Errors in Chapter 3:

Pg 129

Relations relating shear strains to normal stresses (equations 5, 6, and 7) are incorrect. Corrected equations:

$$\gamma_{xz} = \frac{\eta_{xx,xy}}{E_{xx}} \sigma_{xx} \qquad \gamma_{xz} = \frac{\eta_{xx,xz}}{E_{xx}} \sigma_{xx} \qquad \gamma_{yz} = \frac{\eta_{xx,yz}}{E_{xx}} \sigma_{xx}$$
 (5)

$$\gamma_{xy} = \frac{\eta_{yy,xy}}{E_{yy}} \sigma_{yy} \qquad \gamma_{xz} = \frac{\eta_{yy,xz}}{E_{yy}} \sigma_{yy} \qquad \gamma_{yz} = \frac{\eta_{yy,yz}}{E_{yy}} \sigma_{yy}$$
 (6)

$$\gamma_{xy} = \frac{\eta_{zz,xy}}{E_{zz}} \sigma_{zz} \qquad \gamma_{xz} = \frac{\eta_{zz,xz}}{E_{zz}} \sigma_{zz} \qquad \gamma_{yz} = \frac{\eta_{zz,yz}}{E_{zz}} \sigma_{zz}$$
(7)

Pq 150

A sentence that appears three lines from the top of the page should read:

"Similarly, the strain at failure is denoted $\,arepsilon_{11}^{fT}$ or $\,arepsilon_{11}^{fC}$."

(As printed, ε_{22}^{fC} appears rather than ε_{11}^{fC} .)

Pg. 153

A row of information is missing in Table 3. The last row in the table should be as follows:

Thickness	0.125 mm	0.125 mm	0.125 mm
	(0.005 in)	(0.005 in)	(0.005 in)

Pg 161, Homework Problem 1:

The problem statement is in error, and needed information is missing. The problem should read:

1. An anisotropic material is known to have the following elastic properties:

$E_{xx} = 100 GPa$	$E_{yy} = 200 GPa$	$E_{zz} = 75 GPa$
$v_{xy} = 0.20$	$v_{xz} = -0.25$	$v_{yz} = 0.60$
$v_{yx} = 0.40$	$v_{zx} = -0.1875$	$v_{zy} = 0.225$
$G_{xy} = 60 GPa$	$G_{xz} = 75 GPa$	$G_{yz} = 50 GPa$
$\eta_{xx,xy} = -0.30$	$\eta_{xx,xz} = 0.25$	$\eta_{xx,yz} = 0.30$
$\eta_{yy,xy} = 0.60$	$\eta_{yy,xz} = 0.75$	$\eta_{yy,yz}=0.20$
$\eta_{zz,xy} = -0.20$	$\eta_{zz,xz} = -0.05$	$\eta_{zz,yz} = -0.15$
$\eta_{xy,xx} = -0.18$	$\eta_{xy,yy} = 0.18$	$\eta_{xy,zz} = -0.16$
$\eta_{xz,xx} = 0.19$	$\eta_{xz,yy} = 0.28$	$\eta_{xz,zz} = -0.05$
$\eta_{yz,xx} = 0.15$	$\eta_{yz,yy} = 0.05$	$\eta_{yz,zz} = -0.10$

$$\mu_{xy,xz} = -0.10$$
 $\mu_{xy,yz} = -0.05$ $\mu_{xz,yz} = 0.10$ $\mu_{xz,xy} = -0.12$ $\mu_{yz,xy} = -0.042$ $\mu_{yz,xz} = 0.067$

Pg 162, Homework Problem 2:

Needed information is missing. The problem statement should read:

$E_{11} = 100 GPa$	$E_{22} = 200GPa$	$E_{33} = 75GPa$
$v_{12} = 0.20$	$v_{13} = -0.25$	$v_{23} = 0.60$
$v_{21} = 0.40$	$v_{31} = -0.19$	$v_{32} = 0.22$
$G_{12} = 60GPa$	$G_{13} = 75 GPa$	$G_{23} = 50 GPa$

Pg 164, Homework Problem 4, part (c):

Part (c) cannot be solved as stated. A re-wording of part (c) is:

"(c) In Chapter 4 it will be seen that $v_{21}=v_{12}\big(E_{22}\ /\ E_{11}\big)$. Determine v_{21} for this composite material system. "