineering strain and true stress vs. true strain on the

same grap

for the alumimum alloy.

c. Log-log plot of true stress vs. true strain along with the curve fit on the same

Igraph for the aluminum alloy o

e. Eng. stress vs. en?. strain and true stress vs. true strain with calculated stress vs.
0

strain from Eq. 1

r the aluminum alloy on the same

graph

f. Compare results of these tests for each material to '‘book’ values from a source

such as the ASM Metals Handbook. Comment on any differences.

g. Compare fracture surface appearances and mechanical properties for each
material (metals & polymers). Comment on the brittle/ductile behaviour of each.

3. Include the followin

a. Original data sheets and/or printouts

b. All supporting calculations. Include sample calculations if usiné;

program. DO NOT INCLUDE ALL TABULATED RAW OR CAL

s list.)

information in the appendix of the IaboratorK report. THIS MAY
NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to thi

a spread sheet
ULATED DATA.




ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
TENSILE TESTING*

DATA SHEET
01 January 2000 / mgj

NAME_ DATE__
LABORATORY PARTNER
NAMES
EQUIPMENT
IDENTIFICATION_ . .

Aluminium metal Steel metal

Initial (units) Initial (units)

Do ( ) Do ( )

Lo ( ) Lo ( )

Final (units) Final (units)

Dx ( ) Dx ( )

Lt ( ) Lf ( )

Observed Maximum Observed Maximum

Force ( ) Force ( )

Observed Fracture Observed Fracture

Force ( ) Force ( )

PMMA (acrylic) polymer Polycarbonate polymer

Initial (units) Initial (units)

Do ( ) Do ( )

Lo ( ) Lo ( )

Final (units) Final (units)

Dx ( ) Dx ( )

Lf ( ) Lf ( )

Observed Maximum Observed Maximum

Force ( ) Force ( )

Observed Fracture Observed Fracture

Force ( ) Force ( )




ME 354, MECHANICS OF MATERIALS LABORATORY

01 Januarly 2000 / mgj

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
HARDNESS TESTING*
PURPOSE
The purpose of this exercise is to obtain a number of experimental results important for
the characterization of the mechanical properties and performance of materials. The
hardness test is a mechanical test for material properties which are used in engineering
design, analysis of structures, and materials development.

EQUIPMENT
* Fractured "halves" of reduced gage section tensile specimen of 6061-T6 aluminum.
* Fractured "halves" of reduced gage section tensile specimen of 1018 (hot rolled).
* Flat coupons of 6061 T6 aluminum.
* Flat coupons of 1018 (hot rolled).
* Rockwell hardness tester with 1/16 inch ball indenter tip and 100 kg of mass weights.
* Tensile test machines with compression platen, 10-mm diameter Brinell indenter ball
fixture and controller
* Reticular eye piece microscope
PROCEDURE
Brinell Hardness Test
per ASTM E10 "Standard Test Method for Brinell Hardness of Metallic Materials"

* Place the flat coupon of one of the materials on the compression platen of the test
machine, ensuring that the specimen is centered and resting flat on the platen.

* In displacement control, with force protect ON and set to 5 kg, adjust the actuator position
of the test machine such that the Brinell indenter ball just contacts the surface of the flat
coupon with a NEGATIVE force.

* Turn off force protect, switch to force control, use waveform to ramp the force to -500 kg.

* Maintain the maximum compressive force for not more than 15 s.

* Ramp the force back to ~-10 kg.

» Switch to displacement control and adjust the actuator position of the test machine such
that the Brinell indenter ball is no longer in contact with the surface of the flat coupon.

* Remove the flat coupon from the compression platen.

* Use the Micro Mike to measure the diameter of the indentation of the surface

* Repeat these steps for the other material.

Rockwell Hardness Test

per ASTM E18 "Standard Test Method for Rockwell Hardness and Rockwell Superficial
Hardness of Metallic Materials"

* Place the cylindrical gripped end of one half of a fractured tensile specimen of one of the
materials in the V-notched platen of the Rockwell hardness tester.

* With the load handle pulled forward, raise the specimen and load fixture until the
indenter contacts the specimen

* Continue raising the specimen until the small dial hand is pointing at the small black dot
(this applies a 10 kg preload).

* Rotate the Rockwell dial until the large dial hand is pointing at "0".

* Depress the loading bar, allowing the machine to apply the maximum load of 100 kg.

* Wait until the large dial hand stops moving, holding the load for not more than 25 s.

e Pull the load handle forward again

* Read the number on the B-scale indicated by the large dial hand

* Repeat this hardness test for the flat sections of the gripped end of one half of the tensile

specimen and the flat coupon of the same material using the flat platen

* Repeat these steps for the other material.



ANALYSIS
The analysis is conducted from recorded data.

The Brinell hardness number is obtained by dividing the applied force (in kilograms) by
the curved surface of the indentation which is a segment of sphere such that:

2P
wD|D - (D% - %) |
where P is the applied load in kg, D is the diameter of the ball (nominally 10 mm) and is

the diameter of the indention. See Figure 1 for a schematic illustration of the Brinell
hardness test.

BHN = HB = (1)

The Rockwell hardness number (HRX or RX) is determined from the differences of the
indentation depths at the preload and the maximum load. The Rockwell number is read
directly from the dial of the indenter, but the number must be reported along with the
Rockwell scale which automatically identifies the type of indenter type and the maximum
load (otherwise the number is meaningless). See Figure 2 for a schematic of the
Rockwell hardness test.

Use ASTM E 140-88 "Standard Hardness Conversion Tables for Metals (Relationship
Between Brinell Hardness, Vickers Hardness, Rockwell Hardness, Rockwell Superficial
Hardness, and Knoop Hardness)" to convert the BHN to RB and vice versa. Are the
measured and converted values similar? Why or why not? Compare the size of "artifacts"
left by both indenters. What conclusions might you draw about the possible effects of
indents on the mechanical properties of indented components?

Compare the hardness values obtained from flat coupons / flat sections of the component
and those obtained on the curved surfaces of the component (i.e., the tensile specimens).
Are the values similar? If not, which value shows a "softer" material? Would you expect
this? What type of recommendation might you have about indenting components and
curved surfaces, in general.

The deformations caused by a hardness indenter are of similar magnitude to those
occurring at the ultimate tensile strength of a tension test. However, an important
difference is that the material cannot freely flow outward, so that a complex triaxial stress
state exists under the indenter. Nevertheless, empirical correlations can be established
between hardness and tensile properties, primarily the engineering ultimate tensile
strength, Syts.

Use appropriate empirical relations (e.g., see Mechanical Behaviour of Materials by
Dowling or ASM Metals Reference Book with various editors) estimate ultimate tensile
strengths for the two materials from the hardness numbers. Compare these estimated
strengths to those measured from tensile tests (those of this class or from the literature).

* REFERENCES
Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01

E10 Standard Test Method for Brinell Hardness of Metallic Materials

E18 Standard Test Method for Rockwell Hardness and Rockwell Superficial
Hardness of Metallic Materials

E 140 Standard Hardness Conversion Tables for Metals (Relationship Between
Brinell Hardness, Vickers Hardness, Rockwell Hardness, Rockwell Superficial
Hardness, and Knoop Hardness)




v

Steel or
tungsten
carbide
ball

P=3000 kg
or 500 kg

D=10 mm
_ i

IR

Side view

[

Top view BHN = HB = P _ 2P

nDt ﬁD-D—\/(DZ _dz)-

Figure 1 - Schematic Diagram of Brinell Hardness Test

Rockwell Scale  Indentor Pmajor
| (X =) (kg)
Brale (diamond P minor =10 kg A Brale (diamond) 60
cone) B 1/16" ball 100
or ball indentor .
# C Brale (diamond) 150
V_rh1 D Brale (diamond) 100
Brale (diamond p 60, E 1/8" ball 100
cone) major = "
F 1/8" ball 60
or ball indentor 100 or 150 kg
M 1/4" ball 100
\V/ 5 R 1/2" ball 60
HRX =R, = Y L)
0.002

M =100 for A, C, and D scales
M =130 for B, E, M, R, etc. scales

Figure 2 - Schematic Diagram of Rockwell Hardness Test




LABORATORY REPORT

1. Include the following information in the laboratory report.

BHN (kg/mm?2)......[measured]

BHN (kg/mmz2). [literature]

% difference.......cccccceeeeveeeeieeecee e,
Suts (MPa) [estimated from BHN]...

Suts (MPa) [measured or literature].
% difference.......cccccceeeeveeeeieeecee e,
RB ....[measured, flat coupon]..........
RB ....[literature]

% difference.......cccccceeeeveeeeieeecee e,
Suts (MPa) [estimated from RB].......
Suts (MPa) [measured or literature]
% difference.......cccccceeeeveeeeieeecee e,

RB ....[measured, tensile specimen
cylindrical grip]
RB ....[literature].......cccoooeeiiiiniienee
% difference.........ccooeeeeciieeeecieeeee
Suts (MPa) [estimated from RB].......
Suts (MPa) [measured or literature]
% difference.........ccooeeeeciieeeecieeeee
RB ....[measured, tensile specimen
flat grip]
RB ....[literature].......cccocoeeiineicneennee
% difference.......cccccooeeeeiiieecccieeeee
Suts (MPa) [estimated from RB].......
Suts (MPa) [measured or literature].
% difference.......cccccooeeeeiiieecccieeeee

6061-T6
aluminum

1018 (HR) or
A36 steel

2. Include the following information in the laboratory report.
a. Compare results of the hardness tests for each metal to 'book' values from a
source such as the ASM Metals Handbook. Comment on any differences.
b. Compare the size of the artifact (i.e., indentation) from each type of test. Discuss
the possible effect of such "artifacts" on material response if hardness tests are

used for quality control of components.

c. Comment on the empirical relations which allow estimates of ultimate tensile
strength of each material. Discuss the merits of using hardness versus tensile
tests for determining/estimating mechanical properties of materials for

engineering design.

3. Include the following information in the appendix of the laborator
NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to t

a. Original data sheets and/or printouts

b

report. THIS MAY
s list.)

b. All supporting calculations. Include sample calculations if usiné; a spread sheet

program. DO NOT INCLUDE ALL TABULATED RAW OR CAL

ULATED DATA.



ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
HARDNESS TESTING*

DATA SHEET
01 January 2000 / mgj

NAME DATE___
LABORATORY PARTNER
NAMES
EQUIPMENT
IDENTIFICATION

Aluminium Steel

Flat Coupon Flat Coupon

Brinell Brinell

Maximum Load (kg), P

Maximum Load (kg), P

Brinell Ball Dia (mm), D

Brinell Ball Dia (mm), D

Indentation Dia (mm), d

Indentation Dia (mm), d

Rockwell

Rockwell

Load (kg)

Load (kg)

Indenter Size/Type

Indenter Size/Type

Rockwell Scale

Rockwell Scale

Rockwell Number

Rockwell Number

Tensile Specimen

Tensile Specimen

Cylindrical Grip

Cylindrical Grip

Rockwell

Rockwell

Load (kg)

Load (kg)

Indenter Size/Type

Indenter Size/Type

Rockwell Scale

Rockwell Scale

Rockwell Number

Rockwell Number

Flat Grip Flat Grip
Rockwell Rockwell
Load (kg) Load (kg)

Indenter Size/Type

Indenter Size/Type

Rockwell Scale

Rockwell Scale

Rockwell Number

Rockwell Number




ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
TORSION TESTING*

MGJ/08 Feb 1999
PURPOSE
The purpose of this exercise is to obtain a number of experimental results important for
the characterization of materials. In particular, the results from the torsion test will be
compared to the results of the engineering tensile test for a particular alloy using the
effective stress-effective strain concept.

