Topics Covered During Quarter

- Reading Assignments: Chapters 1 through 7
 - Invariant analyses will not be covered on final exam (section 5.3 and 6.10)
 - Final exam will be comprehensive, but
 - Will focus on topics discussed since the midterm
- Final exam format (nominal times):
 - Multiple choice portion administered via Catalyst system from 12:30pm-1:20pm Friday 9 March
 - Written problems sent via e-mail at 5pm Friday 9 March, upload solutions to Canvas dropbox by 5pm Saturday 10 March

Topics Covered During Quarter

- Chapter 1: Introduction
 - 3 classes of composites: PMCs, MMCs, CMCs
 - Polymers: basic concepts (molecular structures, thermoplastic vs thermosets, T_q, etc)
 - Advanced Fibers:
 - Major types (glass, aramid, carbon, UHDPE)
 - Commercial forms (discontinuous, roving, woven, braided, prepreg)
 - Manufacturing
 - "Dry" vs "wet"
 - Hand layup, filament winding, automated tape laying, automated fiber placement, resin infusion, autoclaves, chopped fiber sprayup, compression molding, injection molding, pultrusion,

Topics Covered During Quarter

- Chapter 2: Review of Force Stress and Strain Tensors
 - Force, stress, and strain tensors
 - 3-D transformation of a tensor: direction cosines, c_{ii}

$$F_{i'} = c_{i'j}F_j \qquad \sigma_{i'j'} = c_{i'k}c_{j'l}\sigma_{kl} \qquad [\varepsilon_{i'j'}] = [c_{i'j}][\varepsilon_{ij}][c_{i'j}]^T$$

• Stress or strain transformation within a plane:

$$\begin{cases}
\sigma_{x'x'} \\
\sigma_{y'y'} \\
\tau_{x'y'}
\end{cases} =
\begin{bmatrix}
\cos^2(\theta) & \sin^2(\theta) & 2\cos(\theta)\sin(\theta) \\
\sin^2(\theta) & \cos^2(\theta) & -2\cos(\theta)\sin(\theta) \\
-\cos(\theta)\sin(\theta) & \cos(\theta)\sin(\theta) & \cos^2(\theta) - \sin^2(\theta)
\end{bmatrix}
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{bmatrix}$$

Topics Covered During Quarter

- Chapter 3: Material Properties
 - Elastic properties measured during
 - uniaxial stress tests (Young's modulus, Poisson ratios, coefficients of mutual influence 2nd kind) → 18 properties
 - pure shear tests (Shear modulus, Chentsov coefficients, coefficients of mutual influence 2nd kind) → 18 properties
 - Coefficients of thermal and moisture expansion (α 's and β 's)
 - Principal material coordinate system (μ 's, η 's = 0)
 - Failure strengths measured in principal material coordinate system

Topics Covered During Quarter

Chapter 4: Elastic Response of Anisotropic Materials

$$\varepsilon_{ij} = \varepsilon_{ij}^{\sigma} + \varepsilon_{ij}^{T} + \varepsilon_{ij}^{M}$$

$$\begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xy} \end{pmatrix} + \Delta T \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} + \Delta M \begin{pmatrix} \beta_{xx} \\ \beta_{yy} \\ \beta_{zz} \\ \beta_{xz} \\ \beta_{xy} \end{pmatrix}$$

Topics Covered During Quarter

Chapter 4: Elastic Response of Anisotropic Materials

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xy} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\ \varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{yx} \\ \varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\ \varepsilon_{zz} - \Delta T \alpha_{zz} - \Delta M \beta_{zz} \\ \gamma_{xz} - \Delta T \alpha_{xz} - \Delta M \beta_{xz} \\ \gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy} \end{bmatrix}$$

Topics Covered During Quarter

Chapter 4: Elastic Response of Anisotropic Materials
 In Principal Material Coordinate System

