ME 374, System Dynamics Analysis and Design
Homework 4
Distributed: 4/21/2008, Due: 5/2/2008
(There are 4 problems in this set.)

1. Consider a mass-damper system shown in Fig. 1 with inertia m and damping coefficient c.
The mass is driven by a prescribed displacement u(t). In addition, the position of the mass
is (t) and the velocity of the mass is v(t) = &(¢).

(a) Show that the equation of motion governing v(t) is
mv + cv = ¢l (1)

Find the transfer function from u(t) to v(t).

(b) Determine the poles and zeros in terms of m and ¢. What is the physical driving condition
at the zero?

(¢) From now on, consider the following parameters m = 1 kg and ¢ = 1 Ns/m. When
u(t) = sin 2t, calculate the transfer function and determine v(¢).

(d) Consider the following input
u(t) = coswt (2)

where w is an arbitrary driving frequency. Derive the magnitude and phase of the
transfer function as a function of w. What is the frequency w such that the phase of the
transfer function is 45°7 In addition, what is the magnitude of the transfer function at
that frequency?

(e) Now consider the equation of motion governing x(t). Show that it satisfies
mi 4 ¢t = ct (3)

Derive the transfer function from u(t) to x(t). What are the poles and zeros of this
transfer function? Is there a pole-zero cancellation? If there is, what is the physical

meaning of the pole-zero cancellation.

2. This is a real problem that we encounter in our hard disk drive (HDD) vibration research.
In the past, HDD used ball bearings generating a lot of noise and vibration. Currently, most
HDD on the market adopt hydrodynamic bearings. Figure 2 shows a simplified model. The
inner circle in Fig. 2 represents the shaft carrying all the disks, the outer circle in Fig. 2
represents the bearing sleeve, and the shaded area is the radial hydrodynamic bearing. Let’s
define a coordinate system zy with its origin attached to the center of the bearing sleeve.
The motion of the shaft is then described by the coordinates x and y of the shaft center. The
vibration of HDD spindles with hydrodynamic bearings is very complicated, but a simplified
version of the equations of motion takes the following form.

o GG [ E 1) - () e



Figure 1: A mass-damper system

Figure 2: Whirling of a spindle with hy-
drodynamic bearing

In (4), m is the mass of the spindle (including the disks) and ¢ is the damping coefficient
of the bearing. In addition, k; and ko are called in-line stiffness and cross stiffness of a
hydrodynamic bearing. f, and f, are the forces acting on the spindle (e.g., vibration from

your laptop computer). To make our analysis simple, assume that f, = 0.
(a) Show that the transfer function from f; to z is

2 k
Ho(s) = ms —|—cs—|—21 (5)
(ms? 4 ¢s+ kq) —I—k%

and the transfer function from f, to y is

ks
H,(s) = 6
u(5) (msz—l—cs—l—kl)Q—l—k% (6)

Hint: Assume that

(b) Show that the systems have four poles. Two of them are governed by
ms® + s+ ky — jha =0 9)

and the other two are the complex conjugate of the poles from (9)



(c) Now let’s use the parameters that appear in a real disk drive. m = 7.872 x 1072,
c=4.158 x 10%, k; = 1.727 x 10%ws, and ky = 2.185 x 10%ws, where w3 is the spin speed
of the disk drive in rad/s. (Note that k; and kg are proportional to the spin speed ws.)
Calculate and plot the poles of the system on the complex plan for ws = 5,400 rpm and
ws = 7,200 rpm.

(d) Consider an exciation
fz(t) = coswt (10)

where w is the excitation frequency. Find out the frequency w at which the spindle
will have the maximum response. (Hint: For the input in (10), s = jw. When will s
get closest to the poles?) You should find that the excitation frequency w causing the
maximum response is always very close to the half of the spin speed ws3. Therefore, this
phenomenon is oftern called half-speed whirl.

(e) Consider the case when ws = 7,200 rpm and the excitation frequency w = 125 Hz.
Calculate the magnitude and phase of H,(s) and H,(s). Will the spindle have a larger
response in z or in y7 Why?

(f) Consider the case when w3 = 7,200 rpm and the excitation frequency w = 110 Hz.
Calculate z(t) and y(t). Plot the spindle positions (z,y) on the cartesian coordinates as
a function of time. What do you see?

Figure 3: Another fluid system

3. This problem requires some calculations. You can use your fancy calculator or any software
to work out the answers. I have listed some commands in Matlab, in case you need them.

Consider the fluid system shown in Fig. 3. Let C47 = C3 = I = Ry = Ry = 1. The state
equation and output equation are

d PCy 0 0 -1 Do, 1
7l pe | = 0 -1 1 po, |+ 0 | Qs (11)
qr 1 -1 -1 qr 0
and
Pcy
D1 1 0 0 0
= s 12
(Pz) [010] e +(0 ¢ -
qr

(a) Determine the stability of the system by evaluating the eigenvalues of the state matrix
A. (Hint: Use Matlab command eig(A).)



(b) Judging from the eigenvalues, there should be two modes of water discharge from the
tank. Describe qualitatively how the water levels in the tank will vary as functions of

time for each mode of discharge.

(c) Determine the transfer matrix from the input Qs to the output pressures p; and ps.

(Hint: Use the formula H(s) = C(sI — A)"'B + D.)
(d) Look at Hy(s), which is the transfer function from Qs to p1. Hi(s) should take the form

of )
s+ 2s+2
H = 1
1(5) §34+252 435+ 1 (13)
The poles of the system then satisfy
s7 425+ 3s4+1=0 (14)

Find the roots of the polynomial (i.e., the poles) by using Matlab command roots(C),
where C is a vector containing the coefficients of the polynomial in the decending order,
i.e.,

C=[1 2 3 1] (15)

Determine the zeros in a similar manner. Plot the poles and zeros on the complex s

plane.

4. This is an old exam problem from the Spring Quarter of 2006. Consider the state equation

d €T 0 1 €T 1
il )= 1] () ()0 o

where 21 and xy are state variables, and w(t) is the input variable.

(a) Derive the transfer function Hy(s) from u(t) to x ().

(b) Determine the poles and zeros of Hy(s).



