Errors in Chapter 6:

Pg 274 11th line from the bottom:
Change the last word from "plane" to "plate".
Pg. 275, 4 lines from the top of the page:
"...carefully note the the which convention has been used when....

Eq 18,pg 278:

A " z " is missing; Equation should be:

$$
\begin{aligned}
& \varepsilon_{p 1}=z \kappa_{p 1} \\
& \varepsilon_{p 2}=z \kappa_{p 2}
\end{aligned}
$$

Eq 19,pg 278:

An extraneous "z" appears; Equation should be:

$$
\kappa_{p 1}, \kappa_{p 2}=\left[\frac{\left(\kappa_{x x}+\kappa_{y y}\right)}{2} \pm \sqrt{\left(\frac{\left(\kappa_{x x}+\kappa_{y y}\right)}{2}\right)^{2}+\left(\frac{\kappa_{x y}}{2}\right)^{2}}\right]
$$

$\mathrm{Pg} 280,7$ lines from the bottom of the page:

One of the letters that define a plane is incorrect. As printed, the incorrect sentence reads:
"For example, plane $b-j-h-c$ has been twisted during deformation of the plate."

Letter " h " is incorrect. The corrected sentence reads:
"For example, plane $b-j-k-c$ has been twisted during deformation of the plate."

Pg 286, caption for Figure 12:

Part c of the caption should be:

$$
[0 / 30 /-60 / 10 / \overline{45}]_{S}
$$

Pg 289, near bottom of the page:

The first calculation should read:

$$
z_{0}=-t / 2=-(0.00100 m) / 2=-0.000500 m
$$

Pg 291, Table 1:

(a) The value for $\varepsilon_{y y}$ listed in the second row should be -1450 (not -145).
(b) The matrix listed on the bottom of the page should read:

$$
\left.\left\{\begin{array}{l}
\varepsilon_{11} \\
\varepsilon_{22} \\
\gamma_{12}
\end{array}\right\}\right|_{z=z_{0}} ^{p l y 1}=\left.\left\{\begin{array}{c}
250 \mu \mathrm{~m} / \mathrm{m} \\
-1500 \mu \mathrm{~m} / \mathrm{m} \\
1000 \mu \mathrm{rad}
\end{array}\right\}\right|_{z=z_{0}} ^{p l y 1}
$$

(that is, γ_{12} should not be divided by 2)

Pg 295:
The subscript used to identify the $[\bar{Q}]$ matrix that appears at the bottom of the page is missing a minus sign. The matrix should appear:
$[\bar{Q}]_{-30^{\circ}}$ plies $=\left[\begin{array}{ccc}107.6 \times 10^{9} & 26.06 \times 10^{9} & -48.3 \times 10^{9} \\ 26.06 \times 10^{9} & 27.22 \times 10^{9} & -21.52 \times 10^{9} \\ -48.3 \times 10^{9} & -21.52 \times 10^{9} & 36.05 \times 10^{9}\end{array}\right](P a)$

Pg 310, Eq (33b):

The second term involves B_{22} (not B_{12}). Equation (33b) should read:

$$
M_{y y}=B_{21} \varepsilon_{x x}^{o}+B_{22} \varepsilon_{y y}^{o}+B_{26} \gamma_{x y}^{o}+D_{21} \kappa_{x x}+D_{22} \kappa_{y y}+D_{26} \kappa_{x y}
$$

Pg. 314:
The numerical value of \bar{Q}_{11} for ply 2 should be $170.9 \times 10^{9}\left(\right.$ not $\left.107.9 \times 10^{9}\right)$.

Pg. 316,317:
The numerical value of D_{22} (which appears on pg 316 and within the [$A B D$] matrix on pg 317) should be 0.4208 (not 2.513).
(a) Incorrect superscript and subscript; the moisture stress resultant should appear as:

$$
N_{x x}^{M}=8190 \mathrm{~N} / \mathrm{m}
$$

(not as $N_{x x}^{T}=8190 N / M$)
(b) The first sentence that appears on the page, as well as the superscripts used in the summary of moisture stress and moment resultants, should be:
"The remaining thermare moisture stress and moment resultants are calculated in similar fashion, eventually resulting in:

$$
\left\{\begin{array}{l}
N_{x x}^{M} \\
N_{y y}^{M} \\
N_{x y}^{M} \\
M_{x x}^{M} \\
M_{y y}^{M} \\
M_{x y}^{M}
\end{array}\right\}=\left\{\begin{array}{c}
8190 N / m \\
8460 N / m \\
-233 N / m \\
0.05 N-m / m \\
-0.05 N-m / m \\
0.03 N-m / m
\end{array}\right\}
$$

pg 341:
1st sentence of section 7.4: change " 7.4 " to " 7.3 ".
pg 342:

