
ME 374, System Dynamics Analysis and Design

Homework 4: Solution (May 6, 2008)
by Jason Frye

Problem 1

Figure 1: Mass-damper system; free-body diagrams

(a) From the free body diagram, the sum of the forces on the mass m is

ΣFx = c(u̇ − ẋ) = mẍ.

Since v(t) ≡ ẋ(t),
c(u̇ − v) = mv̇,

or
mv̇ + cv = cu̇. (Ans.)

Substuting v(t) = V (s)est and u(t) = U(s)est gives

msX(s)est + cX(s)est = csU(s)est

or
(ms + c)X(s) = csU(s).

Then, the transfer function from u(t) to x(t) is

H(s) =
X(s)

U(s)
=

cs

ms + c
. (Ans.)

(b) pole: s = −c
m

; zero: s = 0.

At the zero s = 0,

u(t) = U(s)est
∣

∣

∣

s=0

= U(0) · (1) = U(0).

Therefore, the physical driving condition at the zero is that u(t) = constant.

(c) With m = 1kg and c = 1Ns/m,

H(s) =
s

s + 1
.

Then, u(t) = sin 2t = Im{e2jt} ⇒ s = 2j (U(s) = 1). Substituting into H(s) gives

H(2j) =
2j

1 + 2j
· 1 − 2j

1 − 2j
=

4 + 2j

5
.
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Since the input u(t) is the imaginary component of a complex expression, the output v(t) will also be the
imaginary component, i.e.,

v(t) = Im
{

V (s)est
}

∣

∣

∣

s=2j
= Im

{

H(2j)U(2j)e2jt
}

= Im

{

4 + 2j

5
(cos 2t + j sin 2t)

}

,

or

v(t) =
2

5
cos 2t +

4

5
sin 2t. (Ans.)

(d) Now, given u(t) = cos ωt = Re{ejωt} ⇒ s = jω, (U(s) = 1). Then, H(s) becomes

H(s)
∣

∣

s=jω
=

s

s + 1

∣

∣

s=jω
=

jω

1 + jω
· 1 − jω

1 − jω
=

ω2 − jω

1 + ω2

H(s)
∣

∣

s=jω
=

ω

1 + ω2
(ω + j).

Magnitude : /H(s)/
∣

∣

s=jω
=

√

(Re{H(s)})2 + (Im{H(s)})2
∣

∣

s=jω

/H(s)/
∣

∣

s=jω
=

ω

1 + ω2

√

ω2 + 1. (Ans.)

Phase : ∠H(s)
∣

∣

s=jω
= tan−1

(

Im{H(s)}
Re{H(s)}

)

∠H(s)
∣

∣

s=jω
= tan−1

(

1

ω

)

. (Ans.)

For ∠H(s) = 45◦ = π/4,

tan−1

(

1

ω

)

=
π

4

1

ω
= 1

or
ω = 1 rad/s. (Ans.)

Then,

/H(s)/ω=1
=

1

1 + 12

√

12 + 1

/H(s)/ω=1
=

√
2

2
. (Ans.)

(e) Substituting x(t) = X(s)est and u(t) = U(s)est into mẍ + cẋ = cu̇ gives

(ms2 + cs)X(s) = csU(s).

Then,

H(s) =
X(s)

U(s)
=

cs

ms2 + cs
. (Ans.)
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zero: s = 0; poles: s = 0, s = −c
m

.

There is pole-zero cancellation at s = 0. Then, we might think the transfer function looks like

H(s) =
X(s)

U(s)
=

c

ms + c
,

but this does not represent the equation of motion mẍ + cẋ = cu̇ governing x(t). If the system is excited at
s = 0 (i.e. a constant force is applied), then the position of the mass described by x(t) cannot be determined.

Problem 2

(a) Substituting x(t) = X(s)est, y(t) = Y (s)est, and fx(t) = F (s)est into the equations of motion
[

m 0
0 m

] [

ẍ
ÿ

]

+

[

c 0
0 c

][

ẋ
ẏ

]

+

[

k1 k2

−k2 k1

] [

x
y

]

=

[

fx(t)
0

]

gives
[

m 0
0 m

] [

s2X(s)est

s2Y (s)est

]

+

[

c 0
0 c

][

sX(s)est

sY (s)est

]

+

[

k1 k2

−k2 k1

][

X(s)est

Y (s)est

]

=

[

F (s)est

0

]

[

ms2 + cs + k1 k2

−k2 ms2 + cs + k1

] [

X(s)
Y (s)

]

=

[

F (s)
0

]

.

Then,

[

X(s)
Y (s)

]

=

[

ms2 + cs + k1 k2

−k2 ms2 + cs + k1

]

−1 [

F (s)
0

]

[

X(s)
Y (s)

]

=
1

(ms2 + cs + k1)2 + k2
2

[

ms2 + cs + k1 −k2

k2 ms2 + cs + k1

] [

F (s)
0

]

.