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix} + \Delta T \begin{cases} \alpha_{11} \\ \alpha_{22} \\ \alpha_{33} \\ \tau_{13} \\ \tau_{12} \end{cases} + \Delta M \begin{cases} \beta_{11} \\ \beta_{22} \\ \beta_{33} \\ \tau_{13} \\ \tau_{12} \end{cases}$$

Topics Covered During Quarter

Chapter 4: Elastic Response of Anisotropic Materials
 In Principal Material Coordinate System

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} - \Delta T \alpha_{11} - \Delta M \beta_{11} \\ \varepsilon_{22} - \Delta T \alpha_{22} - \Delta M \beta_{22} \\ \varepsilon_{33} - \Delta T \alpha_{33} - \Delta M \beta_{33} \\ \gamma_{23} \\ \gamma_{12} \end{bmatrix}$$

Topics Covered During Quarter

 Chapter 5: Unidirectional Composite Laminates Subject to Plane Stress:

Assuming
$$\sigma_{zz} = \tau_{xz} = \tau_{yz} = 0$$
:

$$\begin{bmatrix} \sigma_{\chi\chi} & \tau_{\chi y} & 0 \\ \tau_{\chi y} & \sigma_{yy} & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \sigma_{\chi\chi} \\ \sigma_{yy} \\ \tau_{\chi y} \end{bmatrix}$$

Mechanical Engineering

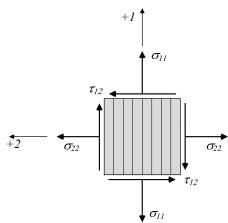
Sec 5.1: Unidirectional composites referenced to principal material coordinate system

$$\sigma_{I1}$$
 σ_{I2}
 σ_{I2}
 σ_{I2}
 σ_{I2}

$$\begin{cases} \mathcal{E}_{11} \\ \mathcal{E}_{22} \\ \gamma_{12} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{bmatrix} + \Delta T \begin{Bmatrix} \alpha_{11} \\ \alpha_{22} \\ 0 \end{Bmatrix} + \Delta M \begin{Bmatrix} \beta_{11} \\ \beta_{22} \\ 0 \end{Bmatrix}$$

$$\varepsilon_{33} = \varepsilon_{zz} = S_{13}\sigma_{11} + S_{23}\sigma_{22} + \Delta T\alpha_{33} + \Delta M\beta_{33}$$

Sec 5.1: Unidirectional composites referenced to principal material coordinate system


$$S_{11} = \frac{1}{E_{11}} \qquad S_{22} = \frac{1}{E_{22}}$$

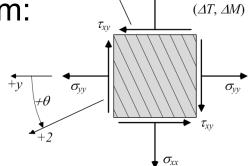
$$S_{21} = S_{12} = \frac{-v_{12}}{E_{11}} = \frac{-v_{21}}{E_{22}}$$

$$S_{66} = \frac{1}{G_{12}}$$

$$S_{31} = S_{13} = \frac{-v_{13}}{E_{11}} = \frac{-v_{31}}{E_{33}}$$

$$S_{32} = S_{23} = \frac{-v_{23}}{E_{22}} = \frac{-v_{32}}{E_{33}}$$

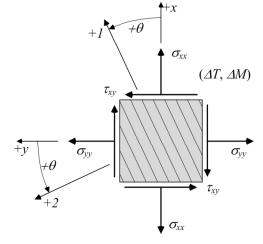
Mechanical Engineering


Sec 5.2: Unidirectional composites referenced to an arbitrary coordinate system

•Starting with Hooke's law in the 1-2 coordinate system:

$$\{\varepsilon\}_{1,2} = [S][\sigma]_{1,2} + \Delta T\{\alpha\}_{1,2} + \Delta M\{\beta\}_{1,2}$$

...we rotated to an arbitrary x-y coordinate system, oriented θ degs from the 1-2 coordinate system:


$$\{\varepsilon\}_{x,y} = \left[\overline{S}\right] \sigma_{x,y} + \Delta T \{\alpha\}_{x,y} + \Delta M \{\beta\}_{x,y}$$