On the fourth line from the top of the page, the superscripts for the 3rd and 4th " M " terms should be " M " rather than " T ".

Pg. 346, Step 4(b):
Thermal and moisture resultants are calculated using Eqs (41) and (42), respectively.
Pg. 347, Step 3(b):
Thermal and moisture resultants are calculated using Eqs (41) and (42), respectively.

Pg. 349, fourth line from bottom:

Incorrect subscripts appear in one term:
"...noting that by definition $N_{y y}=N_{x y}=M_{x x}=M_{y y}=M_{x y}=0$, Eq (45) becomes...."

Pg 353, third line from the bottom:

Effective Poisson ratios in extension are incorrectly labeled using the symbol " η ". The equality should read:

$$
\begin{aligned}
& \bar{v}_{x y}^{e x}=\bar{v} y x
\end{aligned} \quad\left(\text { not } \bar{\eta}_{x y}^{e x}=\bar{\eta}_{y x}^{e x}\right)
$$

Pg 354, fifth line from the bottom:

Effective Poisson ratios in extension are incorrectly labeled using the symbol " η ". The sentence should read:
"....effective extensional properties $\bar{E}_{x x}^{e x}, \bar{E}_{y y}^{e x}, \bar{v}_{x y}^{e x}$, and $\bar{v}_{y x}{ }^{e x} . "$
(NOT: "....effective extensional properties $\bar{E}_{x x}^{e x}, \bar{E}_{y y}^{e x}, \bar{\eta}_{x y}^{e x}$, and $\bar{\eta}_{y x}^{e x} . "$ ")
Pg 355, tenth line from the top:
Effective Poisson ratios in flexure are incorrectly labeled using the symbol " η ". The sentence should read:
"...laminate in flexure, denoted $\bar{E}_{x x}^{f l}, \bar{E}_{y y}^{f l}, \bar{v}_{x y}^{f l}$, and $\bar{v}_{y x}^{f l}$, can therefore...."
(NOT: "...laminate in flexure, denoted $\bar{E}_{x x}^{f l}, \bar{E}_{y y}^{f l}, \bar{\eta}_{x y}^{f l}$, and $\bar{\eta}_{y x}^{f l}$, can therefore....")

Pg 360, first line:

Thermal stress resultants are calculated using Eqs (41).

pg 361:

A sentence that appears on the 5th line of text from the bottom of text should read in part:
"Specifically, if all plies within the laminate are of the same material type, then..."
That is, insert "same" in this sentence.

Homework Problem 2 (pg 368):

The strain $\varepsilon_{x x}$ measured by rosette 2 should be listed as $1000 \mu \mathrm{in} /$ in (not 1000in/in).

Homework Problems 8, 9, and 10 (pg 369):

(a) The stacking sequence should be: $[0 / \mp 10 / 90]_{s}$
(b) The problem statement should read: "During service the structure must support a load of $1000 \mathrm{l} b_{f}$, and will experience a change temperature of $150{ }^{\circ} \mathrm{F}$ in a dry environment."

Homework Problem 11 (pg 370):
Add the following to the problem statement:
"Assume an individual ply thickness of 0.005 in."

Homework Problem 13 (pg 370):

The phrase: "Note the following:" should not appear.
Homework Problems 19, 20, 21, and 22 (pg 372,373):
The following loads are applied:

$$
\begin{array}{lll}
N_{x x}=30 \mathrm{kN} / \mathrm{m} & N_{y y}=-7 \mathrm{kN} / \mathrm{m} & N_{x y}=0 \\
M_{x x}=10 \mathrm{Nm} / \mathrm{m} & M_{y y}=M_{x y}=0 &
\end{array}
$$