EQUIPMENT
* Constant-diameter gage section torsion specimen of 6061-T6 aluminum
* Torsion test machine with grips, troptometer, and force sensor.

PROCEDURE

* Measure the diameter (D=2R) of the gage section for each test specimen to 0.02 mm.

* Install the bottom end of the torsion test specimen in the lower grip of the test machine.
Rotate the lever arm as far to the right as possible. (Note: unscrew the horizontal
threaded drive rod as much as possible).

* Rotate the top grip as far as possible in the direction necessary to remove the 'slack’
from the reaction cables and install the top end of the torsion test specimen in the top
grip of the test machine.

e Zero the output of the force sensor.

* Use the threaded drive rod to apply torque to the base of the test specimen and record
the applied torque, T, versus angular rotation, 6, at 2° increments until 30° of rotation.

* Remove the horizontal threaded drive rod and find the torque after 90° and 360° of
rotation, being careful not to allow elastic unloading.

* After 360° of rotation, unload and remove the specimen. Measure the gage length L
(grip to grip length) of the installed specimen to 0.1 mm.

RESULTS
* Plot measured torque, T, versus angular displacement per unit length, 6’ = % Using

linear regression, fit the curve to 30° of relative rotation. (It is assumed that T is

proportional to 8’ from 6=0°to 6 = 30°). (Note that & must be in radians, i.e. T radians
=180°).

e Calculate the shear modulus, G, from the linear portion of the T- 8’ using linear
regression to find dT/d 6’ from 6=0°to 6 = 30°. Compare this value of G to the shear

modulus determined from the tensile test results (i.e. G =

E ) using v=0.345 for
2(1+v)
aluminum.

» Using the strength coefficient coefficient, K (or H), and the strain hardening exponent, n,
determined from the tensile test for the approximate constitutive relation o =Ke" =He",
integrate the predicted shear stress, 7, versus radial distance, r, to obtain the predicted
torque, T, after 90° and after 360° of rotation. Compare these values of T to those
measured experimentally. (Note that 8 must be in radians for the calculations, i.e. T
radians = 180°). Use the attached "cook book" method to facilitate your work.

* On the same graph, plot shear stress, 7, and engineering shear strain, Y as functions of
radial distance, r, at 30° of rotation. Construct similar plots 7 and ¥ vesus r for 90° and

360° of rotation. (Note that & must be in radians for the calculations, i.e. T radians =
180°).



LABORATORY REPORT

1. As a minimum include the following information in the laboratory report.
Raw data (typed in tabular form)
Two values for the shear modulus, G (tension and torsion)

Two values of the torsional yield stress, T, (tension and torsion)

"n" and "K" from the tension test (use these in the calculations)

Total torque as required in the table:
Angle of Rotation ................... 90° 360°

Predicted Torque ( )
Measured Torque ( ).
% Difference .......cccccovevceeenne

o0 Tw

f. Plot of Torque vs. Angular displacement per unit length (T vs. 6')
d. One graph each of 7 and ¥ as functions of radial distance, r, for 6 = 30°, 90°,

and 360° (2 plots on each graph for a total of 3 graphs)

‘ ’Y:rO/L‘

e e
@ <
g g
"3 [7)
= @
@ o)
() <
(% wn
= r =
r=0 y r=R

Radial distance, r

h. Discuss comparisons of basic mechanical properties as determined from
tension and torsion tests. Compare results of these tests for each alloys to 'book'
values from such sources as the ASM Metals Handbook. Comment on any
differences. Compare the shapes of the stress vs. radial distance curves and the
magnitudes of the plastic and elastic torques.

2. Include the following information in the appendix of the laboratory report. THIS MAY
NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to this list.)

a. Original data sheets and/or printouts
b. All supporting calculations. Include sample calculations if using a spread

sheet program.
c. All "cookbook" calculations from the Torsion Test Solution Path.

* REFERENCES
Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01

E143 Standard Test Methods for Shear Modulus at Room Temperature.
ME354 NOTES on Torsion Testing




ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
TORSION TESTING*

MGJ/08 Feb 1999

DATA SHEET

EQUIPMENT
IDENTIFICATION

Note: Be sure to record units for each quantity.

Specimen measurments
D ()
L( ) ‘f 127.61 mm"““ 84.95 mm»‘
J () O
Fo

Angle(degrees) Force () Force

v Couple=T=(Fo) x Dg

Q 52.32 mm Grip Diameter, Dg

O|BAIN|O




ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:

TORSION TESTING*

Torsion Test Solution Path

TORSION TEST

The initial set of calculations has input parameters obtained only from the torsion test.
The results of these calculations will later be compared to results calculated with
information obtained from the tension test.

1.

Record the torsion specimen diameter (D=2R) and the length of the gripped
section of the torsion specimen, L. Calculate the polar moment of inertia for a solid

rod, d = ﬂD4.

32
D= mm
L= mm
J= mm#4

From the measured torque, T, versus angular rotation, 6, data points, plot T
versus relative angular deflection, 6" = 2—? between two cross sections (i.e. %).

Obtain the "best fit" of the linear portion of the T versus 6’ data using linear
regression. (It is assumed that T is proportional to 8’ from 6=0°to 6 = 30°).
Determine the slope, dT/d 6” from 6=0°to 6 = 30°. (Note that 8 must be in radians
for the calculations, i.e. T radians = 180°).

dT/d e’ = (N-mm) / (rad/mm)

The shear modulus, G, from the torsion test can now be calculated from the
relation:

dT o
G= Glo-s0y) 1 _ (N/mm2=MPa)

Finally, record the measured torques and calculate 6’ = % for 6 = 90° and 360°.

(Note that 8 must be in radians for the calculations, i.e. T radians = 180°).

Toge = N-mm
6’90° = /mm
Tae0° = N-mm

0’3600 = /mm



TENSION TEST

This set of calculations has input parameters obtained only from the tension test. The
results of these calculations will later be compared to results calculated with information
obtained from the torsion test.

1. Record the uniaxial elastic modulus, E, uniaxial yield stress, o,, the strain
hardening coefficient, K, and the strain hardening exponent, n, determined from the
tension test.

E= N/mm?2
o, = N/mm?2
K= N/mm?2
n=
2. Calculate the value of the shear modulus from the results of the tension test:

G= E using v=0.345 for aluminum.
2(1+v)

3. Using the effective stress concept, calculate the shear strength indicated by the
tension test data such that:

;
2 2

- 1
o= ﬁ[((yx - Gy)2 +(Gy - GZ) +(o, - GX)2 +6(”L’Xy2 +7,,°+ szz)]
and setting ¢ = o, and solving for 7, = 7, (yield stress in shear) with all other
stress equal to zero.

T, = N/mm?2



EVALUATION OF TORSION TEST RESULTS FOR YIELDING

This set of calculations has input parameters obtained only from the torsion and tension
tests. The results of these calculations are used to evaluate the shear stresses and shear
strains across the radius of the torsion specimen as it yields.

1. Find the radius of the torsion specimen at yielding, ry for 6 = 90° (Note that 6 must
be in radians for the calculations, i.e. T radians = 180°).

r =2 R here Ymax = (050- )R

" G Ve
90° __
ry = mm
2. Within the elastic domain, the shear stress is a linear function of radial distance, r,
such that
T
o(r)y=-"*tr
r,V
3. The shear stress as a function of radial distance, r, can now be multiplied by

differential area element, 2z r dr and a moment arm, r, and integrated to find the
torque over the elastic domain. (i.e. Y M =0).

r

T, = f{ir](r)wr rdr

Iy

4. In the plastic domain, only the shear strain remains a linear function of radial
distance, r. Therefore, it is advantageous to change the integration variable to .

In order to accomplish this variable change, the shear stress, 7, moment arm, r,
and differential area of integration, 2z r dr, must be expressed as function of 7.

In the tension test the uniaxial stress, 0, was expressed as a function of uniaxial

strain, € , through the strenght coefficient, K (or H), strain hardening exponent, n,
such that:

o0 =Ke" =He"

Since the uniaxial stress is identical to the effective stress, and the uniaxial strain
is identical to the effective strain, the equation relating effective stress to effective
strain would be exactly the same.

o =Ke" =Hg"

When the effective stress and effective strain are evaluated for the case of pure
torsion, the shear stress can be found as a function of the shear strain.



Since y=0’r itis also true that r = (91] and, since 0’ is a constant

Substituting these relations into the basic torsion integral yields:

r

T, = ILQ r](r)Zﬂ r dr for the elastic torque
r

o y

Ymax n
1 Y Y y dy :
T = J. —K| &= (—)2 - for the plastic torque.
p (\/5 (@jj o )" oy P q
Y

y

T
Note that the limits of integration are y, = Ey and 7, = 0’R. (Note that 6 must

be in radians for the calculations, i.e. T radians = 180°).
The total torque, T, is found as the sum of the elastic and plastic torques such that:

T =T,+T, This torque value is then compared to the value measured in the
torsion test.

For 6 =90°, calculated torques are:

Te= N-mm
Tp = N-mm
T= N-mm

For 6 = 90°, measured torque is:

Toge = N-mm



Steps 1 to 4 are repeated for 6 = 360° (Note that 8 must be in radians for the
calculations, i.e. T radians = 180°).

For 6 = 360°, calculated torques are:

Te= N-mm
Tp = N-mm
T= N-mm

For 6 = 360°, measured torque is:
Tageo= N-mm

Finally, plot 7 and ¥ as functions of r after 6 = 30° for relative rotations of 6 = 90°

and 6 = 360°. (Note that & must be in radians for the calculations, i.e. T radians =
180°).



ME 354, MECHANICS OF MATERIALS LABORATORY

MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
TORSION TESTING*

NOTES on Torsion Testing
STRESSES IN THE ELASTIC RANGE

In the elastic range, stresses in the shaft will remain less than the proportional limit and
less than the elastic limit as well. For this case Hooke’s law will apply and there will be no
permanent deformation. Hooke’s Law for shear stress is as follows:
=Gy
G = Modulus of rigidity (shear modulus)
T= Shear Stress
Y = Shear Strain

Tmax
TA y

N,

R r

Figure 1. Distribution of Stress in the Elastic Range.

The elementary forces exerted on any cross section of the shaft must be equal to the
magnitude T of the torque exerted on the shaft:

R
[r(7dA)=T where dA=2zxrdr



[r2dA=J=1 7R
T:Tmax
TR
Tmax -,
J
Tr
T=—
J

The last two equations are known as the elastic torsion formulas.

ANGLE OF TWIST IN THE ELASTIC RANGE

For this section the entire shaft will again be assumed to be in the elastic range.
Therefore Hooke’s Law applies.

