CHAPTER

| ANALYSIS OF
EXPERIMENTAL DATA

3.1 INTRODUCTION

Some form of analysis must be performed on all experimental data. The
analysis may be a simple verbal appraisal of the test results, or it may take the
form of a complex theoretical analysis of the errors involved in the experiment
and matching of the data with fundamental physical principles. Even new
principles may be developed in order to explain some unusual phenomenon.
Our discussion in this chapter will consider the analysis of data to determine
errors, precision, and general validity of experimental measurements. The
correspondence of the measurements with physical principles is another
matter, quite beyond the scope of our discussion. Some methods of graphical
data presentation will also be discussed. The interested reader should consult
the monograph by Wilson [4] for many interesting observations concerning
correspondence of physical theory and experiment.

The experimentalist should always know the validity of data. The
automobile test engineer must know the accuracy of the speedometer and gas
gage in order to express the fuel-economy performance with confidence. A
nuclear engineer must know the accuracy and precision of many instruments
just to make some simple radioactivity measurements with confidence. In order
to specify the performance of an amplifier, an electrical engineer must know
the accuracy with which the appropriate measurements of voltage, distortion,
etc., have been conducted. Many considerations enter into a final determina-
tion of the validity of the results of experimental data, and we wish to present
some of these considerations in this chapter.

Errors will creep into all experiments regardless of the care which is
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exerted. Some of these errors are of a random nature, and some will be due to
gross blunders on the part of the experimenter. Bad data due to obvious
blunders may be discarded immediately. But what of the data points that just
“lJook” bad? We cannot throw out data because they do not conform with our
hopes and expectations unless we see something obviously wrong. If such
“bad” points fall outside the range of normally expected random deviations,
they may be discarded on the basis of some consistent statistical data analysis.
The keyword here is “consistent.”” The elimination of data points must be
consistent and should not be dependent on human whims and bias based on
what “ought to be.” In many instances it is very difficult for the individual to
be consistent and unbiased. The pressure of a deadline, disgust with previous
experimental failures, and normal impatience all can influence rational
thinking processes. However, the competent experimentalist will strive to
maintain consistency in the primary data analysis. Our objective in this chapter
is to show how one may go about maintaining this consistency.

3.2 CAUSES AND TYPES OF EXPERIMENTAL ERRORS

In this section we present a discussion of some of the types of errors that may
be present in experimental data and begin to indicate the way these data may
be handled. First, let us distinguish between single-sample and multisample
data.

Single-sample data are those in which some uncertainties may not be
discovered by repetition. Multisample data are obtained in those instances
where enough experiments are performed so that the reliability of the results
can be assured by statistics. Frequently, cost will prohibit the collection of
multisample data, and the experimenter must be content with single-sample
data and prepared to extract as much information as possible from such
experiments. The reader should consult Refs. [1] and [4] for further discussions
on this subject, but we state a simple example at this time. If one measures
pressure with a pressure gage and a single instrument is the only one used for
the entire set of observations, then some of the error that is present in the
measurement will be sampled only once no matter how many times the reading
is repeated. Consequently, such an experiment is a single-sample experiment.
On the other hand, if more than one pressure gage is used for the same total
set of observations, then we might say that a multisample experiment has been
performed. The number of observations will then determine the success of this
multisample experiment in accordance with accepted statistical principles.

An experimental error is an experimental error. If the experimenter
knew what the error was, he or she would correct it and it would no longer be
an error. In other words, the real errors in experimental data are those factors
that are always vague to some extent and carry some amount of uncertainty.
Our task is to determine just how uncertain a particular observation may be
and to devise a consistent way of specifying the uncertainty in analytical form.
A reasonable definition of experimental uncertainty may be taken as the
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possible value the error may have. This uncertainty may vary a great deal
depending on the circumstances of the experiment. Perhaps it is better to
speak of experimental uncertainty instead of experimental error because the
magnitude of an error is always uncertain. Both terms are used in practice,
however, so the reader should be familiar with the meaning attached to the
terms and the ways that they relate to each other.

It is very common for people to speak of experimental errors when the
correct terminology should be ‘“‘uncertainty.” Because of this common usage,
we ask that the reader accept the faulty semantics when they occur and view
each term in its proper context.