Therefore,

X(s) =
ms2 + cs + k1

(ms2 + cs + k1)2 + k2
2

F (s)

Y (s) =
k2

(ms2 + cs + k1)2 + k2
2

F (s),

so

Hx(s) =
X(s)

F (s)
=

ms2 + cs + k1

(ms2 + cs + k1)2 + k2

2

, Hy(s) =
Y (s)

F (s)
=

k2

(ms2 + cs + k1)2 + k2

2

. (Ans.)

(b) The denominator is the same for Hx(s) and Hy(s), and is a fourth-order polynomial in s. Therefore,
Hx(s) and Hy(s) have four poles, which are found from

(ms2 + cs + k1)
2 + k2

2
= 0

or
(ms2 + cs + k1)

2 = −k2

2 .

Taking the square root of both sides (since complex numbers are permitted) gives

ms2 + cs + k1 = ±jk2.

Then the poles are determined from

ms2 + cs + k1 − jk2 = 0 (1)

ms2 + cs + k1 + jk2 = 0. (2)
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The poles from (1) are the complex conjugates of the poles from (2).

(c) We are given parameters m = 7.872 × 10−2, c = 4.158 × 104, k1 = 1.727 × 104ω3, k2 = 2.185× 104ω3,
where ω3 is in rad/s.

For ω3 = 5, 400 rpm = 565.4867 rad/s, the poles of (1) and (2) are

p1 = −5.2797× 105 − 297.42j, p2 = −234.81 + 297.42j

p3 = −5.2797× 105 + 297.42j, p4 = −234.81− 297.42j. (Ans.)

Note that p1 and p3 are complex conjugates, as are p2 and p4.

For ω3 = 7, 200 rpm = 753.9822 rad/s, the poles of (1) and (2) are

p1 = −5.2789× 105 − 396.68j, p2 = −313.05 + 396.68j

p3 = −5.2789× 105 + 396.68j, p4 = −313.05− 396.68j. (Ans.)

Again, note that p1 and p3 are complex conjugates, as are p2 and p4.

(a) (b)

Figure 2: Poles: (a) ω3 = 5, 400 rpm; (b) ω3 = 7, 200 rpm

(d) The excitation fx(t) = cos ωt = Re{ejωt} ⇒ s = jω. The output of a system experiences the maximum
response when the system is excited at the poles of the transfer function. From (c), all four poles are complex
with negative real parts. The maximum response occurs at the poles closest to the imaginary axis (i.e. p2

and p4). Since s = jω from the input excitation, the maximum response occurs at ω = Im{p2}.

At ω3 = 5, 400 rpm = 565.4867 rad/s,

ω = Im{p2} = 297.42 rad/s ≈ 1

2
ω3. (Ans.)

At ω3 = 7, 200 rpm = 753.9822 rad/s,

ω = Im{p2} = 396.68 rad/s ≈ 1

2
ω3. (Ans.)
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(e) The excitation fx(t) = cos ωt = Re{ejωt} ⇒ s = jω (F (s) = 1), with ω = 125 Hz = 250π rad/s and
ω3 = 7, 200 rpm = 753.9822 rad/s. Then, with the same values for m, c, k1, and k2 as in (c),

Hx(s) =
ms2 + cs + k1

(ms2 + cs + k1)2 + k2
2

=
(1.2973 + 3.2657j) × 107

(−6.2677 + 8.4730j)× 1014

= (1.7591− 2.8323j)× 10−8,

so
/Hx(s)/ = 3.3341× 10−8. (Ans.)

Likewise,

Hy(s) =
k2

(ms2 + cs + k1)2 + k2

2

=
1.6475× 107

(−6.2677 + 8.4730j) × 1014

= (−0.9296− 1.2567j) × 10−8,

and
/Hy(s)/ = 1.5632× 10−8. (Ans.)

Note that the magnitude of Hx(s) is larger than the magnitude of Hy(s). The steady-state response of x(t)
and y(t) can be determined by

x(t) = Re{X(s)est} = Re{Hx(s)F (s)est} = Re{Hx(s)est}
y(t) = Re{Y (s)est} = Re{Hy(s)F (s)est} = Re{Hy(s)est}.

Since s = jω, the magnitude of Hx(s) will define the magnitude (or amplitude) of x(t), and the magnitude
of Hy(s) will define the magnitude of y(t). Since the magnitude of Hx(s) is larger than the magnitude of
Hy(s), the spindle will have a larger response in x.

(f) With ω = 110 Hz = 220π rad/s and ω3 = 7, 200 rpm = 753.9822 rad/s, and with the same values for m,
c, k1, and k2 as in (c),

Hx(s) =
ms2 + cs + k1

(ms2 + cs + k1)2 + k2
2

=
(1.2984 + 2.8738j) × 107

(−3.8589 + 7.4625j)× 1014

= (2.3286− 2.9440j)× 10−8,

and

Hy(s) =
k2

(ms2 + cs + k1)2 + k2
2

=
1.6475× 107

(−3.8589 + 7.4625j) × 1014

= (−0.9007− 1.7419j) × 10−8.