Mechanical Engineering

Sec 5.2: Unidirectional composites referenced to an

arbitrary coordinate system

$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy}
\end{cases} = \begin{bmatrix}
\overline{S}_{11} & \overline{S}_{12} & \overline{S}_{16} \\
\overline{S}_{12} & \overline{S}_{22} & \overline{S}_{26} \\
\overline{S}_{16} & \overline{S}_{26} & \overline{S}_{66}
\end{cases} \begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} + \Delta T \begin{Bmatrix} \alpha_{xx} \\
\alpha_{yy} \\
\alpha_{xy}
\end{Bmatrix} + \Delta M \begin{Bmatrix} \beta_{xx} \\
\beta_{yy} \\
\beta_{xy}
\end{Bmatrix}$$

$$\varepsilon_{33} = \varepsilon_{zz} = S_{13}\sigma_{11} + S_{23}\sigma_{22} + \Delta T\alpha_{33} + \Delta M\beta_{33}$$

$$\overline{S}_{11} = S_{11}\cos^4\theta + (2S_{12} + S_{66})\cos^2\theta\sin^2\theta + S_{22}\sin^4\theta$$

$$\overline{S}_{12} = \overline{S}_{21} = S_{12}(\cos^4\theta + \sin^4\theta) + (S_{11} + S_{22} - S_{66})\cos^2\theta\sin^2\theta$$

$$\overline{S}_{16} = \overline{S}_{61} = (2S_{11} - 2S_{12} - S_{66})\cos^3\theta\sin\theta - (2S_{22} - 2S_{12} - S_{66})\cos\theta\sin^3\theta$$

$$\overline{S}_{22} = S_{11}\sin^4\theta + (2S_{12} + S_{66})\cos^2\theta\sin^2\theta + S_{22}\cos^4\theta$$

$$\overline{S}_{26} = \overline{S}_{62} = (2S_{11} - 2S_{12} - S_{66})\cos\theta\sin^3\theta - (2S_{22} - 2S_{12} - S_{66})\cos^3\theta\sin\theta$$

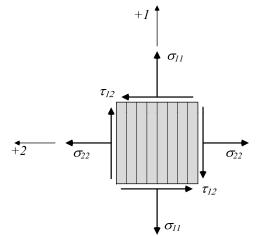
$$\overline{S}_{66} = 2(2S_{11} + 2S_{22} - 4S_{12} - S_{66})\cos^2\theta\sin^2\theta + S_{66}(\cos^4\theta + \sin^4\theta)$$

Equations (5.22)

$$\alpha_{xx} = \alpha_{11}\cos^2(\theta) + \alpha_{22}\sin^2(\theta)$$

$$\alpha_{yy} = \alpha_{11}\sin^2(\theta) + \alpha_{22}\cos^2(\theta) \tag{5.25}$$

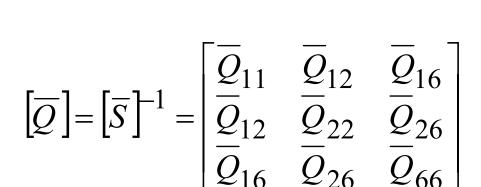
$$\alpha_{xy} = 2\cos(\theta)\sin(\theta)(\alpha_{11} - \alpha_{22})$$

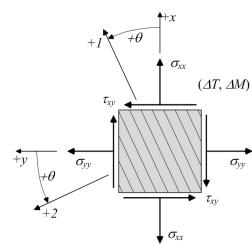

$$\beta_{xx} = \beta_{11}\cos^2(\theta) + \beta_{22}\sin^2(\theta)$$

$$\beta_{yy} = \beta_{11} \sin^2(\theta) + \beta_{22} \cos^2(\theta)$$
 (5.28)

$$\beta_{xy} = 2\cos(\theta)\sin(\theta)(\beta_{11} - \beta_{22})$$

Similarly:

