
ME 374, System Dynamics Analysis and Design

Homework 9: Solution (June 9, 2008)
by Jason Frye

Problem 1

(a) The frequency response function G(ω) and the impulse response function h(t) are Fourier transform
pairs. Therefore,

G(ω) = F{h(t)} =

∫

∞

−∞

h(t)e−jωtdt.

It is reasonable to assume that h(t) will only be considered for t > 0, or

h(t) =

{

e−t/τ , t > 0
0, t < 0

.

Therefore,

G(ω) =

∫

∞

0

e−t/τe−jωtdt

=

∫

∞

0

e−(jω+t/τ)tdt

= − 1

jω + 1/τ
e−(jω+t/τ)t

∣

∣

∣

∣

∞

0

= − 1

jω + 1/τ

(

e−(jω+t/τ)(∞) − e−(jω+t/τ)(0)
)

= − 1

jω + 1/τ
(0 − 1)

G(ω) =
1

jω + 1/τ
. (Ans.)

(b) Now we are given the FRF from y(t) to x(t)

G(ω) =
1

1 + 10ωj
(2)

whose magnitude is given by

|G(ω)| = 1√
1 + 100ω2

=
0.1

√

(0.1)2 + ω2
. (Ans.)

For ω � 0.1 (such as ω ≈ 0)
|G(ω)| = 1 or 20 log10{G(ω)} = 0 dB.

The magnitude behaves like a low-pass filter with cutoff frequency 0.1 rad/s and rolls off at 20 dB/decade,
as shown in Figure 1.

(c) The frequency response function given by (2) corresponds to a first-order system since there is only

one pole in the denominator. As mentioned, this forms a low-pass filter with cutoff frequency 0.1 rad/s.
Therefore, the bandwidth is 0.1 rad/s.

(d) The magnitude of the output spectrum of x(t) (i.e., the magnitude of X(ω)) is shown in Figure 2(a).

The frequency response function from the input y(t) to the output x(t) is G(ω) = X(ω)
Y (ω) . Therefore, the input

can be determined from

Y (ω) =
X(ω)

G(ω)
and |Y (ω)| =

|X(ω)|
|G(ω)| =

1

|G(ω)| · |X(ω)|.
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Figure 1: Magnitude of the frequency response function G(ω).

The magnitude of 1/|G(ω)| is shown in Figure 2(b). Note that the magnitude of G(ω) and the magnitude
of the output spectrum of x(t) are both constant (= 0 dB) up to their cutoff frequency. However, the cutoff
frequency for the output spectrum of x(t) is much higher than that for G(ω). Therefore, the magnitude of
the input spectrum of y(t) will initially follow the magnitude of 1/|G(ω)| up to ω = 100 rad/s. At that
point, the magnitude of the input spectrum of y(t) is the combination of the magnitude of 1/|G(ω)| (+20
dB/decade) and the magnitude of the output spectrum of x(t) (-40 dB/decade), or a net roll off of -20
dB/decade. The magnitude of the input spectrum of y(t) is shown in Figure 3.

(a) (b)

Figure 2: (a) Magnitude of the output spectrum of x(t); (b) Magnitude of 1/|G(ω)|.

Figure 3: Magnitude of the input spectrum of y(t).
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Problem 2

(a) For the given force history

f(t) =

{

1, 0 < t < T
0, otherwise

generated by the hammer, where T is the duration of the hammer impact, the Fourier transform F (ω) is

F (ω) = F{f(t)} =

∫

∞

−∞

f(t)e−jωtdt

=

∫ T

0

e−jωtdt

= − 1

jω
e−jωt

∣

∣

T

0

F (ω) =
j

ω

(

e−jωT − 1
)

. (Ans.)

(b) The amplitude of F (ω) is determined by first rewriting F (ω) as

F (ω) =
j

ω

(

e−jωT − 1
)

=
j

ω
(cos(ωT ) − j sin(ωT ) − 1)

=
1

ω
(sin(ωT ) + j (cos(ωT ) − 1))

Then the amplitude is

|F (ω)| =
1

ω

√

sin2(ωT ) + (cos(ωT ) − 1)
2

=
1

ω

√

sin2(ωT ) + cos2(ωT ) − 2 cos(ωT ) + 1

|F (ω)| =
1

ω

√

2 − 2 cos(ωT ) (Ans.)

which is illustrated in Figure 4. Note that when ω = 2π
T , 4π

T , . . . , 2nπ
T (n = 1, 2, 3, . . .),

|F (ω)| = 1

(2nπ/T )

√

2 − 2 cos

(

2nπ

T
T

)

= 0.