Then,

x(t) = Re{Hx(s)est} = Re{(2.3286− 2.9440j)× 10−8 · (cos(220πt) + j sin(220πt))}
x(t) = 2.3286× 10−8 cos(220πt) + 2.9440× 10−8 sin(220πt), (Ans.)
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and

y(t) = Re{Hy(s)est} = Re{(−0.9007− 1.7419j)× 10−8 · (cos(220πt) + j sin(220πt))}
y(t) = −0.9007× 10−8 cos(220πt) + 1.7419× 10−8 sin(220πt). (Ans.)

From the plot of x(t) vs. y(t), the spindle experiences more displacement in x than in y.

(a) (b)

Figure 3: Spindle position: (a) x(t) vs. y(t); (b) x(t), y(t) vs. t

Problem 3

We are given the system equations

d

dt





pC1

pC2

qI



 =





0 0 −1
0 −1 1
1 −1 −1









pC1

pC2

qI



 +





1
0
0



Qs

[

p1

p2

]

=

[

1 0 0
0 1 0

]





pC1

pC2

qI



 +

[

0
0

]

Qs,

which looks like

ẋ = Ax + Bu

y = Cx + Du.

(a) The eigenvalues of A =





0 0 −1
0 −1 1
1 −1 −1



 can be found using the Matlab command “eig(A)”, which gives

λ1 = −0.4302, λ2 = −0.7849 + 1.307i, λ3 = −0.7849− 1.307i. (Ans.)

For all three eigenvalues, Re{λ} < 0. Therefore, the system is stable.

(b) Two modes of discharge:

• when λ = λ1 = −0.4302, the water levels in the tank will decrease exponentially.
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• when λ = λ2,3 = −0.7849±1.307i, the water levels in the tank will oscillate while decreasing exponen-
tially.

(c) The transfer matrix H(s) from the input Qs to the output pressures p1 and p2 looks like

H(s) =

[

H1(s)
H2(s)

]

=

[

P1(s)/Q̄s(s)
P2(s)/Q̄s(s)

]

,

if we let p1(t) = P1(s)e
st, p2(t) = P2(s)e

st, and Qs(t) = Q̄s(s)e
st.

The transfer matrix can be found using H(s) = C(sI −A)−1B + D. First, note that

(sI − A)−1 =





s 0 1
0 s + 1 −1
−1 1 s + 1





−1

=
1

s3 + 2s2 + 3s + 1





s2 + 2s + 2 1 −(s + 1)
1 s2 + s + 1 s

s + 1 −s s2 + s



 .

Then,

H(s) = C(sI −A)−1B + D

=
1

s3 + 2s2 + 3s + 1

[

1 0 0
0 1 0

]





s2 + 2s + 2 1 −(s + 1)
1 s2 + s + 1 s

s + 1 −s s2 + s









1
0
0



 +

[

0
0

]

=
1

s3 + 2s2 + 3s + 1

[

1 0 0
0 1 0

]





s2 + 2s + 2
1

s + 1





H(s) =
1

s3 + 2s2 + 3s + 1

[

s2 + 2s + 2
1

]

. (Ans.)

(d) From (c), the transfer function from Qs to p1 is

H1(s) =
s2 + 2s + 2

s3 + 2s2 + 3s + 1
,

which has poles satisfying s3 + 2s2 + 3s + 1 = 0. Using the Matlab command “roots(R)”, where R is a
vector containing the coefficients of the polynomial

(

i.e. R = [1 2 3 1]
)

, the poles are

s = −0.4302, s = −0.7849 + 1.307i, s = −0.7849− 1.307i (Ans.)

(which are the eigenvalues of A).

Similarly, the zeros of H1(s) satisfy s2 + 2s + 2 = 0. Using the Matlab command “roots(T)”, where
T = [1 2 2], the zeros are

s = −1 + i, s = −1 − i. (Ans.)
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Figure 4: Fluid system poles and zeros

Problem 4

The state equation is
[

ẋ1

ẋ2

]

=

[

0 1
1 0

] [

x1

x2

]

+

[

1
0

]

u(t).

(a) To find the transfer function H1(s), first let x1(t) = X1(s)e
st, x2(t) = X2(s)e

st, and u(t) = U(s)est, and
substitute into the state equation, which gives

[

sX1(s)
sX2(s)

]

=

[

0 1
1 0

] [

X1(s)
X2(s)

]

+

[

1
0

]

U(s)

[

s −1
−1 s

] [

X1(s)
X2(s)

]

=

[

1
0

]

U(s).

This can be solved via
[

X1(s)
X2(s)

]

=

[

s −1
−1 s

]

−1 [

1
0

]

U(s)

[

X1(s)
X2(s)

]

=
1

s2 − 1

[

s 1
1 s

] [

1
0

]

U(s).

Then,

X1(s) =
s

s2 − 1
U(s).

Therefore, the transfer function from u(t) to x1(t) is

H1(s) =
X1(s)

U(s)
=

s

s2 − 1
. (Ans.)

(b) For H1(s)

• zero: s = 0;

• poles: s2 − 1 = 0 ⇒ s = ±1.
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