At this point we may mention some of the types of errors that may cause
uncertainty in an experimental measurement. First, there can always be those
gross blunders in apparatus or instrument construction which may invalidate
the data. Hopefully, the careful experimenter will be able to eliminate most of
these errors. Second, there may be certain fixed errors which will cause
repeated readings to be in error by roughly the same amount but for some
unknown reason. These fixed errors are sometimes called systematic errors, or
bias errors. Third, there are the random errors, which may be caused by
personal fluctuations, random electronic fluctuations in the apparatus or
instruments, various influences of friction, etc. These random errors usually
follow a certain statistical distribution, but not always. In many instances it is
very difficult to distinguish between fixed errors and random errors.

The experimentalist may sometimes use theoretical methods to estimate
the magnitude of a fixed error. For example, consider the measurement of the
temperature of a hot gas stream flowing in a duct with a mercury-in-glass
thermometer. It is well known that heat may be conducted from the stem of
the thermometer, out of the body, and into the surroundings. In other words,
the fact that part of the thermometer is exposed to the surroundings at a
temperature different from the gas temperature to be measured may influence
the temperature of the stem of the thermometer. There is a heat flow from the
gas to the stem of the thermometer, and, consequently, the temperature of the
stem must be lower than that of the hot gas. Therefore, the temperature we
read on the thermometer is not the true temperature of the gas, and it will not
make any difference how many readings are taken—we shall always have an
error resulting from the heat-transfer condition of the stem of the thermo-
meter. This is a fixed error, and its magnitude may be estimated with
theoretical calculations based on known thermal properties of the gas and the
glass thermometer.

3.3 ERROR ANALYSIS ON A COMMONSENSE BASIS

We have already noted that it is somewhat more explicit to speak of
experimental uncertainty rather than experimental error. Suppose that we have
satisfied ourselves with the uncertainty in some basic experimental measure-
ments, taking into consideration such factors as instrument accuracy, com-
petence of the people using the instruments, etc. Eventually, the primary
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measurements must be combined to calculate a particular result that is desired.
We shall be interested in knowing the uncertainty in the final result due to the
uncertainties in the primary measurements. This may be done by a common-
sense analysis of the data which may take many forms. One rule of thumb that
could be used is that the error in the result is equal to the maximum error in
any parameter used to calculate the result. Another commonsense analysis
would combine all the errors in the most detrimental way in order to
determine the maximum error in the final result. Consider the calculation of
electric power from

P=FEI
where E and I are measured as

E=100V+2V
I=10A+02A

The nominal value of the power is 100 X 10 = 1000 W. By taking the worst
possible variations in voltage and current, we could calculate

Prax = (100 + 2)(10 + 0.2) = 1040.4 W
Pyin = (100 — 2)(10 — 0.2) = 960.4 W

Thus, using this method of calculation, the uncertainty in the power is
+4.04 percent, —3.96 percent. It is quite unlikely that the power would be in
error by these amounts because the voltmeter variations would probably not
correspond with the ammeter variations. When the voltmeter reads an extreme
“high,” there is no reason that the ammeter must also read an extreme ‘“‘high”
at that particular instant; indeed, this combination is most unlikely.

The simple calculation applied to the electric-power equation above is a
useful way of inspecting experimental data to determine what errors could
result in a final calculation; however, the test is too severe and should be used
only for rough inspections of data. It is significant to note, however, that if the
results of the experiments appear to be in error by more than the amounts
indicated by the above calculation, then the experimenter had better examine
the data more closely. In particular, the experimenter should look for certain
fixed errors in the instrumentation, which may be eliminated by applying either
theoretical or empirical corrections.

As another example we might conduct an experiment where heat is
added to a container of water. If our temperature instrumentation should
indicate a drop in temperature of the water, our good sense would tell us that
something is wrong and the data point(s) should be thrown out. No
sophisticated analysis procedures are necessary to discover this kind of error.

The term ‘“‘common sense’” has many connotations and means different
things to different people. In the brief example given above it is intended as a
quick and expedient vehicle, which may be used to examine experimental data
and results for gross errors and variations. In subsequent sections we shall
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present methods for determining experimental uncertainties in a more precise
manner.

3.4 UNCERTAINTY ANALYSIS

A more precise method of estimating uncertainty in experimental results has
been presented by Kline and McClintock [1]. The method is based on a careful
specification of the uncertainties in the various primary experimental measure-
ments. For example, a certain pressure reading might be expressed as

p = 100 kN/m? + 1 kN/m?