Figure 4: Amplitude of F (ω).

(c) Note that the 400-Hz resonance of the disk corresponds to ω = 800π rad/s. If T = 2.5 ms = 0.0025 s,
then

2π

T
=

2π (rad)

0.0025 (s)
= 800π rad/s = 400 Hz.
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From 2(b), |F (2π/T )| = 0. If the output of the system is x(t), then output spectrum of x(t) is

X(ω) = G(ω)F (ω) and |X(ω)| = |G(ω)| · |F (ω)|.

Since |F (400 Hz)| = 0, |X(400 Hz)| = 0 as well. Therefore, Henry would not excite the 400-Hz resonance of the disk.

At 500 Hz, |F (500 Hz)| 6= 0, and |G(500 Hz)| = 1.5. Therefore, Henry would excite the 500-Hz resonance of the disk.

(d) Now T = 1 ms = 0.001 s.

At ω = 400 Hz = 800π rad/s:

|F (400 Hz)| = |F (800π)| = 1

800π

√

2 − 2 cos(800π · 0.001)

= 7.57 · 10−4.

Then
|X(400 Hz)| = |G(400 Hz)| · |F (400 Hz)| = (1) · (7.57 · 10−4)

or
|X(400 Hz)| = 7.57 · 10−4. (Ans.)

At ω = 500 Hz = 1000π rad/s:

|F (500 Hz)| = |F (1000π)| = 1

1000π

√

2 − 2 cos(1000π · 0.001)

=
1

500π
.

Then

|X(500 Hz)| = |G(500 Hz)| · |F (500 Hz)| = (1.5) ·
(

1

500π

)

or

|X(500 Hz)| =
1.5

500π
. (Ans.)

Problem 3

(a) (b)

Figure 5: (a) Model for vibration control; (b) Free-body diagram.

(a) For the system shown in Figure 5(a), the equation of motion can be determined using the free-body
diagram in Figure 5(b). Because x(t) and y(t) are taken as absolute displacements, the forces Fc and Fk are

Fc = c(ẋ − ẏ), Fk = k(x − y).
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Then, summing forces gives

∑

F = f(t) − Fc − Fk = mẍ

= f(t) − c(ẋ − ẏ) − k(x − y) = mẍ

or
mẍ + cẋ + kx = cẏ + ky + f(t). (Ans.)

(b) When the system is passive (f(t) = 0), the equation of motion is

mẍ + cẋ + kx = cẏ + ky.

The frequency response function G(ω) from y(t) to x(t) is

G(ω) =
X(ω)

Y (ω)
=

k + jcω

k − mω2 + jcω
. (Ans.)

This can be written using the natural frequency ωn and damping coefficient ζ as

G(ω) =
ω2

n + j2ζωnω

ω2
n − ω2 + j2ζωnω

=
1 + j2ζ( ω

ωn

)

1 − ( ω
ωn

)2 + j2ζ( ω
ωn

)
,

where

ωn =

√

k

m
, ζ =

c

2mωn
.

Then, the amplitude of G(ω) is

|G(ω)| =

√

√

√

√

√

√

√

1 + 4ζ2
(

ω
ωn

)2

(

1 −
(

ω
ωn

)2
)2

+ 4ζ2
(

ω
ωn

)2
.

The amplitude near resonance can be determined by letting ω = ωn, which gives

|G(ωn)| =

√

1 + 4ζ2

4ζ2
. (Ans.)

The rate at which |G(ω)| rolls off for ω � ωn is

|G(ω)| ≈

√

√

√

√

√

√

4ζ2
(

ω
ωn

)2

(

ω
ωn

)4 ≈ 1

ω
. (Ans.)

The amplitude of G(ω) is shown in Figure 6.