Figure 2. Demonstration of the Angle of Stress and the Shearing Strain.
_Ro

ymax L




The angle of twist, @, is expressed in radians. The angle of twist is proportional to the
torque T applied to the shaft. The above equation provides a convenient method for
determining the modulus of rigidity, G. Torques of increasing magnitude T are applied to
the specimen, and the corresponding values of the angle of twist in a length L of the
specimen are recorded. As long as the yield stress of the material is not exceeded, the
points obtained by plotting @ against T will fall on a straight line. The slope of the line
represents the quantity JG/L from which the modulus of rigidity, G, may be computed.

T, N-mm

Slope=JG/L

@,rad

PLASTIC DEFORMATIONS IN CIRCULAR SHAFTS

If the yield strength is exceeded in some portion of the shaft the relations discussed in the
earlier sections cease to be valid. The purpose of this section is to develop a more
general method for determining the distribution of stresses in the solid circular shaft, and
for computing the torque required to produce a given force.

TA

max

Figure 3. Stress Distribution in a Shaft for Plastic Deformation.

As the torque increases, Tmax eventually reaches the shearing yield stress, Ty of the
material. Solving for the corresponding value of T, we obtain the value of Ty at the onset
of yield:
J

TY = E Ty
Ty is referred to as the maximum elastic torque, since it is the greatest torque for which
deformation remains fully elastic. Recalling that, for a solid circular shaft, J/R=1/2 (rR3)
we have:



1
TY = E ﬂ'RSTY

The T\, can be found using the data from the tension test and the idea of effective stress.
Using the Distoritonal Energy (von Mises) criterion and the yield stress from the tensile
test laboratory T, can be determined.

1

o= %[(O_’( - Gy)z +(Gy - 62)2 +(Gz - O-X)z +6(Txy2 + Tyzz + szz)]z

T
Yy = Ey,measured G from the elastic part of the torsion test.

_Vy do _”_/2 0 2n 0 :
ry=g0, where ar =" (at 90°) and 1 (at 360°) for this lab.

ar

The total torque is a function of the torque in the elastic range and the torque in the plastic
range.

Ttota/ = Telastic + T

plastic

f'y R
T ot = jf’[(l’)Q zrdr + J re(r)2zrdr
0

Ty

for the elastic range

,
T . T
t(r)y=-"2r Vo T, = J—y2nr3dr
r r
y 0y



for the plastic range

o =Ke" = /31, s=%, \ET:K(%)”

= %(Tj = O.577K(%)n

plastlc = J. ( ) 27'L'r dar

_r dy
“do' U= do
ar ar
Tplastic = J.(ConSt)(Y)m—z d]/
Y
max K ’)/ 1 2
Towsic = | 72| 77 | 27 yidy
plastic \/5 ( / 3) de o \3
e G

OR
d0 "

R
K dg 5 ae o
—| —= | 27@redr, — = —
p/as"c '[ V3| <3 ar L

Ty



ME 354, MECHANICS OF MATERIALS LABORATORY
MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:
CHARPY V-NOTCH IMPACT*

01 January 2000 / mgj
PURPOSE
The purpose of this exercise is to obtain a number of experimental results important for
the characterization of the mechanical behavior of materials. The Charpy V-notch impact
is a mechanical test for determining qualitative results for material properties and
performance which are useful in engineering design, analysis of structures, and materials
development.
EQUIPMENT
e Charpy V-notch test pecimens of 6061-T6 aluminum and 1018 (hot rolled) or A36 steel
* Charpy testing machine with 800-mm long pendulum arm and 22.6-kg impact head
* Type K thermocouple and digital readout unit
* Beakers of room-temperature water, warm water and boiling water
* Beakers of plain iced water
* Cryo-beakers of salted iced water and super cold liquids
PROCEDURE
CAUTION: When using the Charpy testing machine, stand well clear of the
swinging area of the pendulum both when the arm is cocked and for some
time after the arm is released for a test while it is still swinging. Serious
injury will result from a swinging pendulum arm.
For each material repeat the following steps
* Designate a person as the "operator" of the Charpy test machine: all other persons must
stand clear during testing
* Designate a person as the "monitor and recorder" of temperatures and impact energies
* Designate a person as the "test specimen loader" who will remove test specimens from
the liquid bath, quickly placing them on the test fixture of the Charpy testing machine
* Designate a person as the "test specimen retriever" who will retrieve the broken halves
of the test specimens, will bind the halves together and will mark the test temperature on
each pair of specimen halves for later examination and inspection.
Use the following procedure to conduct tests in the order shown after exposure to the pre-
conditions to give the approximate test temperatures indicated:
Room temperature water (20 to 25°C)
Warm water (50-60 °C)
Boiling water (95-100°C)
Ice water (0 to 4°C)
Salted ice water (-15 to -18°C)
Acetone with some dry ice (-50 to -57°C)
Acetone with much dry ice (-80 to -85°C)
* Place the thermocouple probe in the appropriate liquid being sure to allow both the test
specimens and the thermocouple to equilibrate for at least five minutes prior to testing.
* Record the indicated temperature
* "Cock" the pendulum by activating the "raise" mechanism and stand clear while the
pendulum is held in the "cocked" position.
* Using the tongs, quickly remove the test specimen from the bath and place it on the test
fixture with the notch opening facing away from the direction of the cocked pendulum
 Stand clear
* Release the pendulum
* Secure the pendulum in its rest position (i.e., hanging vertically) and retrieve the
fractured specimen halves.
* Record the impact energy (read directly from the dial on the Charpy testing machine)
* Repeat these steps for the each temperature and each material.




BACKGROUND AND ANALYSIS

Static or quasi-static properties and performance of materials are very much a function of
the processing of the material (heat treatments, cold working, etc.) in addition to design
and service factors such as stress raisers and cracks.

The behaviour of materials is also dependent on the rate at which the force is applied.
For example, a polycarbonate tensile specimen which might show a relatively low yield
point but up to 200% elongation at a low loading rate may show a much greater yield
point but at only 5% elongation at an order of magnitude faster loading rate. Low carbon
steels, such as 1018, may show considerable increases in yield strength and work
hardening at high strain rates.

In quasi-static tests, the amount of energy required to deform a material is determined
from the area under the tensile stress-strain curve and is know as the modulus of
toughness. Under dynamic loading, stress-strain response is typically not recorded.
Instead, the transfer of energy from a device such as a drop weight or a swinging
specimen to the deforming or breaking specimen is equated to the "impact energy."

The Charpy impact test uses a standard Charpy impact machine to evaluate this impact
energy. The machine consists of a rigid specimen holder and a swinging pendulum
hammer for striking the impact blow to a v-notched specimen as shown in Figs. 1 and 2.

Unfortunately, while the test, including machine and specimen geometry, has been
standardized, the test results do not provide definitive information about material
properties and thus are not directly applicable to design (as for example might be a yield
strength). However, the test is useful for comparing variations in the metallurgical
structure of materials and in determining environmental effects, such as temperature on
the dynamic response of the material.

One of the most dramatic results of Charpy impact tests is in the form of plots of impact
energy versus temperature in which sigmoidally-shaped curves (see Fig. 3) show
substantial decreases in some materials' abilities to absorb energy below a certain
transition temperature. This ductile to brittle transition is most apparent in materials with
BCC and HCP crystalline structures as for example in steels and titanium. A classic and
dramatic example of this ductile to brittle behaviour is the low carbon steel Victory ships of
WWII cracking in half under even the mild conditions of sitting at anchor in a harbor.
Materials with FCC structures (e.g., aluminum and copper) have many slip systems and
are more resistant to brittle fracture at low temperatures.

In this laboratory exercise the primary outcome will be plots of impact energy versus
temperature for two materials (FCC-606-T6 aluminum and BCC-1018 steel). Note the
effects of temperature and material type on the levels and shapes of the curves.

Examine the fracture surfaces of specimens and compare the type and degree of
deformation to the impact energy and the corresponding temperature. Consider not only
the type of material, but also the effect of notches and temperature in making design
decisions.

* REFERENCES
Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01
E23 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
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Figure 3 Schematic of plot of impact energy versus temperature showing sigmoidal curve



LABORATORY REPORT
1. Include the following information in the laboratory report.
Impact Energy (J)

6061-T6 1018 (HR) or
aluminum A36 steel

Boiling hot temperature °C)

Warm temperature °C)

Freezing temperature °C)

Cold temperature °C)

(
(
Room temperature ( °C)
(
(
(

Very cold temperature °C)

Extremely cold temperature ( °C)

2. Include the following information in the laboratory report.
a. Plot the impact energy versus temperature for each material on the same graph.
b. Compare these impact results for each metal to tabulated values from a
source such as the ASM Metals Handbook. Comment on differences and
similarities.
c. Examine the type and degree of deformation of each fracture surface. Correlate
this information with the corresponding impact energies. Comment on the

correlations.

3. Include the following information in the appendix of the laboratory report. THIS MAY
NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to this list.)

a. Original data sheets and/or printouts
b. All supporting calculations. Include sample calculations if usirg a spread sheet
program. DO NOT INCLUDE ALL TABULATED RAW OR CALCULATED DATA.



ME 354, MECHANICS OF MATERIALS LABORATORY
MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS:

CHARPY V-NOTCH IMPACT

DATA SHEET

01 Januarly 2000 / mgj

EQUIPMENT
IDENTIFICATION

Aluminium

Pretest Conditioning

Temperature
(°C)

Impact Energy
(J)

Boiling water

Warm water

Room temperature water

Ice water

Salted ice water

Acetone with some dry ice

Acetone with much dry ice

STEEL

Pretest Conditioning

Temperature
(°C)

Impact Energy
(J)

Boiling water

Warm water

Room temperature water

Ice water

Salted ice water

Acetone with some dry ice

Acetone with much dry ice




STRESS CONCENTRATIONS



ME 354, MECHANICS OF MATERIALS LABORATORY
STRESS CONCENTRATIONS

01 Januarly 2000 / mgj

PURPOSE

The purpose of this exercise is to the study the effects of geometric discontinuities on the
stress states in structures and to use photo elasticity to determine the stress concentration
factor in a simple structure.

EQUIPMENT

* Un-notched beam of birefringent material (an epoxy).

* Notched bend beam of the same birefringent material as the un-notched beam.
* Four-point flexure loading fixture with load pan and suitable masses for loading
* Circular polariscope with monochromatic light source

PROCEDURE
Part 1. Beam under Pure Bending to Determine the Stress-Optical
Coefficient of the Material

i) Install the un-notched beam (see Fig. 1) in the four-point flexure loading fixture

ii) Attach the load pan (Note: The combined pan/fixture mass is ~0.980 kg)

iii) Apply two10-kg masses one at a time to the load pan.

iv) With the polarizer and analyzer crossed (dark field), focus the camera, and record the
image using the thermal printer

v) Determine the maximum fringe orders at the top and bottom of the beam including
estimates of fractional fringes orders by counting the fringes.

vi) The stress-optical coefficient can be calculated using the following relation:

f:%(q—ag) (1)

where f is the stress-optical coefficient, N is the fringe order, t is the model thickness, and
o,and o, are the plane-stress principal stresses.

