
8. TIME DEPENDENT BEHAVIOUR: CREEP

In general, the mechanical properties and performance of materials change with

increasing temperatures.  Some properties and performance, such as elastic modulus

and strength decrease with increasing temperature.  Others, such as ductility, increase

with increasing temperature.

It is important to note that atomic mobility is related to diffusion which can be

described using Ficks Law:

D = DO exp −
Q

RT

 
 

 
 (8.1)

where D is the diffusion rate, Do is a constant, Q is the activation energy for atomic motion,

R is the universal gas constant (8.314J/mole K) and T is the absolute temperature.  Thus,

diffusion-controlled mechanisms will have significant effect on high temperature

mechanical properties and performances.  For example, dislocation climb, concentration

of vacancies, new slip systems, and grain boundary sliding all are diffusion-controlled and

will affect the behaviour of materials at high temperatures.  In addition, corrosion or

oxidation mechanisms, which are diffusion-rate dependent, will have an effect on the life

time of materials at high temperatures.

Creep is a performance-based behaviour since it is not an intrinsic materials

response.  Furthermore, creepis highly dependent on environment including temperature

and ambient conditions.  Creep can be defined as time-dependent deformation at

absolute temperatures greater than one half the absolute melting.  This relative

temperature (
T (abs )

Tmp (abs )
) is know as the homologous temperate.  Creep is a relative

phenomenon which may occur at temperatures not normally considered "high."  Several

examples illustrate this point.

a) Ice melts at 0°C=273 K and is known to creep at -50°C=223 K.  The homologous

temperature is 
223
273

= 0.82  which is greater than 0.5 so this is consistent with the

definition of creep.

b) Lead/tin solder melts at ~200°C=473 K and solder joints are known to creep at 

room temperature of 20°C=293 K.  The homologous temperature is 
293
473

= 0.62

which is greater than 0.5 so this is  consistent with the definition of creep.
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Figure 8.1 Comparison of creep and stress rupture tests

c) Steel melts at ~1500°C=1773 K and is known to creep in steam plant

applications of 600°C=873 K.  The homologous temperature is 
873

1773
= 0.50  which

is equal to 0.5 so this is consistent with the definition of creep.

d) Silicon nitride melts/dissociates at ~1850°C=2123 K and is known to creep in 

advanced heat engine applications of 1300°C=1573 K.  The homologous

temperature is 
1573
2123

= 0.74  which is greater than 0.5 so this is consistent with the 

definition of creep.

Conceptually a creep test is rather simple: Apply a force to a test specimen and

measure its dimensional change over time with exposure to a relatively high temperature.

If a creep test is carried to its conclusion (that is, fracture of the test specimen), often

without precise measurement of its dimensional change, then this is called a stress

rupture test (see Fig 8.1).   Although conceptually quite simple, creep tests in practice are

more complicated.  Temperature control is critical (fluctuation must be kept to <0.1 to

0.5°C). Resolution and stability of the extensometer is an important concern (for low
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creeping materials, displacement resolution must be on the order of 0.5 µm).

Environmental effects can complicate creep tests by causing premature failures unrelated

to elongation and thus must either mimic the actual use conditions or be controlled to

isolate the failures to creep mechanisms.  Uniformity of the applied stress is critical if the

creep tests are to interpreted.  Figure 8.2 shows a typical creep testing setup.

The basic results of a creep test are the strain versus time curve shown

schematically in Fig. 8.3.  The initial strain, ε i =
σ i

E
, is simply the elastic response to the

applied load (stress).  The strain itself is usually calculated as the engineering strain,

ε =
∆L

Lo
.  The primary region (I) is characterized by transient creep with decreasing creep

strain rate (
dε
dt

= ˙ ε ) due to the creep resistance of the material increasing by virtue of

material deformation.  The secondary region (II) is characterized by steady state creep
(creep strain rate, ˙ ε min = ˙ ε ss , is constant) in which competing mechanisms of strain

hardening and recovery may be present.  The tertiary region (III) is characterized by

increasing creep strain rate in which necking under constant load or consolidation of

failure mechanism occur prior to failure of the test piece.  Sometimes quaternary regions

are included in the anlaysis of the strain-time curve as well, although these regions are

very specific and of very short duration.

