Errors in Chapter 3:

Pg 129

Relations relating shear strains to normal stresses (equations 5, 6, and 7) are incorrect. Corrected equations:

$$
\begin{array}{lll}
\gamma_{x z}=\frac{\eta_{x x, x y}}{E_{x x}} \sigma_{x x} & \gamma_{x z}=\frac{\eta_{x x, x z}}{E_{x x}} \sigma_{x x} & \gamma_{y z}=\frac{\eta_{x x, y z}}{E_{x x}} \sigma_{x x} \\
\gamma_{x y}=\frac{\eta_{y y, x y}}{E_{y y}} \sigma_{y y} & \gamma_{x z}=\frac{\eta_{y y, x z}}{E_{y y}} \sigma_{y y} & \gamma_{y z}=\frac{\eta_{y y, y z}}{E_{y y}} \sigma_{y y} \\
\gamma_{x y}=\frac{\eta_{z z, x y}}{E_{z z}} \sigma_{z z} & \gamma_{x z}=\frac{\eta_{z z, x z}}{E_{z z}} \sigma_{z z} & \gamma_{y z}=\frac{\eta_{z z, y z}}{E_{z z}} \sigma_{z z} \tag{7}
\end{array}
$$

Pg 150
A sentence that appears three lines from the top of the page should read:
"Similarly, the strain at failure is denoted $\varepsilon_{11}^{f T}$ or $\varepsilon_{11}^{f C}$."
(As printed, $\varepsilon_{22}^{f C}$ appears rather than $\varepsilon_{11}^{f C}$.)

Pg. 153

A row of information is missing in Table 3. The last row in the table should be as follows:
Thicknes

$$
\begin{array}{ll}
0.125 \mathrm{~mm} & 0.125 \mathrm{~mm} \\
(0.005 \mathrm{in}) & (0.005 \mathrm{in})
\end{array}
$$

0.125 mm (0.005 in)

Pg 161, Homework Problem 1:

The problem statement is in error, and needed information is missing. The problem should read:

1. An anisotropic material is known to have the following elastic properties:

$E_{x x}=100 \mathrm{GPa}$	$E_{y y}=200 \mathrm{GPa}$	$E_{z z}=75 \mathrm{GPa}$
$v_{x y}=0.20$	$v_{x z}=-0.25$	$v_{y z}=0.60$
$v_{y x}=0.40$	$v_{z x}=-0.1875$	$v_{z y}=0.225$
$G_{x y}=60 G P a$	$G_{x z}=75 \mathrm{GPa}$	$G_{y z}=50 \mathrm{GPa}$
$\eta_{x x, x y}=-0.30$	$\eta_{x x, x z}=0.25$	$\eta_{x x, y z}=0.30$
$\eta_{y y, x y}=0.60$	$\eta_{y y, x z}=0.75$	$\eta_{y y, y z}=0.20$
$\eta_{z z, x y}=-0.20$	$\eta_{z z, x z}=-0.05$	$\eta_{z z, y z}=-0.15$
$\eta_{x y, x x}=-0.18$	$\eta_{x y, y y}=0.18$	$\eta_{x y, z z}=-0.16$
$\eta_{x z, x x}=0.19$	$\eta_{x z, y y}=0.28$	$\eta_{x z, z z}=-0.05$
$\eta_{y z, x x}=0.15$	$\eta_{y z, y y}=0.05$	$\eta_{y z, z z}=-0.10$

$\mu_{x y, x z}=-0.10$	$\mu_{x y, y z}=-0.05$	$\mu_{x z, y z}=0.10$
$\mu_{x z, x y}=-0.12$	$\mu_{y z, x y}=-0.042$	$\mu_{y z, x z}=0.067$

Pg 162, Homework Problem 2:

Needed information is missing. The problem statement should read:

$E_{11}=100 G P a$	$E_{22}=200 G P a$	$E_{33}=75 G P a$
$v_{12}=0.20$	$v_{13}=-0.25$	$v_{23}=0.60$
$v_{21}=0.40$	$v_{31}=-0.19$	$v_{32}=0.22$
$G_{12}=60 G P a$	$G_{13}=75 G P a$	$G_{23}=50 G P a$

Pg 164, Homework Problem 4, part (c):

Part (c) cannot be solved as stated. A re-wording of part (c) is:
"(c) In Chapter 4 it will be seen that $v_{21}=v_{12}\left(E_{22} / E_{11}\right)$. Determine v_{21} for this composite material system. "