Part 2.Notched Beam under Pure Bending to Determine the Stress
Concentration Factor

i) Install the notched beam (see Fig. 2) in the four-point flexure loading fixture

ii) Attach the load pan (Note: The combined pan/fixture mass is ~0.980 kg)

iii) Apply one 5-kg mass to the load pan. (Note: Do not apply more than 5 kg at one time).
iv) With the polarizer and analyzer crossed (dark field), focus the camera, and record the
image using the thermal printer.

v) Determine the maximum fringe orders at the top and bottom of the beam and at the
edge of the notch including estimates of fractional fringes orders.

vi) The stress distributions within the beam can be calculated using the relation:

N
(0'1—62)=f7 (2)
where f is the stress-optical coefficient determined previously, N is the fringe order, t is the
model thickness, and o,and o, are the plane-stress principal stresses.

* REFERENCES

Manual on Experimental Stress Analysis, J.F. Doyle & J.W. Philips, eds, Society for Exper. Mechanics, 1989
Experimental Stress Analysis, J.W. Dally and W.F. Riley, McGraw-Hill, Inc., 1990

Handbook on Experimental Mechanics, A.S. Kobayashi, ed., Prentice Hall, Inc.,1992

Formulas for Stress and Strains, R.J. Roark and W.C. Young, McGraw-Hill, Inc., 1975
Stress Concentration Factors, R.E. Peterson, John Wiley and Sons, Inc., 1974




RESULTS

When loads are applied to a solid body, such as part of a structure or a machine
component, stresses which vary from point to point, are set up in the body. At certain
points, stress concentrations (sometimes called stress raisers) occur and are potential
weak points in the body. Frequently, an alteration in the shape of the body will lead to a
reduction in the stresses at such points and to a more even distribution over the whole
body. An optimum body is that of uniform load-carrying capability.

The mathematical theory of elasticity provides many valuable solutions involving the
stress distributions in bodies of simple geometries and loadings. A common use of these

solutions is the determination of stress concentration factors (k, = %) resulting from

remote

discontinuities or other localized disturbances in the stress field of the body. In more
complicated problems, commercially available two- and three-dimensional computer
programs for finite element and boundary element analyses (FEA and BEM, respectively)
can be used to locate and quantify the stress concentrations.

These theoretical and numerical results are exact solutions to problems which may or
may not model the actual situations (usually due to assumptions about loads, load
applications and boundary conditions). This uncertainty in modeling often requires
experimental verification by spot checking the analytical or numerical results. A frequently
cited example involves a threaded joint which seldom produces uniform contact at the
threads. Contact analyses based on the idealized boundary condition of uniform contact
will grossly underestimate the actual maximum stress concentration at the root of the
overloaded thread. The uncertainty in the contact condition requires a stress analysis of
the actual threaded joint experimentally despite the proliferation of FEA and BEM
programs. Experimental stress analysis is also necessary to study nonlinear structure
problems involving dynamic loading and/or plastic/viscoplastic deformations. Available
FEA programs cannot provide detailed stress analysis of three-dimensional dynamic
structures. Constitutive relations for plastic/viscoplastic materials are still being developed

One such experimental procedure often applied to empirically determine stress states is
photoelasticity. Photoelasticity is a relatively simple, whole-field method of elastic stress
analysis which is well suited for visually identifying locations of stress concentrations. In
comparison with other methods of experimental stress analysis, such as a strain gage
technique which is a point measurement method, photoelasticity is inexpensive to operate
and provides results with minimum effort.

Photoelasticity consists of examining a model similar to the structure of interest using
polarized light. The model is fabricated from transparent polymers possessing special
optical properties. When the model is viewed under the type (but not necessarily
magnitude) of loading similar to the structure of interest, the model exhibits patterns of
fringes from which the magnitudes and directions of stresses at all points in the model can
be calculated. The principle of similitude can be used to deduce the stresses which exist
in the actual structure.

A disadvantage of photoelasticity is the necessity to test a polymer model which may not
be able to withstand extreme loading conditions such as high temperature and/or high
strain rates. Although photoelasticity is generally applied to elastic analysis, limited
studies on photo plasticity and photo viscoelasticty indicate the potential of extending the
technique to nonlinear structural analysis. Further details of photoelasticity can be found
in listed references.

Show all work and answers on the Worksheet / In-class Laboratory report.
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WORK SHEET

1) The properties of two birefringent polymers often used for photoelastic experiments are

in Table 1.

Table 1 Selected Properties of Two Birefringent Polymers Used in Photoelastic

Experiments

Homolite 100 (polyester)
Selected Properties (R.T.)

Elastic Modulus, 3.9
E(GPa)

Proportional Limit 48

oo (MPa)

Poisson's ratio, V 0.35
Stress Optical Coefficient, 24

f (MPa-mm/fringe)*

Figure of Merit 162,500
Q=E/f (1/m)

* in green light with wavelength 546 nm

Epoxy (Araldite, Epon)
Selected Properties (R.T.)

Q=E/f (1/m)

Elastic Modulus, 3.3
E(GPa)

Proportional Limit 55
oo (MPa)

Poisson's ratio, V 0.37
Stress Optical Coefficient, 11

f (MPa-mm/fringe)*

Figure of Merit 300,000

2) For the two beams and loading fixtures, confirm the following information. See Figs. 3
and 4 for nomenclature.

Table 2 Dimensions and Loading for Un-notched and Notched Photoelastic Beams

Un-notched beam

Calibration load, P¢
=Pweight+Pfixture+Ppan (N)

Outer Span, Lo (mm)

Inner Span, Lj (mm)

Height, h (mm)

Thickness, b (mm)

Radius of Notch, R (mm)

Depth of notch, h1 (mm)

Notched Beam

Test load, P¢
=Pweight+Pfixture+Ppan (N)

Outer Span, Lg (mm)

Inner Span, Lj (mm)

Height, h (mm)

Thickness, b (mm)

Radius of Notch, R (mm)

Depth of notch, hq (mm)

Note: The calibration and test loads must include the mass of the fixture and pan as well as the added masses

h1=de

pth of notch

R=radius of notch Q

—>| e
b=thickness

a) Notch Detail

[I<

T

P=mass

Li=inner sean
Lo=outer span
>

b) Overall Specimen Detail
Figure 3 Nomenclature for the Beams




3) A unique aspect of the four-point flexure loading arrangement is that the region of
interest (the section of the beam within the inner loading span) experiences a pure
bending moment as shown in Fig. 4.

P
T%T FBD

Mmax

Figure 4 Free Body, Shear and Moment Diagrams for Four-Point Flexure Loading
For the un-notched beam, determine the following:
Moment of Inertia for the rectangular cross section beam,

3
I= bh” _ mm#4
12
Maximum moment when the calibration load, P¢c, was applied,
P.(Lo—Li)
M,=———"= Nemm

4

4) At the outer free edge of the beam (y=c=h/2) the stress state is uniaxial and the photo
elastic relation can be used to determine the stress optical coefficient directly from the
beam bending relation.

The average fringe value at the upper and lower outer edges of the beam determined at
the calibration load, N=

Maximum distance to an outer edge of the beam from the neutral axis,
c=h/2= mm

Maximum uniaxial bending stress at the outer free edge of the beam

%(0'1): _____ MPa-mm/fringe

Calculated stress optical coefficient for the material, f =
Compare this value to that shown in the table. How do the values compare? Discuss any
discrepancies and possible reasons (Note: Do not panic if the calculated stress optical
coefficient differs from the value listed in Table 1....differences in optical test setup,
environmental effects in the material, etc. all require the "calibration" of the material).



5) At the free edge of the notch the stress state is uniaxial and the photoelastic relation
can be used to calculate the normal stress using the relation between the fringe order
at the free edge, the stress optical coefficient for the material, and the specimen
thickness.

The average fringe value at the free edge of the notches determined at the test force,
N

fN

Calculated normal stress at the free edge of the notch, o, =0,, \yen = T —

6) One way to define a stress concentration factor, ki, is the ratio of the stress at the
discontinuity in a body to the maximum stress in the net section (i.e., that part of the
body remaining after the discontinuity removes a portion of the cross section) such

O, -
that kt — w/ discontinuity )
(o]

net

The notched beam is symmetric, therefore the neutral axis is the midpoint of the beam as
well as the midpoint of the net cross section beam. The width of the net cross section

beam is the distance between the notches, h ,=h-2h=___ mm.
3
The moment of inertia for the net cross sectionis I, = %: ____mm*,

The distance from the neutral axis to the outermost edge of the net cross section is
Crot = Nt /2= mm.

net

. . P(Lo —L)
The moment in the beam at the test force, Py, is Mt = T‘: mm.
. . Mt Cnet
Stress in the net cross section of the beam, o, = - MPa.
net
The stress concentration factor is the ratio of the stress at the notch and to the net cross
Sectlon Stl’eSS kzmeusured — O-W/VLUZCh —
o

net

7) Several authors have compiled stress concentration factors for simple geometries.
The most "famous" compilation is Peterson's book of stress concentration factor
graphs. From Peterson's book for the double-notched flat specimen in bending, k; is

plotted as a function of r/d = R/(h-2h4) for various values of D/d=h/(h-2h1).

R D h

. r
In this case, — = ———= SRR —
d (h-2h,) d (h-2h)

The stress concentration, ki can be "picked off" a plot such that k" =




Alternatively, a curve fit for a double-notched beam in pure bending (Roarke and

Young) is described as follows for 0.253% <2.0. In this case, %: and
2 3
the stress concentration factor is: k, = K, + Kz(%h‘) + KS(ZTh‘) + K{%h‘J
B el
where K,=0.723+2.845 | — - 0.504 —=
R R
K,--1836-5746 " 13142
YR R
By el
K, =7.254-1.885 - +1.646 1=
VR R
h h
K, =-5.140+4.785 - -2.456 =
YR R
2 3
such that: k™ ™=k, = K, +K2(27,71)+K3(27h‘) +K4(27h1)

8) Compare the k; measured from the photoelastic analysis to that determined from a

compiled handbook. Determine the percent differences between the two values. Since
many compiled stress concentration factors were determined from photoelastic analyses,
discuss possible reasons for differences between the measured and compiled values of
Kk

t-
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Extra effort: Using the fringe orders across the notched beam, assume the stress state
is uniaxial, plot the stress across the height of the beam. Compare this stress distribution
to that of the un-notched beam at the same force.

—

o

I

v

+y
Extra effort: Another way to define a stress concentration factor, kt is the ratio of the
stress at the discontinuity in a body to the stress that would have been at the same

w/ discontinuity

o
point in the body without the discontinuity such that k, =
w/o discontinuity

The notched beam is symmetric, therefore the neutral axis is the midpoint of the beam.

The distance from the neutral axis to the edge of the notch is, y = g—h1= ________ mm
. : R, -L)
The moment in the beam at the test force, Py, is M, = T’: mm.
Stress in an un-notched beam at the same point at the edge of the notch in the notched
M
beam is 0,5 ot = +y= MPa.

