ME 374, System Dynamics Analysis and Design
Homework 6
Distributed: 4/30/2012, Due: 5/11/2012
(There are 4 problems in this set.)

1. This is an old exam problem that I gave in the Spring Quarter of 2004. Micro-electro-
mechanical systems (MEMS) are emerging technology that uses semiconductor processes to
fabricate tiny sensors and actuators. One type of MEMS actuator is thermal drives consisting
of a silicon base beam and a metal electrode with large resistance; see Fig. 1(a). When
the electric voltage V' (¢) is applied to the electrode, it generates heat ¢(t) increasing the
relative temperature T'(t) of the beam to the ambient fluid. Since silicon and metal have
different coefficients of thermal expansion, the temperature change causes the motion x(¢).
Figure 1(b) shows the block diagram describing the dynamics, where R and k are both
constants. Moreover, the relationship between the temperature T'(¢) and and input heat flow
q(t) satisfies

dT(t)

dt

where p is the density of the beam, v is the volume of the beam, ¢ is the specific heat of the

pve
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beam, h is the heat transfer coefficient of the beam, and A is the surface area of the beam.
Answer the following questions.

(a) Derive the frequency response function G'(w) from ¢(t) to T'(t).

(b) Plot the magnitude G(w) as a function of w. Is it a low-pass filter or a high-pass filter?
What is the bandwidth of G/(w)? What is the time constant of the system?

(c) Two thermal drives A and B have identical materials. The size of A is twice as large as
B in every dimension. Which thermal drive has a larger bandwidth and why?

(d) Thermal drive C' has the following frequency response function
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where 7 is the time constant. In addition, the thermal drive has a corner frequency
of 100 Hz. The background noise has a magnitude of 107°. When |G(w)]| is less than
the background noise, one cannot measure the response of the thermal drive any more.
Determine the frequency range where the response cannot be measured.

2. This is an old exam question from Spring Quarter of 2008. Figure 2 shows a mechanical filter
consisting of a spring with stiffness k& and a linear damper with damping coefficient ¢. The
filter is subjected to an input displacement z(¢), and the corresponding force output is f(¢).
The forces and displacement then satisfy

cf(1) + kF(1) = cki () (3)

Answer the following questions.
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Figure 2: A mechanical filter
Figure 1: a thermal drive

(a) Derive the frequency response function G/(w) with z(t) being the input and f(¢) being
the output. You can leave the answer in the form of a complex fraction.

(b) Derive the magnitude and phase of the frequency response function G/(w). What is the
cut-off frequency of the filter? Is it a high-pass or a low-pass filter?

(c) Consider the case when & = 10 N/m and ¢ = 1 Ns/m. If the driving displacement is
z(t) = cos 10t, derive the output force f(t).

(d) Engineer X wants to use this filter as a force sensor. When a force f(t) is applied, one
can measure the displacement z(¢) and calculate the force through G'(w). What is the
frequency range in which G'(w) is roughly constant? Also, what is the sensitivity of the
sensor (i.e., displacement per unit force) in this frequency range?

3. This is a real problem that we encounter in our hard disk drive (HDD) vibration research. In

the past, HDD used ball bearings generating a lot of noise and vibration. Currently, HDD
on the market adopt hydrodynamic bearings. Figure 3 shows a simplified model. The inner
circle in Fig. 3 represents the shaft carrying all the disks, the outer circle in Fig. 3 represents
the bearing sleeve (which is fixed in space), and the shaded area is the radial hydrodynamic
bearing. Let’s define a coordinate system zy with its origin attached to the center of the
bearing sleeve. The motion of the shaft is then described by the coordinates z and y of the
shaft center. The vibration of HDD spindles with hydrodynamic bearings is very complicated,
but a simplified version of the equations of motion takes the following form.
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In (4), m is the mass of the spindle (including the disks) and ¢ is the damping coefficient
of the bearing. In addition, ky and ks are called in-line stiffness and cross stiffness of a
hydrodynamic bearing. f, and f, are the forces acting on the spindle (e.g., vibration from
your laptop computer). As shown in Fig. 3, the system has two degrees of freedom requiring
a matrix formulation in (4). With the following complex notation

2ty ==(t) +jyt);  fO) =L +ify(1); j=vV-1 (5)
one can rewrite (4) as a second-order ordinary differential equation with complex coefficients

mE(E) + c2(t) + (ky — jka) 2(t) = (1) (6)



Based on the equation of motion (6), please answer the following questions.

(a)

(b)

Derive the frequency response function G'(w) from (6). You can assume that f(t) = foe/“*

and z(t) = zpe’**. Then G(w) = 20/ fo.

Consider the case when w < \/fn—l. Show that the frequency response function can be

approximated as
1

G(W) ~ kl —|—] (cw — kz)

(7)

Derive the magnitude and phase of G/(w) from (7). Plot the magnitude and phase as
a function of w for both positive and negative w. Do |G (w)| = |G(-w)| and LG(w) =
— LG (—w) as we discuss in the class? Why?

According to magnitude of G(w), determine when the resonance occur. What is the
magnitude of the resonance? What happens when ki is extremely small? When &y is

large, how could you use the phase of G(w) to find the resonance?
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Figure 3: Whirling of a spindle with hy-

drodynamic bearing

Figure 4: A model of a pneumatic hammer

. This is an old exam problem that I gave in Spring Quarter of 1999. Figure 4 shows a simplified

model describing a pneumatic hammer used in road construction. The mass of the hammer

is m, the stiffness and damping between the hammer and the ground are k; and ¢, and

the stiffness and damping between the hammer and the operator’s hands are ko and ¢3. The

impact between the hammer and the ground is modeled as a prescribed ground motion z(t) in

the form of periodic triangular pulses with period T. The vibration of the pnumatic hammer

is described by y(¢). The hands are considered fixed in space.

(a)

Consider the ground motion z(t) as input and the vibration y(t) of the hammer as
output. The differential equation is given by

mi + (c1 + c2)y+ (k1 + k2)y = kva + 1@ (8)



Derive the frequency response function from z(¢) to y(t) using equation (8). What is
the natural frequency and viscous damping factor ¢ of the pneumatic hammer?

The frequency response function (4(w) from the ground motion z(t) to the force f(t)

transmitted to the operator’s hands is given by

(kg —|— jCQW) (kl —|— j01W)
—mw? 4 j(c1 + co)w + (k1 + ko)

Gi(w) = (9)
In general, ¢; and ¢y are designed to be small. Determine the magnitude of GGy (w) when
w — 0 and w — oo. Sketch the magnitude of G (w). Assume that the damping ¢; and ¢y
are small. How would you design the natural frequency of the hammer so that minimum

forces are transmitted to the operator’s hands given the periodic ground motion of period

T? Why?