Figure 8.2  Typical creep test set-up
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Figure 8.3  Strain time curve for a creep test

In principle, the creep deformation should be linked to an applied stress.  Thus, as

the specimen elongates the cross sectional area decreases and the load needs to be

decreased to maintain a constant stress.  In practice, it simpler to maintain a constant

load.  When reporting creep test results the initial applied stress is used.  The effect of

constant load and constant stress is shown in Fig. 8.3.  Note that in general this effect

(dashed line for constant stress) only really manifests itself in the tertiary region, which is

beyond the region of interest in the secondary region.  The effects of increasing

temperature or increasing stress are to raise the levels and shapes of the strain time

curves as shown in Figure 8.4.  Note that for isothermal tests, the shapes of the curves for

increasing stress may change from dominant steady state to sigmoidal with little steady

state to dominant primary.  Similar trends are seen for iso stress tests and increasing

temperature (see Fig. 8.4).

Creep mechanisms can be visualized by using superposition of various strain-time

curves as shown in Fig. 8.5.   An empirical relation which describes the strain-time relation

is:
ε = ε i 1+ βt 1/3( ) exp(kt) (8.2)

where β is a constant for transient creep and k is related to the constant strain rate.  A

"better" fit is obtained by:

ε = ε i + εt 1− exp(rt)( ) + t˙ ε ss (8.3)

where r is a constant, εt is the strain at the transition from primary to secondary creep and
˙ ε ss  is the steady-state strain rate.  Although no generally-accepted forms of nonlinear

strain-time relations have been developed, one such relations is:

ε = ε i +Bσ mt + Dσα 1− exp(βt )( ) (8.4)

where B, m, D, a and b are empirical constants.
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Figure 8.4  Effect of stress and temperature on strain time creep curves

In this relation, if t >ttransient then

ε = ε i +Bσ mt + Dσα (8.5)

and the strain rate is the steady-state or minimum strain rate:
dε
dt

= Bσ m = ˙ ε ss (8.6)

The steady state or minimum strain rate is often used as a design tool.  For

example, what is the stress needed to produce a minimum strain rate of 10-6 m/m / h ( or

10-2 m/m in 10,000 h) or what is the stress needed to produce a minimum strain rate of 10-

7 m/m / h ( or 10-2 m/m in 100,000 h).  An Arrhenius-type rate model is used to include the

effect of temperature in the model of Eq. 8.6 such that:

˙ ε ss = ˙ ε min = Aσn exp
−Q

RT

 
 

 
 (8.7)

where n is the stress exponent, Q is the activation energy for creep, R is the universal gas

constant and T is the absolute temperature.

To determine the various constants in Eq. 8.7 a series of isothermal and iso stress

tests are required.  For isothermal tests, the exponential function of Eq. 8.7 becomes a

constant resulting in

˙ ε ss = ˙ ε min = Bσn (8.8)

Equation 8.8 can be linearized by taking logarithms of both sides such that

log ˙ ε ss = log ˙ ε min = log B + n log σ (8.9)
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Figure 8.5  Superposition of various phenomenological aspects of creep

Log-log plots of ˙ ε min = ˙ ε ss versus σ  (see Fig. 8.6) often results in a bilinear

relation in which the slope, n, at low stresses is equal to one indicating pure diffusion

creep and n at higher stresses is greater than one indicating power law creep with

mechanisms other than pure diffusion (e.g., grain boundary sliding).

For iso stress tests, the power dependence of stress becomes a constant resulting

in

˙ ε ss = ˙ ε min = C exp
−Q
RT

 
 

 
 (8.10)

Equation 8.10 can be linearized by taking natural logarithms of both sides such that

ln ˙ ε ss = ln ˙ ε min = ln C −
Q
R

1
T

(8.11)

Log-linear plots of ˙ ε min = ˙ ε ss versus 
1
T

 (see Fig. 8.7) results in a linear relation in which

the slope, 
−Q

R
, is related to the activation energy, Q, for creep.

log 

n=1 (diffusion creep)

n>1 (power law creep)

σ

.