The stress concentration factor is the ratio of the stresses at the same location for the

notched and un-notched beams, k, = Ownoten _
Gw/o notch
The Peterson stress concentration factor found earlier can be modifed to account for this

difference in defintion such that k{*" = [k?e‘ = MJ(I“&J

Gnet Inet
3 3
Since, 1., = %: and I, = b?%:_____, then

(Ibeam j: and knOtCh — (knet — Gw/ notch J( Ibeam ]:
- t t
Inet O et Inet

Compare the k; at the notch using this alternative defintion and the modified k;

determined from the compiled version in the handbook. Determine the percent
differences between the two values. Which definition of kt seems more "reasonable?"

Why?



FRACTURE



ME 354, MECHANICS OF MATERIALS LABORATORY
FRACTURE

01 January 2000 / mgj
PURPOSE

The purpose of this exercise is to study the effects of cracks in decreasing the load-
carrying ability of structures and to determine the plane strain critical stress intensity
factor, K¢, for single-edge notched specimens.

EQUIPMENT

* Single-edge notched tensile specimens of polymethyl methacrylate (PMMA) and
polycarbonate (PC)
* Tensile test machine with grips, controller, and data acquisition system

PROCEDURE

» Measure the width and thicknss of the gage section for each specimen to 0.02 mm.

» Measure the notch length for each specimen to 0.02 mm.

* Zero the force output (balance).

* Activate force protect (~50 N) on the test machine to prevent overloading the specimen
during installation.

* Install the top end of the tensile specimen in the top grip of the test machine while the
test machine is in displacement control.

* Install the bottom end of the tensile specimen in the lower grip of the test machine.

* In displacement control adjust the actuator position of the test machine to achieve nearly
zero force on the specimen.

 Deactivate force protect.

* Initiate the data acquistion and control program.

* Enter the correct file name and specimen information as required.

* Initiate the test sequence via the computer program.

 Continue the test until specimen fracture.

» Confirm the initial notch length for each specimen.

» Examine the fracture surface to note any evidence of subcritical crack growth. Note the
appearance of the fracture surfaces.

» Examine the force versus displacement trace each test. Note the force at fracture
initiation, Pg, and maximum force, Pmay, at fracture.

* REFERENCES
Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01

E399 Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials



RESULTS

Anticipated fracture forces will first be calculated for un-notched and notched specimens
at yield and ultimate tensile strengths. These forces will be compared to anticipated
fracture forces assuming single-edge notched tensile specimens such that:

P
Kq=F(o) o /ra

where o = a/W (2).

4y 0.857+0.265a

F(o) =0.265(1- ) do)

for (h/W 3 1)

where Pqis the tentative fracture force, W is the gage section width, B is the gage section
thickness, a is the notch/crack length, h is half the gage section length and Kq is the
tentative fracture toughness value.

Compare the relation of K¢ versus yield strength for these alloys to that of other materials
and comment on the susceptibility of these materials to fracture or yielding. Use your own
sourses of information (e.g. tensile test laboratory results).

Silicon nitride (ceramic) alloys 6061-T6 Aluminum alloy 1018 HR Steel alloy

E (GPa) 310 E (GPa) E (GPa)

oo (MPa) = Syrs =500- oo (MPa) oo (MPa)
1000

Surs (MPa) =0,=500- Surs (MPa) Surs (MPa)
1000

% elongation 0.25-0.5 % elongation % elongation

Kic (MPavm) 510 Kic (MPavm) Kic (MPavm)

Design Concerns and Failure Criterion

(Fracture Mechanics, Maximum Normal Stress, or Yield Stress?)

PMMA polymer PC polymer
E (GPa) E (GPa)
oo (MPa) oo (MPa)
Surs (MPa) Surs (MPa)
% elongation % elongation
Kic (MPaJm) Kic (MPaJ/m)

Design Concerns and Failure Criterion

(Fracture Mechanics, Maximum Normal Stress, or Yield Stress?)

Show all work and answers on the Worksheet, turning this in as the In-class Laboratory

report.



ME 354, MECHANICS OF MATERIALS LABORATORY
FRACTURE
WORK SHEET

01 January 2000 / mgj

NAME DATE
EQUIPMENT

IDENTIFICATION

1) Determine (look up) the following mechanical properties.

PMMA (acrylic)
Selected Mechanical Properties (R.T.)

PC (polycarbonate)
Selected Mechanical Properties (R.T.)

E (GPa) E (GPa)

oo (MPa) estimate as Syts oo (MPa) estimate as
Suts/2

Surs (MPa) Surs (MPa)

% elongation % elongation

Kic (MPavm) Kic (MPavm)

2) For the following NOMINAL specimen dimensions, determine the

corresponding predicted fracture forces

W=12.7 mm

o

B=t=? mm PMMA

Un-notched  B=t=? mm PC
Un-notched (PMMA)
B=t= mm
Yield: P, =s A, =s ,WB = N
Ultimate: P, = S, A,y =S, WB = N

Notched (PMMA) [Net cross section]
Yield: P, =S, Ay.. = S,(W- a)B = N

Ultimate:P,, = S, Ay.. = S, (W- a)B =
Fracture (PMMA)
a= m for K, buta = mm for a/W
W = mm
alW=a =
B= mm
K, .= MPaym
F(o) = 0.265(1- «)* +—O'857+O'§25°‘
(1- a) =
for(h/W 3 1) where o = aW
p = K WB _ N
Fan/pa

———— a=3.175mm

W=12.7 mm

R

Notched

Un-notched (PC)

B=t= mm

Yield: P, =s A, =s ,WB = N
Ultimate: P, = S, A,y =S, WB = N
Notched (PC) [Net cross section]

Yield: P, =S Ay.. = S,(W- a)B = N

Ultimate: P, = S, Ay.. = S, (W- a)B = N
Fracture (PC)
a= m for K, buta = mm for a/W
W = mm
alW =a =
B= mm
K, .= MPaym
F(o)= 0.265(1- &) +—O'857+O'§25°‘
(1- o) =
for(W/W 3 1) where o = a/lW

P = w:
" F(a}pa




3) Determine the fracture initiation force, Pg and the maximum force, Pmax from the force
vs displacment test results. Measure the actual width, W, actual thickness, B, and actual
notch/crack length, a.

PMMA PC
Fracture Test Results Fracture Test Results
W (mm) (measured) W (mm) (measured)
B=t (mm) (measured) B=t (mm) (measured)
a (mm) (measured) a (mm) (measured)
Po (N) (measured) Po (N) (measured)
P ax (N) (measured) P hax (N) (measured)

4) Compare the measured fracture initiation force, Pq,, to the predicted forces, Pm and P,
calculated above. Which approach (Un-notched or Notched (yield and ultimate) or
Fracture) is closer to the measured fracture force? Is this what you expected? If so,
why or why not?

Note: Do the 'fracture’ tests meet the requirements of ASTM E399?
2

i) Valid specimen with pre-crack and known S.I.F., ii) Elgm <110 and iii) B >2.5§%2
Q 09

Based on these results, are cracks or crack-like notches important concerns to a
designer? How would you design to account for these features?



5) Calculate a tentative plane strain fracture toughness value, Kg, from the fracture force
and compare this to the 'book’ value of the plane strain fracture toughness, K|c .

PMMA

0.857+0.265.
Flo) = 0.265(1- a)* + ————
(1- a) =

for(W/W 3 1) where o = a/lW

a= m
P
Ko=Fla)os Jpa= (MPavim)
PMMA
Fracture Test Results
Ko (MPavm)
Kic (MPaym)

PC

0.857+0.265.
F(o) = 0.265(1- a)* + ————
(1- a) =

for(W/W 3 1) where o = a/lW

a= m
P
Ko=Fla)oz Jpa= (MPavi)
PC
Fracture Test Results
Ko (MPavim)
Kic (MPavm)

Are Kq and K¢ similar? If not, what factors (e.g. simulated crack, ductility, test rate,
material properties, etc.) might account for these differences? Are these valid fracture
tests or more notch sensitivity tests? Do these tests indicate a susceptibility of
components comprised of certain materials to brittle fracture from crack or crack-like
notches, even though they normally display moderate ductility?
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ME 354, MECHANICS OF MATERIALS LABORATORY
TIME-DEPENDENT FAILURE: FATIGUE

01 Januarly 2000 / mgj
PURPOSE

The purposes of this exercise are to determine the effect of cyclic forces on the long-term behaviour of
structures and to determine the fatigue lives (Nf) as functions of uniaxial tensile stress for an aluminum alloy.
Axial fatigue tests are used to obtain the fatigue strength of materials where the strains are predominately
elastic both upon initial loading and throughout the test.

EQUIPMENT

* Reduced gage section tensile test specimens of 6061-T6 aluminum
* Tensile test machine with grips, controller, and data acquisition system

PROCEDURE

* Measure the diameter, d, of the gage section of the test specimen to 0.02 mm.
* Calculate the maximum, Pmax, and minimum, Pmin, forces for the test based on the desired maximum and

minimum stresses (Note: P=c*A=0" (nd2/4) . Since, these tests are being conducted in tension only, the
stress ratio, R, is chosen to be close to but not exactly zero such that R=0.1. Thus, omin=R*omax where
Omax Iis the desired maximum stress.

* Calculate the mean force as Pm=(Pmax +Pmin)/2.

* Calculate the force amplitude as Pg=(Pmax -Pmin)/2.

e Zero the force output (balance).

* Set the maximum force limit at ~5 kN during the test specimen installation. Activate the limit detect for
actuator off.

* Do not set the minimum force limit during specimen installation

* Activate force protect (~0.05 kN) on the test machine to prevent overloading the test specimen during
installation.

* Install the top end of the tensile specimen in the top grip of the test machine while the test machine is in
displacement control.

* Install the bottom end of the tensile specimen in the lower grip of the test machine.

* Set the maximum force limit at ~0.5 kN greater than Pmax and activate the limit detect for actuator off.

* Set the minimum force limit at -0.2 kN and activate the limit detect for actuator off.

* Deactivate force protect.

* Activate force control by going to this control mode immediately,

* On the test machine, zero the cycle counter for the total count.

* In force control adjust the setpoint in increments of not greater than 1 kN to achieve the mean force, Pm.

* Select the waveform as sine wave and input an initial frequency of 1 Hz

* Input the force amplitude, Pg.

* Activate amplitude control to ensure that the loading envelope maintains its integrity during the course of the
test.

* Initiate the data acquisition and control program (if desired).

* Enter the correct file name and test specimen information as required.

* Initiate the test sequence via the computer program otherwise activate the test via the front control panel.

* After the test has been running for 30-60 s, increase the frequency in 1 Hz increments up to a maximum of
15 to 25 Hz.

* Activate event detector 1 for break detect but no action.

 Continue the test until test specimen fracture (or the break detect).

* Record the number of cycles on the cycle counter at the end of the test.

* REFERENCES

Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01

E466 Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Specimens

E468 Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Specimens




RESULTS

Fatigue test results may be significantly influenced by the properties and history of the
parent material, the operations performed during the preparation of the fatigue
specimens, and the testing machine and test procedures used during the generation of
the data. The presentation of the fatigue test results should include citation of the basic
information on the material, the specimens, and testing to increase the utility of the results
and to reduce to a minimum the possibility of misinterpretaion or improper application of
the results.