(c) Now, with spring-force cancellation applied (f(t) = −ky), the equation of motion becomes

mẍ + cẋ + kx = cẏ.

The frequency response function Gsp(ω) is then

Gsp(ω) =
jcω

k − mω2 + jcω
=

j2ζωnω

ω2
n − ω2 + j2ζωnω

, (Ans.)
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Figure 6: Amplitude of G(ω).

where again

ωn =

√

k

m
, ζ =

c

2mωn
.

The amplitude of Gsp(ω) is

|Gsp(ω)| =
2ζωnω

√

(ω2
n − ω2)

2
+ 4ζ2ω2

nω2

=
2ζ

(

ω
ωn

)

√

(

1 −
(

ω
ωn

)2
)2

+ 4ζ2
(

ω
ωn

)2

.

The amplitude near resonance can be determined by letting ω = ωn, which gives

|Gsp(ωn)| =
2ζ

√

4ζ2
= 1. (Ans.)

The rate at which |Gsp(ω)| rolls off for ω � ωn is

|Gsp(ω)| ≈
2ζ

(

ω
ωn

)

√

(

ω
ωn

)4

+ 4ζ2
(

ω
ωn

)2
≈ 1

ω
. (Ans.)

The amplitude of Gsp(ω) is shown in Figure 7.

Figure 7: Amplitude of Gsp(ω).
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(d) Now, with damping-force cancellation applied (f(t) = −cẏ), the equation of motion becomes

mẍ + cẋ + kx = ky.

The frequency response function Gdamp(ω) is then

Gdamp(ω) =
k

k − mω2 + jcω
=

ω2
n

ω2
n − ω2 + j2ζωnω

, (Ans.)

where again

ωn =

√

k

m
, ζ =

c

2mωn
.

The amplitude of Gdamp(ω) is

|Gdamp(ω)| =
ω2

n
√

(ω2
n − ω2)2 + 4ζ2ω2

nω2

=
1

√

(

1 −
(

ω
ωn

)2
)2

+ 4ζ2
(

ω
ωn

)2

.

The amplitude near resonance can be determined by letting ω = ωn, which gives

|Gdamp(ωn)| =
1

√

4ζ2
=

1

2ζ
. (Ans.)

The rate at which |Gdamp(ω)| rolls off for ω � ωn is

|Gdamp(ω)| ≈ 1
√

(

ω
ωn

)4
≈ 1

ω2
. (Ans.)

The amplitude of Gdamp(ω) is shown in Figure 8.

Figure 8: Amplitude of Gdamp(ω).

(e) During an earthquake, the goal is to minimize the displacement of the building relative to the ground when
excited at resonance. When applying spring-force cancellation, |Gsp(ωn)| = 1. Therefore, |X(ωn)| = |Y (ωn)|
(i.e., the building moves with the ground). When applying damping-force cancellation, |Gdamp(ωn)| = 1

2ζ >
1. Therefore, you would use spring-force cancellation.

(f) For an isolation table, the goal is to minimize the absolute displacement of the table. When applying
spring-force cancellation, |Gsp(ω)| rolls off as 1

ω
for ω � ωn. When applying damping-force cancellation,

|Gdamp(ω)| rolls off as 1
ω2 for ω � ωn. By ensuring that ω � ωn, you would use damping-force cancellation.
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(g) The Fourier transform of

f(t) =

{

sin(ω0t), 0 < t < 2π
ω0

0, otherwise

is

F (ω) = F{f(t)} =

∫

∞

−∞

f(t)e−jωtdt

=

∫ 2π

ω0

0

sin(ω0t)e
−jωtdt

=

∫ 2π

ω0

0

1

2j

(

ejω0t − e−jω0t
)

e−jωtdt

=
1

2j

∫ 2π

ω0

0

(

ej(ω0−ω)t − e−j(ω0+ω)t
)

dt

=
1

2j

[

1

j(ω0 − ω)
ej(ω0−ω)t +

1

j(ω0 + ω)
e−j(ω0+ω)t

]
∣

∣

∣

∣

2π

ω0

0

= − 1

2(ω0 − ω)

(

ej(ω0−ω) 2π

ω0 − 1
)

− 1

2(ω0 + ω)

(

e−j(ω0+ω) 2π

ω0 − 1
)

= − 1

2(ω0 − ω)

(

ej2πe
−j2π ω

ω0 − 1
)

− 1

2(ω0 + ω)

(

e−j2πe
−j2π ω

ω0 − 1
)

=
1

2(ω0 − ω)

(

1 − e
−j2π ω

ω0

)

+
1

2(ω0 + ω)

(

1 − e
−j2π ω

ω0

)

or
F (ω) =

ω0

ω2
0 − ω2

(

1 − e−j2π ω

ω0

)

. (Ans.)