When the plus or minus notation is used to designate the uncertainty, the
person making this designation is stating the degree of accuracy with which he
or she believes the measurement has been made. We may note that this
specification is in itself uncertain because the experimenter is naturally
uncertain about the accuracy of these measurements.

If a very careful calibration of an instrument has been performed recently
with standards of very high precision, then the experimentalist will be justified
in assigning a much lower uncertainty to measurements than if they were
performed with a gage or instrument of unknown calibration history.

To add a further specification of the uncertainty of a particular
measurement, Kline and McClintock propose that the experimenter specify
certain odds for the uncertainty. The above equation for pressure might thus
be written

p = 100kN/m* £ 1 kN/m? (20 to 1)

In other words, the experimenter is willing to bet with 20 to 1 odds that
the pressure measurement is within +1 kN/m?. It is important to note that the
specification of such odds can only be made by the experimenter based on the
total laboratory experience.

Suppose a set of measurements is made and the uncertainty in each
measurement may be expressed with the same odds. These measurements are
then used to calculate some desired result of the experiments. We wish to
estimate the uncertainty in the calculated result on the basis of the uncer-
tainties in the primary measurements. The result R is a given function of the

independent variables x,, x5, xs, ..., x,. Thus,
R=R(xy,X2,X3,...,X,) (3.1)
Let wg be the uncertainty in the result and w;, w,, . .., w, be the uncertainties

in the independent variables. If the uncertainties in the independent variables
are all given with same odds, then the uncertainty in the result having these
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odds is given in Ref. [1] as

dR \’ ( dR )2 ( dR )2]“2
=[{—w ) +{—w) +- - +{—wa 3.2
Wk [(axl wl) ax, 2 ax, (3.2)
If this relation is applied to the electric-power relation of the previous section,
the expected uncertainty is 2.83 percent instead of 4.04 percent.

Example 3.1 Uncertainty of a copper wire. The resistance of a certain size of
copper wire is given as
R =Ry[1+ a(T —20)]

where R, =6 Q + 0.3 percent is the resistance at 20°C, a =0.004°C™" + 1 percent
is the temperature coefficient of resistance, and the temperature of the wire is
T =30+ 1°C. Calculate the resistance of the wire and its uncertainty.
Solution. The nominal resistance is

R = (6)[1 + (0.004)(30 — 20)] = 6.24 Q

The uncertainty in this value is calculated by applying Eq. (3.2). The various

terms are
IR
g = 1+ a(T —20) =1+ (0.004)(30—20) = 1.04
0
ad
0_R = Ry(T — 20) = (6)(30 — 20) = 60
a
AR
—_— = . =u 4
T Roa = (6)(0.004) = 0.02

W, = (6)(0.003) = 0.018 Q
w, = (0.004)(0.01) =4 X 107°°C™"
wr=1°C

Thus, the uncertainty in the resistance is

Wi = [(1.04)%(0.018)% + (60)2(4 X 107%)? + (0.024)*(1)*]'>
=0.0305Q or 0.49%

Particular notice should be given to the fact that the uncertainty
propagation in the result wy predicted by Eq. (3.2) depends on the squares of
the uncertainties in the independent variables w,. This means that if the
uncertainty in one variable is significantly larger than the uncertainties in the
other variables, say, by a factor of 5 or 10, then it is the largest uncertainty that
predominates and the others may probably be neglected.

To illustrate, suppose there are three variables with a product of
sensitivity and uncertainty [(dR/dx)w,] of magnitude 1, and one variable with
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a magnitude of 5. The uncertainty in the result would be
(5* +12+ 12 +1%)2=V28=5.29

The importance of this brief remark concerning the relative magnitude of
uncertainties is evident when one considers the design of an experiment,
procurement of instrumentation, etc. Very little is gained by trying to reduce
the ‘“small” uncertainties. Because of the square propagation it is the “large”
ones that predominate, and any improvement in the overall experimental
result. must be achieved by improving the instrumentation or technique
connected with these relatively large uncertainties. In the examples and
problems that follow, both in this chapter and throughout the book, the reader
should always note the relative effect of uncertainties in primary measurements
on the final result.

In Sec. 2.11 (Table 2.8) the reader was cautioned to examine possible
experimental errors before the experiment is conducted. Equation (3.2) may be
used very effectively for such analysis, as we shall see in the sections and
chapters that follow. A further word of caution may be added here. It is
equally as unfortunate to overestimate uncertainty as to underestimate it. An
underestimate gives false security, while an overestimate may make one
discard important results, miss a real effect, or buy much too expensive
instruments. The purpose of this chapter is to indicate some of the methods for
obtaining reasonable estimates of experimental uncertainty.