Figure 8.6 Log-log plot of minimum creep strain rate versus applied stress showing
diffusion creep and power law creep.
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Figure 8.7 Log-linear plot of minimum creep strain rate versus reciprocal of temperature
showing determination of activation energy.

The goal in engineering design for creep is to predict the behaviour over the long

term.  To this end there are three key methods: stress-rupture, minimum strain rate vs. time

to failure, and temperature compensated time.  No matter which method is used, two

important rules of thumb must be borne in mind: 1) test time must be at least 10% of

design time and 2) creep and/or failure mechanism must not change with time,

temperature or stress.

Stress-rupture This is the "brute force method" is which a large number of tests are

run at various stresses and temperatures to develop plots of applied stress vs. time to

failure as shown in Fig. 8.8.  While it is relatively easy to use these plots to provide

estimates of stress rupture life within the range of stresses and lives covered by the test

data, extrapolation of the data can be problematic when the failure mechanism changes

as a function of time or stress as shown by the "knee" in Fig. 8.8.

Minimum strain rate vs. time to failure  This type of relation is based on the

observation that strain is the macroscopic manifestation of the cumulative creep damage.

As such, it is implied that failure will occur when the damage in the material in form of

creep cavities and cracks resulting from coalesced creep cavities reaches a critical level.

This critical level of damage is manifested as the failure which can be predicted from the

minimum strain rate and the time to failure such that.

˙ ε min tf = C ≈ εf (8.12)
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Figure 8.8 Stress rupture plots for various temperatures

Equation 8.12, known as the Monkman-Grant relation, should give a slope of -1 on
a log-log plot of ˙ ε min  versus  t f  regardless of temperature or applied stress for a particular

material  It then becomes a simple matter to predict a time to failure either by measuring

the minimum strain at a given stress and temperature or predicting the minimum strain

rate from Eq. 8.7 for the given temperature and stress once the A and Q are determined.

Having found the minimum strain rate, the time to failure can be found from the Monkman-

Grant plot for the particular material.

Temperature-compensated time  In these methods, a higher temperature is used at

the same stress so as to cause a shorter time to failure such that temperature is traded for

time.  In this form of accelerated testing it is assumed that the failure mechanism does not

change and hence is not a function of temperature or time.  In addition, assumptions can

be made that Q is stress and temperature independent.  Two of the more well-known

relations are Sherby-Dorn and Larson Miller.
In the Sherby-Dorn method, θ is the temperature compensated time such that:

PSD = logθ = logt f -
log e

R
Q
T

(8.13)

where PSD is the Sherby-Dorn parameter and Q is assumed independent of temperature

and stress.  In this method, a number of tests are run at various temperatures and stresses

to determine the times to failure and activation energy.  A "universal" plot (see Fig. 8.9) is

then made of the stress as a function of PSD.  The allowable stress for an combination of

time to failure and temperature (i.e., PSD) can then be determined from the curve.
In the Larson-Miller method, θ, is the temperature compensated time such that:

PLM = log e
R

Q =T logtf  +(logθ = C)( ) (8.14)
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Figure 8.9  Summary of Sherby-Dorn relation

where PLM is the Larson-Miller parameter, Q is assumed to a function of stress only, and

C is a constant of ~20 for most materials.  In this method, a number of tests are run at

various temperatures and stresses to determine the times to failure and activation energy.

A "universal" plot (see Fig. 8.10) is then made of the stress as a function of PLM.  The

allowable stress for an combination of time to failure and temperature (i.e., PLM) can then

from the curve.

An example of the application of the Sherby-Dorn relation is as follows.  For a

certain aluminum-magnesium alloy the stress-PSD relation is found to be

σ = f PSD( ) = −11.3PSD −124   (25 ≤ σ ≤ 85 MPa) (8.15)

The design problem is to determine the allowable stress to give 2000 h life at 200°C.  For

this alloy, the activation energy, Q, is 150.5 kJ/mole.  Using Q=150,500 J/mole, R=8.314

J/mole K, tf=2000 h, and T=473 K, PSD is  calculated as -13.21.  Substituting this value of

PSD into Eq. 8.15 gives an allowable stress of 25 MPa.
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Figure 8.10  Summary of Larson-Miller relation
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