The magnitude of F (ω) can be determined by first rewriting as

F (ω) =
ω0

ω2
0 − ω2

[

1 −
(

cos

(

2π
ω

ω0

)

− j sin

(

2π
ω

ω0

))]

=
ω0

ω2
0 − ω2

[

1 − cos

(

2π
ω

ω0

)

+ j sin

(

2π
ω

ω0

)]

.

Then,

|F (ω)| =
ω0

|ω2
0 − ω2|

√

(

1 − cos

(

2π
ω

ω0

))2

+ sin2

(

2π
ω

ω0

)

or

|F (ω)| =
ω0

|ω2
0 − ω2|

√

2 − 2 cos

(

2π
ω

ω0

)

. (Ans.)

Note that |F (ω)| = 0 when ω = 2ω0, 3ω0, . . ., as illustrated in Figure 9. Also, in the case when ω → ω0,

lim
ω→ω0

|F (ω)| =
π

ω0
.

When ω ≈ ω0 (and if ω0 � ωn), the spectrum of f(t) is in the rolloff portion of |G(ω)|, which is decreasing
at a rate of 1

ω . As a result, the response will be attenuated (i.e., f(t) will present insignificant effects to the
response x(t)).
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Figure 9: Magnitude of F (ω).

(a) (b)

Figure 10: (a) Suspension model in HDD; (b) Free-body diagram of recording head.

Problem 4

(a) From the model for the recording head suspension system illustrated in Figure 10(a), note that y(t) is
the relative displacement of the head to the disk surface. Then, from the free-body diagram shown in Figure
10(b), the equation of motion can be determined from

∑

Fy = −Fk1
− Fk2

− Fc = m(ẍ + ÿ)

−k1(x + y) − k2y − cẏ = m(ẍ + ÿ)

or
mÿ + cẏ + (k1 + k2)y = −mẍ − k1x. (Ans.)

(b) The frequency response function G(ω) can be written as

G(ω) =
mω2 − k1

(k1 + k2) − mω2 + jcω
. (Ans.)

By defining quantities

ω1 =

√

k1

m
, ω2 =

√

k1 + k2

m
,

G(ω) can be written as

G(ω) =
ω2 − ω2

1

ω2
2 − ω2 + j2ζω2ω

,

(

ζ =
c

2mω2

)

.
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Then, the magnitude of G(ω) is

|G(ω)| =

∣

∣ω2 − ω2
1

∣

∣

√

(ω2
2 − ω2)

2
+ 4ζ2ω2

2ω
2

. (Ans.)

For ease of plotting, we can think of writing the magnitude as |G(ω)| = |G1(ω)| · |G2(ω)|, where

|G1(ω)| =
∣

∣ω2 − ω2
1

∣

∣ , |G2(ω)| =
1

√

(ω2
2 − ω2)

2
+ 4ζ2ω2

2ω
2

.

The plots of |G1(ω)| and |G2(ω)| are shown in Figure 11, and the plot of |G(ω)| is shown in Figure 12.

(a) (b)

Figure 11: (a) Amplitude of G1(ω); (b) Amplitude of G2(ω).

Figure 12: Amplitude of G(ω).

The phase of G(ω) is

∠G(ω) = ∠

{

ω2 − ω2
1

ω2
2 − ω2 + j2ζω2ω

}

= ∠
{

ω2 − ω2
1

}

− ∠
{

ω2
2 − ω2 + j2ζω2ω

}

or

∠G(ω) = arctan

(

0

ω2 − ω2
1

)

− arctan

(

2ζω2ω

ω2
2 − ω2

)

. (Ans.)
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When ω < ω1 (< ω2),

arctan

(

0

ω2 − ω2
1

)

= π (or −π), arctan

(

2ζω2ω

ω2
2 − ω2

)

= 0.