In the previous discussion of experimental planning we noted that an
uncertainty analysis may aid the investigator in selecting alternative methods to
measure a particular experimental variable. It may also indicate how one may
improve the overall accuracy of a measurement by attacking certain critical
variables in the measurement process. The next three examples illustrate these
points.

Example 3.2 Selection of measurement method. A resistor has a nominal stated
value of 10Q + 1 percent. A voltage is impressed on the resistor, and the power
dissipation is to be calculated in two different ways: (1) from P = E*/R and (2)
from P = EI. In (1) only a voltage measurement will be made, while both current
and voltage will be measured in (2). Calculate the uncertainty in the power
determination in each case when the measured values of E and I are

E=100V +1% (for both cases)
I=10A+1%

/I:J\ FIGURE EXAMPLE 3.2
Power measurement across a resistor.
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Solution. The schematic is shown in the accompanying figure. For the first case
we have '

6P 2E 9P E°

E R JR R®

and we apply Eq. (3.2) to give

N[ e

Dividing by P = E*/R gives

P T )

Inserting the numerical values for uncertainty gives

'—1‘}” = [4(0.01) + (0.01)?]"2 = 2.236%

For the second case we have

P P
Z=1 Z==E
JE ol

and after similar algebraic manipulation we obtain
w 2 2912
w15+ (7)] 2
P E 1
Inserting the numerical values of uncertainty yields

“F=[(0.01)? + (0.00)?" = 1.414%

Thus, the second method of power determination provides considerably less
uncertainty than the first method, even though the primary uncertainties in each
quantity are the same. In this example the utility of the uncertainty analysis is that
it affords the individual a basis for selection of a measurement method to produce
a result with less uncertainty.

Example 3.3 Instrument selection. The power measurement in Example 3.2 is
to be conducted by measuring voltage and current across the resistor with the
circuit shown in the accompanying figure. The voltmeter has an internal resistance
R,., and the value of R is known only approximately. Calculate the nominal value
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of the power dissipated in R and the uncertainty for the following conditions:

R =100Q (not known exactly)
R,=1000Q+ 5%

I=5A+1%

E=500V+1%

FIGURE EXAMPLE 33
Effect of meter impedance on
measurement.

Solution. A current balance on the circuit yields
L+L=1

R
R R,

E
and IL=1- R—m (a)

The power dissipated in the resistor is

E2
P=El=El- - (b)

m

The nominal value of the power is thus calculated as

5007
1000

P = (500)(5) - —— =2250 W

In terms of known quantities the power has the functional form P = f(E,ILR,),
and so we form the derivatives

oP_ 2E 9P

—= —=F
JE R, al

o _E

JR,, R

The uncertainty for the power is now written as

2E 2 2\ 2 172
Wp = [(1 - R—) wi+ E2w3 + (Il;—z) wim] ()
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Inserting the appropriate numerical values gives

1000 2 5 . i ( 104)2 ]1/2
=[{5-—] 52+ (25X X +(25x —) (2500
Wwp [(5 : 000) 5+ (25X 10)(25 X 10™) +(25 X 15 ) (2500)
=[16 + 25 + 6.25]"*(5)
=344 W |
we 344
or P—2250—1.53/o

In order of influence on the final uncertainty in the power we have

1. Uncertainty of current determination
2. Uncertainty of voltage measurement
3. Uncertainty of knowledge of internal resistance of voltmeter

Comment. There are other conclusions we can draw from this example. The
relative influence of the experimental quantities on the overall power determina-
tion is noted above. But this listing may be a bit misleading in that it implies that
the uncertainty of the meter impedance does not have a large effect on the final
uncertainty in the power determination. This results from the fact that
R,.> R (R,, = 10R). If the meter impedance were lower, say, 200 Q, we would
find that it was a dominant factor in the overall uncertainty. For a very high meter
impedance there would be little influence, even with a very inaccurate knowledge
of the exact value of R,,. Thus, we are led to the simple conclusion that we need
not worry too much about the precise value of the internal impedance of the
meter as long as it is very large compared with the resistance we are measuring
the voltage across. This fact should influence instrument selection for a particular
application.