Enter your results in Table 1, comparing your results to the control data generated for this
same aluminum under uniaxial tensile fatigue conditions.

Plot your test results as maximum stress, Omax , versus log of cycles to failure, Ns in Figure
1. Note that a log scale is used for Nf so there is no need to compute log Nf.

Answer the following questions on the Worksheet, turning this in as the In-class
Laboratory report.



ME 354, MECHANICS OF MATERIALS LABORATORY
TIME-DEPENDENT FAILURE: FATIGUE
WORK SHEET

01 January 2000 / mgj

EQUIPMENT
IDENTIFICATION

1) Tabulate the following mechanical properties from your tensile test results.

6061-T6 Aluminum
Selected Mechanical Properties (R.T.
E (GPa)
oo (MPa)
Surs(MPa)
% elongation

2) For the maximum stress assigned to your laboratory section determine the
required test forces from the measured diameter of the test specimen.

Test specimen diameter, d (mm)

Gage section area, A=rd2/4 (mm?2)

Stress ratio, R 0.1
Maximum stress, o, (MPa)
Minimum stress, o,,, = R* 0,,.,(MPa)

Mean stress, 0, = (Opax + Omn) /2 (MPa)

Stress amplitude, o, = (o

max

- o-min)/2 (MPa)

Stress Range=Aoc=0,, —0,,, (MPa)

Maximum load, P, = 0. A (N)

max

Minimum load, P, = 0., *A (N)

min

Mean load, P, =0c, *A (N)

Load amplitude, P, = o, *A (N)




3) Tabulate your test results and compare them to the control data for this material.

Table 1 Fatigue Test Results for 6061-T6 Aluminum at R.T.

R Opmax (MP2) Crin(MP2) c,,(MPa) o,(MPa) Nt

0 Suts= N/A N/A N/A <1

-1 345 -345 0 345 102

-1 276 -276 0 276 103

-1 248 -248 0 248 104

-1 200 -200 0 200 105

-1 166 -166 0 166 106

-1 117 -117 0 117 107

-1 100 -100 0 100 108

0.1 322 32 177 145 2

0.1 304 30 167 137 28 788
0.1 (replicate) 285 28 156 128 42,677
0.1 (replicate) 285 28 156 128 34,900
0.1 (replicate) 285 28 156 128 49,671
0.1 (replicate) 285 28 156 128 91,711
0.1 (replicate) 285 28 156 128 35,964
0.1 (replicate) 285 28 156 128 51,700
0.1 (replicate) 285 28 156 128 23,872

0.1 250 28 139 115 124,319

0.1 215 21 118 99 226,038

0.1 178 17 98 82 1,169,307
Test Result | for this | Laboratory | Exercise | |

0.1

4) Plot the all the test results for R=0.1 on the S-N curve shown in Figure 1. For this
material, is there evidence of a well-defined fatigue (endurance) limit, ¢? Is this what
you expected?

5) Do your test results agree with the control (or previous test) results? If so, why? if not,
why not? Would you expect fatigue failures to have little or much scatter? Does it seem
reasonable to try to fit a single curve through the data?

6) Examine the fracture surface of the test specimen. Given that the maximum force in

the fatigue test was less than the yield force for material (as determined from the

monotonic tensile test), discuss how fatigue can occur given that the loading was in the
elastic range. Where do the fatigue cracks initiate from? Is surface condition important?

How would you design components to minimize fatigue failures?




Fatigue Test Results
6061-T6 Aluminum, R.T.

400 [
350 i i i i
_ 300
NE 250
22
o x 200
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100 | | | | | ‘
O L \HHHi L \HHHi Lo LI L L LI 1 \HHHi L \HHHi L \HHHi l \HHHi L L
10° 10" 10°10° 10" 10° 10° 10" 10° 10°
Cycles to failure, N,
Figure 1 S-N curve for 60612-T6 aluminum at room temperature
6) (cont'd)

7) Fatigue can be analyzed from a fracture mechanics standpoint. If the stress intensity
factor solution for this case can be approximaed as K, =1.75c+/na, determine the critical

n\1.75¢c
Compare calculated as to the actual af measured on the fracture surface. Are they similar?

Why or why not? Finally, assuming aj=0.1 mm and da/dN =C(AK)m (Note: a has units of
metres, Gmax.and AcG have units of MPa, F=1.75, m=3.59 and C=1.6 X 10-11 with units to
give da/dN in m/cycle), calculate the cycles to failure from tensile crack initiation to final

ap-(m/z)) _ a§1—(m/2))
C[F(a0)y x| [1-(m/2)]

propagation to the total N¢ for the test. Is crack propagation a significant (i.e., large) part of
the total fatigue life?

2
crack length at fracture such that a, = l(Lj for your result (Note Ki.=35 MPavm).

fracture using the relation: N, = . Compare the N for crack
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PURPOSE

The purposes of this exercise are to study the effect of loading on the time-dependent
deformation (i.e., creep) and to characterize the room-temperature creep behaviour of a
soft alloy under various forces. Specifically, short-term creep tests will be used to identify
constants in the € , =Bo" relation where ¢, vis the minimum creep strain rate, o is the
engineering normal stress, B is the coefficient, and n is the the creep stress exponent..
Predictions using these constants are compared to results measured from long-term
creep tests of this same alloy.

EQUIPMENT

» Constant gage section diameter sections of a ~60% tin- ~40% lead alloy (solder).
» Extension-gage (dial indicator) for total elongation.

* Dead-weight, lever arm creep test machine.

* Timing device.

PROCEDURE

* Measure out and cut to length (~150 mm) constant gage length test specimens.
* Measure the diameter, d, of the gage section each test specimen to 0.02 mm.
eInstall the top end of each test specimen in the top grip of a creep test machine.

* Install the bottom end of the test specimen in the lower grip of the creep test machine
and measure the initial gripped length, Lo, of the test specimen in mm.

* Apply dead masses of my=2.0, 2.5, 3.0, and 4.0 kg to the pan of the creep test machine
for a total of four tests for four different untested test specimens, noting the mechanical
advantage of the lever arm syste of the creep test machine. (The actual force applied to
the test specimen is two times the dead load). Record both the applied mass, m,, and
the mass. mp, of the pan in kg.

» Record elongation readings (change in length=AL) in mm at time, t=10, 20, 30, 60, 90,
120, 180, 240, 360, 480, 600, 720 s, etc. (every 120 s) until 5% engineering strain is
achieved.




ANALYSIS

* On a single graph, plot total engineering creep strain (e=AL/Lg) versus time, t, (s) for the
four short- term creep tests.

e Determine the minimum creep strain rate, (¢,,,=de/dt) (s-1) for each short-term creep test
by using a linear regression over the linear portion of each creep curve.

* Construct a linear plot of log ¢, versus log engineering stress, o, (c=P/Ay where

P=2*(ma+mp)* (g=9.816 m/s2) and A, = nd2/4) for the short-term creep tests. Determine
the coefficient, B, and the creep stress exponent, n, for the relation:

& =Bo" (1)

min

from a least squares linear regression of the linear plot of only the short term creep
test results (i.e., log &, versus logo).

* Plot total engineering creep strain (€=AL/Lg) versus time, t, (s) for the long-term creep
tests. Note that the long-term creep test results are given in instantaneous length, Lj,

versus time such that the change in length AL is AL=(Lj-Lo) where Lg is the initial
instantaneous length at t=0.

* Determine ¢_.. (s*1) for each long-term creep test by using a linear regression over the
linear portion of each creep curve (see Table 1 for data).

* Plot the results of the long-term creep tests as identified points on the linear plot of log
€., versuslog o. Note that the masses, m,, for the long-term creep tests were directly
applied to the test specimens with no pan or lever arm advantage such that o=P/Aq
where P=(mj)* (g=9.816 m/s2 and Ag = nd2/4.

(Do not use these points in the curve fit of the short-term test results)

* Determine the relative error of measured creep strain rates for the long-term tests
compared to creep strain rates calculated using B and n determined from the short-term
creep tests. Do not curve fit the long term tests and try to compare B and n
values determined from long and short tests.




LABORATORY REPORT

1. As a minimum include the following information in the laboratory report.

Short-term test Enn (871)
Force #1, o = MPa
Force #2, o = MPa
Force #3, o = MPa
Force #4, o = MPa
Short-term test results Parameters for ¢ . =Bo"
B (MPa™n/s)
n
Long term tests £ (1)
o= MPa, ¢, measured
o= MPa, ¢, =Bo"
% difference
o= MPa, ¢, measured
o= MPa, ¢, =Bo"
% difference

a. Plots of strain vs. time on the same graph for the short-term tests.
(4 plots on 1 graph)

b. Plots of strain vs. time on the same graph for the long-term tests.
(2 plots on 1 graph)

c. Linear plots of log ¢,,, versus log o. for the short-term and long-term results
on the same graph. Show the "best fit" line for the short-term results extended
toward the long-term results.

d. If possible, compare the n and B values to book values for this solder alloy at
room temperature. Discuss any differences. Discuss differences between
measured and predicted minimum creep strain rates for the long-term tests.
Include discussions about limitations about predicting long-term creep
behaviour from short term test results.

2. Include the following information in the appendix of the IaboratorK report. THIS MAY
NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to this list.)

Original data sheets and/or printouts

b. All supporting calculations. Include sample calculations if using a spread sheet
program.

* REFERENCES
Annual Book or ASTM Standards, American Society for Testing and Materials, Vol. 3.01

E139 Standard Test Method for Conducting Creep, Creep-Rupture, and Stress-Rupture
Tests of Metallic Materials




Table 1 - Long-term tensile creep results for a lead-tin alloy (solder).

Mass on Test Specimen, ma = 1.07 kg | Mass on Test Specimen, mg = 1.47 kg
Time, t (day) Length, L; (mm) Time, t (day) Length, Lj (mm)
0 504 0 502
2 513 1 514
3 513 2 529
6 528 3 542
7 531 4 555
9 541 5 571
10 542 6 586
11 544 7 604
14 557 8 620
15 562 9 640
16 568 10 680
17 571 12 712
18 574 13 753
19 586 15 893
20 592
21 593
22 609

Initial diameters, d = 3.18 mm, Initial lengths, Lo at =0
Mass directly applied (no pan or lever arm advantage creep test machine)
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EQUIPMENT

IDENTIFICATION

Note: Be sure to note units of each quantity.

Added Mass, mg (kg)

Added Mass, mg (kg)

Added Mass, my (kg)

Added Mass, mg (kg)

Mass of Pan , mp(kg)

Mass of Pan , mp(kg)

Mass of Pan , mp(kg)

Mass of Pan , mp(kg)

Initial Dia., d (mm)

Initial Dia., d (mm)

Initial Dia., d (mm)

Initial Dia., d (mm)

Final Dia., df (mm)

Final Dia., df (mm)

Final Dia., df (mm)

Final Dia., df (mm)

Initial Length, Lo (mm)

Initial Length, Lo (mm)

Initial Length, Lo (mm)

Initial Length, Lo (mm)

Time, t(s) | AL, Length
Change (mm)

Time, t(s) | AL, Length
Change (mm)

Time, t(s) | AL, Length
Change (mm)

Time, t(s) | AL, Length
Change (mm)
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PURPOSE

The purpose of this exercise is to study the effects of end conditions, column length, and
material properties on compressive behaviour and buckling in columns.