Therefore,

∠G(ω) = π − 0 = π (or −π) (i.e., displacement of the head is out of phase with the disk surface).

When ω1 < ω < ω2,

arctan

(

0

ω2 − ω2
1

)

= 0, arctan

(

2ζω2ω

ω2
2 − ω2

)

≈ 0.

Therefore,

∠G(ω) = 0 − 0 = 0 (i.e., displacement of the head is in phase with the disk surface).

When ω > ω2,

arctan

(

0

ω2 − ω2
1

)

= 0, arctan

(

2ζω2ω

ω2
2 − ω2

)

= −π.

Therefore,

∠G(ω) = 0 − π = −π (i.e., displacement of the head is out of phase with the disk surface).

The plot of the phase of G(ω) is shown in Figure 13.

(a) (b)

Figure 13: (a) Phase of G(ω); (b) Alternative phase plot where ∠G(ω � ω1) = −π.

(c) The recording head follows the disk surface (is in phase with the disk surface) when ω1 < ω < ω2. The
width of this frequency range can be increased by setting ω1 � ω2, that is

ω1

ω2
� 1 ⇒

√

k1/m

(k1 + k2)/m
=

√

k1

k1 + k2
� 1 ⇒ k1 � k2.

Alternatively, from Figure 12, we see that the magnitude of G(ω) is constant (and |G(ω)| < 1) for ω � ω1.
Therefore, |(Y (ω)| < |X(ω)| (i.e., the displacement between the recording head and the disk surface is small).

To increase the bandwidth using this approach, we would want to make ω1 =
√

k1

m as large as possible.

(d) With the bump on the disk surface, the Fourier transform of

x(t) =

{

h sin(πt/T ), 0 < t < T
0, t > T
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is

X(ω) = {x(t)} =

∫

∞

−∞

x(t)e−jωtdt

=

∫ T

0

h sin

(

πt

T

)

e−jωtdt

=

∫ T

0

h

2j

(

ejπt/T − e−jπt/T
)

e−jωtdt

=
h

2j

∫ T

0

(

ej(π/T−ω)t − e−j(π/T +ω)t
)

dt

=
h

2j

(

1

j(π/T − ω)
ej(π/T−ω)t +

1

j(π/T + ω)
e−j(π/T+ω)t

)∣

∣

∣

∣

T

0

= − h

2(π/T − ω)

(

ej(π/T−ω)T − 1
)

− h

2(π/T + ω)

(

e−j(π/T−ω)T − 1
)

= − h

2(π/T − ω)

(

ejπe−jωT − 1
)

− h

2(π/T + ω)

(

e−jπe−jωT − 1
)

=
h

2(π/T − ω)

(

e−jωT + 1
)

+
h

2(π/T + ω)

(

e−jωT + 1
)

or

X(ω) =
h

(

π
T

)2 − ω2

(

e−jωT + 1
)

. (Ans.)

To find the magnitude, first rewrite X(ω) as

X(ω) =
h

(

π
T

)2 − ω2
(cos(ωT ) − j sin(ωT ) + 1) .

Then,

|X(ω)| =
h

∣

∣

∣

(

π
T

)2 − ω2
∣

∣

∣

√

(cos(ωT ) + 1)
2

+ sin2(ωT )

|X(ω)| =
h

∣

∣

∣

(

π
T

)2 − ω2
∣

∣

∣

√

2 cos(ωT ) + 2.

Note that |X(ω)| = 0 when ω = 3π
T

, 5π
T

, 7π
T

, etc. The plot of the amplitude of X(ω) is shown in Figure 14.

Figure 14: Amplitude of X(ω).
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(e) Recall from (c) that |G(ω)| remains constant when ω � ω1. Also, note that |Y (ω)| = |G(ω)| · |X(ω)|.
Therefore, the minimum T the disk can have without significantly exciting the head into large vibrations
can be determined from

ω =
3π

T
� ω1 ⇒ T >

3π

ω1
. (Ans.)
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