Example 3.4 Ways to reduce uncertainties. A certain obstruction-type flow-
meter (orifice, venturi, nozzle), shown in the accompanying figure, is used to
measure the flow of air at low velocities. The relation describing the flow rate is

2 -~ 1/2
= CA| EL p, - p) | @
1

Flow

® @ (2) FIGURE EXAMPLE 3.4

Uncertainty in a flowmeter.
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where
C = empirical-discharge coefficient
A = flow area
p, and p, = the upstream and downstream pressures, respectively
T, = upstream temperature
R = gas constant for air.
Calculate the percent uncertainty in the mass flow rate for the following
conditions:

C=0.92 £0.005 (from calibration data)

p1 =25 psia £ 0.5 psia

T, =70°F + 2°F T, =530°R

Ap = p, — p, = 1.4 psia £ 0.005 psia (measured directly)
A=1.0in* £ 0.001 in®

Solution. In this example the flow rate is a function of several variables, each
subject to an uncertainty.
mzf(C;A:Ph AP, ’Tl) (b)

Thus, we form the derivatives

9 s 2 172
_m=A< gcpnAp)

oC RT,

6_’" — C(chpl > 12

JA RT,

ot 28, 12

—=0.5 A( <A ) Tz

7= 05CA( g bp) ©

am chpl) —
—=0. SCA( 12

Ap RT, ) “P

om 8P ) -32

— = —(. 5CA< A T

aT‘] R p 1

The uncertainty in the mass flow rate may now be calculated by assembling these
derivatives in accordance with Eq. (3.2). De51gnat1ng this assembly as Eq. (c) and
then dividing by Eq. (a) gives

o[- E e
m C A 4\ p, 4\ Ap 4\ T,

We may now insert the numerical values for the quantities to obtain the percent
uncertainty in the mass flow rate.

W, [(0.005)2 (O.OOl)2 1 (0.5>2 1 (0.005)2 1 ( 2 )2]”2

=) +|=——) +- =) +=-|——) +=|—=

m 0.92 1.0 4\25 4\ 14 4 \530
=[29.5X107°+1.0X107*+ 1.0 X 10™* + 3.19 X 107¢ + 3.57 X 107%]**
=[1.373 X 10742 = 1.172% (e)

Comment. The main contribution to uncertainty is the p, measurement with its
basic uncertainty of 2 percent. Thus, to improve the overall situation the accuracy
of this measurement should be attacked first. In order of influence on the
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flow-rate uncertainty we have:

1. Uncertainty in p, measurement (+2 percent)
2. Uncertainty in value of C

3. Uncertainty in determination of T,

4. Uncertainty in determination of Ap

5. Uncertainty in determination of A

By inspecting Eq. (e) we see that the first two items make practically the whole
contribution to uncertainty. The value of the uncertainty analysis in this example
is that it shows the investigator how to improve the overall measurement accuracy
of this technique. First, obtain a more precise measurement of p,. Then, try to
obtain a better calibration of the device, i.e., a better value of C. In Chap. 7 we
shall see how values of the discharge coefficient C are obtained.

3.5 EVALUATION OF UNCERTAINTIES FOR COMPLICATED
DATA REDUCTION

We have seen in the preceding discussion and examples how uncertainty
analysis can be a useful tool to examine experimental data. In many cases data
reduction is a rather complicated affair and is often performed with a computer
routine written specifically for the task. A small adaptation of the routine can
provide for direct calculation of uncertainties without resorting to an analytical
determination of the partial derivatives in Eq. (3.2). We still assume that this
equation applies, although it could involve several computational steps. We
also assume that we are able to obtain estimates by some means of the
uncertainties in the primary measurements, i.e., wy, w,, etc.

Suppose a set of data is collected in the variables x;, x,,...,x, and a
result is calculated. At the same time one may perturb the variables by Ax,,
Ax,, etc., and calculate new results. We would have

R(x;) = R(x1, X2, - - -, X))
R(x; + Ax;) = R(xy + Axy, %2, - - -, X,,)
R(xZ) = R(xlr X2y 00 ey xn)
R(x2 + AX2) = R(xl, X2 + sz, ey x,,)
For small enough values of Ax the partial derivatives can be well approximated

by
JR _R(x; +Axy) — R(xy)

x4 Ax,
IR R(x;+ Ax;) — R(x2)
dxz AX2

and these values could be inserted in Eq. (3.2) to calculate the uncertainty in
the result.
At this point we must again alert the reader to the ways uncertainties or