EQUIPMENT

» Solid rods of various lengths of aluminum and steel
» Universal test machine with grips, controller, and data acquisition system

PROCEDURE
Repeat the following steps for each specimen.

» Measure the diameter and lengths of each specimen to 0.02 mm.

* Zero the force output (balance).

* Activate force protect (~50 N) on the test machine to prevent overloading the specimen
during installation.

* Install the top end of the test specimen in the top grip of the test machine while the test
machine is in displacement control.

* Install the bottom end of the test specimen in the lower grip of the test machine.

* In displacement control adjust the actuator position of the test machine to achieve nearly
zero force on the specimen.

 Deactivate force protect.

* Initiate the data acquisition and control program.

* Enter the correct file name and specimen information as required.

* Initiate the test sequence via the computer program.

 Continue the test until buckling or compressive failure of the test specimen occurs

» Examine the force versus displacement trace for each test. Note the force at the onset of
buckling or compressive failure (i.e., significant deviation from linearity)



RESULTS

Structures and machines may fail in many ways depending on the materials, kinds of
loads, and conditions of support. Many machine elements can be modeled as uniform
members under uniaxial tension or compression. For tensile loading, these members
tend to self-align and fail either by ductile deformation or brittle fracture depending on the
material. In compression, the failure mode is complicated by the possibility of a geometric
instability, called buckling, in addition to ductile deformation.

Columns are structural members which support compressive forces. Buckling occurs
when the column has a tendency to deflect laterally, out of the line of action of the force.
Once buckling initiates, the instability can lead to failure of the column because the
eccentric force acts as a moment causing greater stresses and deflections due to the
combination of the bending and axial forces.

The possibility of buckling increases for the following column conditions: 1) longer,
"thinner" columns, 2) pinned, free, or non-fixed end conditions, 3) initial eccentricity of the
force (e.g., bent columns) and/or 4) lower elastic modulus of the column material.

In this exercise, two materials and two column lengths will be studied. Anticipated
buckling or compressive failure forces will first be calculated for various length specimens
and materials.

For compressive failure, P, =0 A,
and ().
n’El

2
e

For buckling, P, =

where P, is the compressive failure force (yield), o, is proportional limit stress (or yield
strength), A, is the initial area of the gage section, P, is the Euler critical buckling force, |
is the least moment of inertia of the cross section, and L, is the effective, unsupported
length of the column.

The anticipated buckling or compressive failure forces will then be compared to the actual
measured forces at the onset of instability. Observations will be made on the effects of
end conditions, material type, and column length.

Show all work and answers on the Worksheet, turning this in as the In-class Laboratory
report.

References:

"Mechanics of Materials," J.M. Gere and S.P. Timoshenko
"Mechanics of Materials," R.C. Hibbeler
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WORK SHEET
NAME DATE

EQUIPMENT
IDENTIFICATION

1) Determine (look up) the following mechanical properties.

Table 1 Selected Properties for Test Materials

6061-T6 Aluminum 1018 Steel (CD)
Selected Mechanical Properties (R.T.) Selected Mechanical Properties (R.T.)
E (GPa) E (GPa)
oo (MPa) oo (MPa)
Surs (MPa) Surs (MPa)
% elongation % elongation

2) Measure and record the following dimensions.

Table 2 Pertinent column dimensions

Column Dimensions for Column Dimensions for

Aluminum

Diameter, d (mm)

Length 1, L1 (mm)

Length 2, L2 (mm)

Steel

Diameter, d (mm)

Length 1, L1 (mm)

Length 2, L2 (mm)

3) For each column, determine the following geometric quantities.

Aluminum Steel
. nd* s . nd* s
Moment of Inertia: | =——  mm Moment of Inertia: | =——  mm
64 64
_ 7d? 5 _ 7d? 5
Cross sectional area: A = T mm Cross sectional area: A = T mm
I I
Radius of gyration squared: k* = Z mm? Radius of gyration squared: k* = Z mm?

1 1
Radius of gyration: k = Jié = \/% mm Radius of gyration: k = JIE = \/% mm

4) Buckling of columns with pinned ends is often called the fundamental case of buckling.
However, many other conditions such as fixed ends, elastic supports, and free ends are
encountered in practice. The critical forces for buckling for each of these end conditions
can be determined by applying the appropriate boundary conditions and solving the
differential equations. These solutions lead to the concept of an "effective length," L.,
appropriate for each end condition which is a multiple of the actual length, L, of the
column as shown in Table 3 and Figure 1.




Table 3 Effective column length for various end conditions
Pinned/Pinned Fixed/Free Fixed/Fixed Pinned/Fixed
L, = L.=2L L, =L/2 L.=0.7L

P

Pinned ends
K=1

Fixed ends Pinned and fixed ends
K=05 K=0.7

Fixed and free ends
K=2
Figure 1 Illustration of end conditions for columns

5) In general, axially-loaded compression members may fail by one of three modes:
crushing; a combination of crushing or buckling; or buckling alone. Columns can be
placed into three groups:

1) Short columns - the failure mode is by crushing (simple compressive failure)

2) Intermediate columns - the failure mode depends on simple compressive and/or
bending stress

3) Long columns - the failure mode is primarily a function of the bending stress (buckling).

A paramter which is employed to group these columns is the slenderness ratio, L./ k. The

L,

minimum slenderness ratio == marks the nominal transition from crushing to buckling. If
min

the axial stress, o , is plotted as a function of slenderness ratio, then the minimum

slenderness ratio is the nominal transition from the constant stress for crushing, o =0, to

2
. . nE
the stress as function of L/ k for buckling, o0 =0, =——— .
(L. 7K)
Aluminum Steel
Elastic modulus: E = MPa Elastic modulus: E = MPa
Proportional limit stress: 0, = MPa Proportional limit stress: 0, = MPa
o _ En? o _ En?
Minimum slenderness ratio: — = = Minimum slenderness ratio: — = =
min (50 min O‘0




On the following graphs, plot o =o, for
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Allowable compressive stress for aluminum b) Allowable compressive stress for steel

Figure 1 Allowable compressive stress for aluminum and steel

6) Determine the following critical compressive forces for the experimental columns

Aluminum

For column length L1, the unsupported
length if each grip end is /= mm long
such that L=L1-(2*/) = mm

Effective length, L, using Table 3
for the Fixed/Fixed end condition mm

For L1, slenderness ratio, L/ K =

- L ,En2
Minimum slenderness ratio: — = =
K min 00
L
O =0, if E <= MPa
k k min
OR
2
E
=04 :n—z if E = MPa
(Le /k) k k min

2

Cross sectional area, A= mm

Use the smaller of the stresses calculated above.
For L1, critical force, P = 0 A= N

Steel

For column length L1, the unsupported
length if each grip end is /= mm long
such that L=L1-(2*/) = mm

Effective length, L, using Table 3
for the Fixed/Fixed end condition mm

For L1, slenderness ratio, L/ K =

L,

Minimum slenderness ratio: —

if E<£
k K

En?

min o

(o]

o =0, MPa

min
OR
tE L

= >t

« TILIKE "k K

MPa

min

2

Cross sectional area, A= mm

Use the smaller of the stresses calculated above.
For L1, critical force, Ps" = 0 A= N



For column length L2, the unsupported
length if each grip end is £ = mm long
such that L=L2-(2*/) = mm

Effective length, L, using Table 3
for the Fixed/Fixed end condition mm

For L2 slenderness ratio, L/ k =

- L /Eﬂz
Minimum slenderness ratio: — = =
k min 00
L
o =0, if E< = MPa
k k min
OR
n’E ) Le Le
0 =0, =/——= f—>— MPa
(L /K "k Kl

2

Cross sectional area, A _= mm

Use the smaller of the stresses calculated above.
For L2, critical force, PCLr2 =0 A= N

For column length L2, the unsupported

length if each grip end is £ = mm long
such that L=L2-(2*/) = mm
Effective length, L, using Table 3

for the Fixed/Fixed end condition mm

For L2, slenderness ratio, L/ K=__

min \l 00 -

Minimum slenderness ratio:%

L
o =0, if = <= MPa
k k min
OR
2
nE L
o:ocr:—zif5>—e MPa
(Le /k) k k min
Cross sectional area, A= mm2

Use the smaller of the stresses calculated above.
For L2, critical force, PCLr2 =0 A= N

7) Measure the actual critical compressive forces for the experimental columns.

For L1, Aluminum

Measured critical compressive force,P, ;= N
For L1, critical force, PCLrl =0 A= N
% diff

For L2, Aluminum

Measured critical compressive force,P,,= N
For L2, critical force, P.” = 0 A= N
% diff

For L1, Steel

Measured critical compressive force,P, ;= N
For L1, critical force, PCLrl =0 A= N

% diff

For L2, Steel

Measured critical compressive force,P,,= N
For L2, critical force, P.” = 0 A_= N

% diff

8) Comment on how well the equations predicted the actual critical compression force.
Were discrepancies reasonable? If not, what could possible sources of error be attributed
to? (Recall that the assumptions for the buckling forces assume no initial eccentricity,
perfectly straight columns, and no off-axis loading).

9) As a designer, what steps can be taken to reduce the tendency to buckle,

geometrically? material-wise?
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PURPOSE

The purpose of this exercise is to the study the effects of various assumptions in analyzing
the stresses and forces in an engineering structure using engineering mechanics,
experimental mechanics, and numerical modeling.

EQUIPMENT

* Strain-gaged bicycle.
* Strain gage conditioning equipment and data acquisition system.
¢ "Dial indicators", holders and magnetic bases.

PROCEDURE
* Re-read the reference document "NOTES on Strain Gages."

* Carefully examine attached Figs. 1-3. Note that a total of 10 stacked rectangular rosettes
have been applied at various locations on the bicycle frame. Each rosette has three
strain gages such that 30 possible strain gage circuits are involved. Identify all strain
gage circuits and strain gage channel numbers on both the figures as well as on the
bicycle frame itself.

* Note which strain gage locations will be used in the analysis.
* Note the location of the dial indicator measurement.
* Note the type of input forces and reactions (axle connections) for the bicycle frame.

* |f not already done so, set the gage factor to 2.08 and balance each strain gage circuit to
zero or a reasonable minimum offset strain.

* Record this offset strain, if any, (starting value with no force applied) for each channel on
the data sheet.

 Zero the "dial indicators". Note the location of the deflection measurements on the
bicycle frame.

* Apply a modest concentrated force (approximately the weight of a bicyclist with
equipment) to the bicycle frame.

* Record the reading for each strain gage channel on the data sheet.
* Record the reading of the dial indicator

* Remove the force from the bicycle frame.



BACKGROUND

Engineering structures may take many forms, from the simple shapes of square cross
section beams to the complex and intricate shapes of trusses. Trusses are one of the
major types of engineering structures, providing practical and economical solutions to
many engineering situations. Trusses consist of straight members connected at joints (for
example, see Figure 1). Note that truss members are connected at their extremities only:
thus no truss members are continuous through a joint.

In general, truss members are slender and can support little lateral force. Therefore,
major forces must be applied to the various joints and not the members themselves. Often
the weights of truss members are assumed to be applied only at the joints (half the weight
at each joint). In addition, even though the joints are actually rivets or welds, it is
customary to assume that the truss members are pinned together (i.e., the force acting at
the end of each truss member is a single force with no couple). Each truss member may
then be treated as a two force member and the entire truss is treated as a group of pins
and two force members.

A bicycle frame, on first inspection, appears to be an example of a truss. Each tube (truss
member) is connected to the other at a joint, the principal forces are applied at joints (e.qg.,
seat, steering head, and bottom bracket), and the reaction forces are carried at joints as
well (e.g., front and rear axles). Although the joints are not pinned, a reasonable first
approximation for analyzing forces, deflections, and stresses in the various tubes of the
bicycle frame might be made using a simple truss analysis.

Forces in various truss members can be found using such analysis techniques as the
method of joints or the method of sections. Deflections at any given joint may be found by
using such analysis techniques as the unit force method of virtual work.

REFERENCES
ME354 NOTES on Strain Gages




ANALYSIS

1) Draw a free body diagram of the truss, showing your assumptions for the reactions at
the front and rear axles.

2) For the applied force P, use the assumed dimensions and angles of Fig. 3 along with a
simple truss analysis to complete the table. Note: for truss forces, use "+" to indicate
tensile force and "-" to indicate compressive force.

Applied Force, P (N)

Reaction at Front Axle, Rf (N)
Reaction at Rear Axle, Rr (N)
Force in Top Tube Fit (N)
Force in Down Tube Fdt (N)
Force in Seat Tube Fst (N)
Force in Seat Stay Fss (N)
Force in Chain Stay Fcs (N)
Force in Head Tube/Fork Ff (N)

3) Use the strain gage information to find the x-y-z coordinate strains in each member of
interest, noting that the orientation of the individual strain gages in each rosette is as
shown. Note: this may require using the three strains from the rosette to find the
principal strains and then using the complete strain state to find the strains acting in
the directions of interest of each member. Use local coordinates on each member to
define the coordinate strains. In all cases define x as being along the longitudinal axis
of the member, y being in the plane of the member's surface and z being normal to the
surface.

Member x- Strain (microstrain) |y - Strain (microstrain) z-Strain (microstrain)
Top Tube (top SG)
Top Tube (bottom SG)
Down Tube

Seat Tube

Seat Stay

Chain Stay

Head Tube/Fork

y
N v,
3 45° x =Longitudinal Axis




4) Use 3-D (i.e., Generalized) Hooke's law to find the stress acting in the x-direction

E e+ vE
(1+v) *

longitudinal direction). Note: =
(fong ) Ox A+ v)i-2v)

(e, +¢, +¢,) and E for the

steel tubes is 200 GPa.

Member

Top Tube (top SG)
Top Tube (bottom SG)
Down Tube

Seat Tube

Seat Stay

Chain Stay

Head Tube/Fork

5) Use the longitudinal stress calculated in Part 4) to estimate the longitudinal force in
each member. Note: Note that this analysis requires the assumption that the stress is
uniform across the cross section. The cross sectional dimensions for the members are

as follows and the cross secitonal area is A=(n/4(OD2-1D2):

X- Stress (MPa)

Top Tube:OD=28.8 mm, ID=26.5 mm; Down Tube: OD=32.2 mm, ID=29.9 mm,
Seat Tube: OD=28.8 mm, ID=26.5 mm; Head Tube/Fork:OD=34 mm, ID=31.7 mm,
Seat and Chain Stays:OD=16.1 mm; ID=13.8 mm.

Cross Sectional Area
(mm?)

X- Stress
(MPa)

Member Longitudinal Force

=stress *area (N)

Top Tube (top SG)
Top Tube (bottom SG)
Down Tube

Seat Tube

Seat Stay

Chain Stay

Head Tube/Fork

6) Compare the measured longitudinal forces to the longitudinal forces calculated using
the simple truss analysis. Explain any differences by the answering the questions:

i) What assumptions were made in the truss analysis?
i) What assumptions were made in analyzing the strain gage results to find the forces?

iii) From the strain gage results for the top tube, is the stress distribution uniform across
the cross section of the tube? If not, is the truss analysis of uniform axial forces valid?

Member

Longitudinal Force
from Truss Analysis

(N)

Longitudinal Force
from Strain Gage Analysis

(N)

% difference

Top Tube (top SG)

Top Tube (bottom SG)

Down Tube

Seat Tube

Seat Stay

Chain Stay

Head Tube




7) Note that because of the choice of the locations (i.e., A and J) for obtaining strain
information, it is possible to separate axial stresses (P/A) from uniaxial bending (Mc/l)
at the center of the top tube. By taking the average of the total X-stress at A and total
stress at J, the bending component cancels and the axial stress acting in the top tube
is obtained.

(X-stressA + X stress J)/2= axial stress

The axial force can then be obtained by multiplying the axial stress times the cross
sectional area.
axial force = axial stress x cross sectional area

The principle of superposition allows the addition of the axial and bending stresses
because they are the same type of stress (i.e., normal) acting in the same direction.
(i.e., X-stress=axial stress + bending stress). Therefore, once the axial stress is found,
the bending stress can be obtained by subtracting the axial stress from the total X-
stress

bending stress = X-stress - axial stress

8) As it turns out, due to the variability of the loading scenarios, the stress state in a
bicycle frame is more complex than can be analyzed using a simple truss analysis or
the simple assumption of uniformly stressed tubes. Finite element analysis (FEA)
lends itself to solving this complex stress state. Using the results of an FEA of a model
of the bicycle frame for the applied force of this test, quantitatively and qualitatively
compare the stresses at the various locations and tubes.

i) Are the stresses uniform across the cross sections?
ii) What are the effects of bending and torsion on the stress state?

iii) Are the axial, bending, and total stresses constant over the lengths of the
tubes?

iv) Are there any stress concentrations (e.g., are the maximum stresses greater at
the joints than in the middle?

v) Compare the axial (longitudinal) forces determined from the truss analysis to
that determined from the strain gage analysis (from the axial stress after
substracting the bending stress) to the that determined from the FEA for the top
tube. Does bending significantly affect the results?

Member Longitudinal Force | Longitudinal (Axial) Force Axial Force from
from Truss Analysis | from Strain Gage Analysis FEA
(N) (N) (N)
Top Tube
Axial Stress Axial Stress (no bending) Axial Stress (no
from Truss Analysis | from Strain Gage Analysis | bending) from FEA
(MPa) (MPa) (MPa)
Top Tube
Total X-stress Total X-stress Total X-stress from
from Truss Analysis | from Strain Gage Analysis FEA
(MPa) (MPa) (MPa)
Top Tube (top)
Top Tube (bottom)




9) Deflections in trusses can often be found using energy methods. Again, to simplify the
analysis it is assumed that the axial force in each tube only acts at the joints and
therefore the axial force is constant throughout the length of each member. The unit
force method is used as follows in which the deflection at the point of interest is:

A= ZNNL

where N, and N, are the forces in each member due to unit and actual forces (in this

case use the forces found from the truss analysis, not the experimental measurement),

respectively, L is the length of each member, E is the elastic modulus of each member
and A is the cross sectional area of each member. In this case, the deflection of
interest at the bottom bracket is in the same direction and at the same location as the
applied force. Nonetheless, the unit force method can still be used by filling in the
appropriate sections of the table where E=200,000 MPa for all members.

Member L A N, [dueto P] | N, [due to unit P] NN L
(mm) (mm?) (N) (N) EA

Top Tube

Down Tube

Seat Tube

Seat Stay

Chain Stay

Head
Tube/fork

A ZNNL

10) Compare the measured deflection at the bottom bracket to the deflection predicted
from the unit force method due to axial forces only and the FEA model. Comment on
any difference and the reasons (for example, assumptions of the unit force method for
deflection or truss analysis for the axial forces). Suggest a other ways to predict the
deflections at joints.

Measured Deflection for Unit | % difference Measured Deflection from % difference
Deflection Force Analysis Deflection FEA Model
(mm) (mm) (mm) (mm)
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Figure 1 Example of a Simple Truss
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Figure 2 As Measured Dimensions, Nomenclature, and Strain Gage Locations on Bicycle
Frame
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Figure 3 Assumed Dimensions and Angles for Simplified Truss Analysis



LABORATORY REPORT

1. As a minimum include the following information in the laboratory report.
a) Free body diagram of the truss, showing your assumptions for the reactions at the
front and rear axles.
b) For forces in each member found from a simple truss analysis. Note: for truss
forces, use "+" to indicate tensile force and "-" to indicate compressive force.
Applied Force, P (N)

Reaction at Front Axle, Rf (N)
Reaction at Rear Axle, Rr (N)
Force in Top Tube Fit (N)
Force in Down Tube Fdt (N)
Force in Seat Tube Fst (N)
Force in Seat Stay Fss (N)
Force in Chain Stay Fcs (N)
Force in Head Tube/Fork Ff (N)

c) Comparison of the longitudinal forces in each member from the truss analysis
and the experimental measurements.

Member Longitudinal Force Longitudinal Force % difference
from Truss Analysis from Strain Gage
(N) Analysis
(N)

Top Tube (top SG)
Top Tube (bottom SG)
Down Tube

Seat Tube

Seat Stay

Chain Stay

Head Tube

d) Comparison of the deflection at the bottom bracket found from the experimental
measurements, energy methods, and FEA model.

Measured Deflection for Unit | % difference Measured Deflection from % difference
Deflection Force Analysis Deflection FEA Model
(mm) (mm) (mm) (mm)




2. As a minimum, discuss the following in the laboratory report.
a) Answers to these questions (DO NOT simply answer the questions, but instead
use the questions are starting points for explanations about the results:
i) What assumptions were made in the truss analysis?

i) What assumptions were made in analyzing the strain gage
results to find the forces?

iif) From the strain gage results for the top tube, is the stress
distribution uniform across the cross section of the tube? Can the

axial stress be separated from any bending stress, if any? If the

stress distribution is not uniform, is the truss analysis assuming uniform
axial forces valid?

iv) From the FEA model, are the stresses uniform across the cross
sections?

v) From the FEA model, what are the effects of bending and torsion on the stress
state?

vi) From the FEA model, are the stresses constant over the lengths of the tubes?
vii) From the FEA model, are there any stress concentrations?

viii) From the FEA model, how do the deflections compare?

b) Error analysis in the measurements.

3. At a minimum, include the following information in the appendix of the laborator
report. THIS MAY NOT BE ALL THAT IS NECESSARY (i.e., don't limit yourself to this list.)

a. Original data sheets and/or printouts . o
b. All supporting calculations. Include sample calculations if using a spread sheet
program.
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DATA SHEET

EQUIPMENT
IDENTIFICATION

Applied Force, P (kg)

Total Deflection at
Bottom Bracket (mm)

"Machine" Deflection at
Reaction Point (mm)

[ Gage 1 (microstrain) | Gage 2 (microstrain) || Gage 3 (microstrain)

Initial Final Initial Final Initial Final

Location A

Location B

Location C

Location D

Location E

Location F

Location G

Location H

Location |

Location J