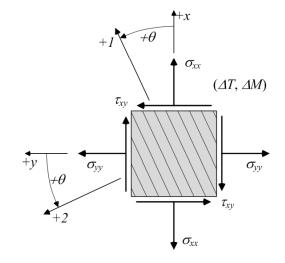

$$\{\sigma\}_{1,2} = [Q]\{\varepsilon - \Delta T\alpha - \Delta M\beta\}_{1,2}$$



$$\begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{66} \end{bmatrix}^{-1}$$

Similarly:

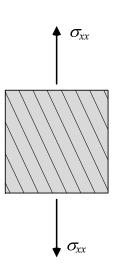
$$\{\sigma\}_{x,y} = [\overline{Q}]\{\varepsilon - \Delta T\alpha - \Delta M\beta\}_{x,y}$$



$$\overline{Q}_{11} = Q_{11}\cos^4\theta + 2(Q_{12} + 2Q_{66})\cos^2\theta\sin^2\theta + Q_{22}\sin^4\theta
\overline{Q}_{12} = \overline{Q}_{21} = Q_{12}(\cos^4\theta + \sin^4\theta) + (Q_{11} + Q_{22} - 4Q_{66})\cos^2\theta\sin^2\theta
\overline{Q}_{16} = \overline{Q}_{61} = (Q_{11} - Q_{12} - 2Q_{66})\cos^3\theta\sin\theta - (Q_{22} - Q_{12} - 2Q_{66})\cos\theta\sin^3\theta
\overline{Q}_{22} = Q_{11}\sin^4\theta + 2(Q_{12} + 2Q_{66})\cos^2\theta\sin^2\theta + Q_{22}\cos^4\theta
\overline{Q}_{26} = \overline{Q}_{62} = (Q_{11} - Q_{12} - 2Q_{66})\cos\theta\sin^3\theta - (Q_{22} - Q_{12} - 2Q_{66})\cos^3\theta\sin\theta
\overline{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})\cos^2\theta\sin^2\theta + Q_{66}(\cos^4\theta + \sin^4\theta)$$

Sec 5.4: Effective properties of unidirectional laminates

 Hooke's Law for Composites Referenced to an Arbitrary x-y-z Coordinate System (Plane Stress)


$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy}
\end{cases} = \begin{bmatrix}
\overline{S}_{11} & \overline{S}_{12} & \overline{S}_{16} \\
\overline{S}_{12} & \overline{S}_{22} & \overline{S}_{26} \\
\overline{S}_{16} & \overline{S}_{26} & \overline{S}_{66}
\end{cases} \begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} + \Delta T \begin{cases}
\alpha_{xx} \\
\alpha_{yy} \\
\alpha_{xy}
\end{cases} + \Delta M \begin{cases}
\beta_{xx} \\
\beta_{yy} \\
\beta_{xy}
\end{cases}$$

$$\varepsilon_{33} = \varepsilon_{zz} = S_{13}\sigma_{11} + S_{23}\sigma_{22} + \Delta T\alpha_{33} + \Delta M\beta_{33}$$

Sec 5.4: Effective properties of unidirectional laminates

- Effective properties determined by applying the "normal" definition.
- For example, if only σ_{xx} applied:

$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{cases} = \begin{bmatrix}
\overline{S}_{11} & \overline{S}_{12} & \overline{S}_{16} \\
\overline{S}_{12} & \overline{S}_{22} & \overline{S}_{26} \\
\overline{S}_{16} & \overline{S}_{26} & \overline{S}_{66}
\end{bmatrix}
\begin{cases}
\sigma_{xx} \\
0 \\
0
\end{cases} = \begin{cases}
\overline{S}_{11}\sigma_{xx} \\
\overline{S}_{12}\sigma_{xx} \\
\overline{S}_{16}\sigma_{xx}
\end{cases}$$

$$E_{xx} = \frac{\sigma_{xx}}{\varepsilon_{xx}} = \frac{1}{\overline{S}_{11}} \qquad v_{xy} = \frac{-\varepsilon_{yy}}{\varepsilon_{xx}} = \frac{-S_{12}}{\overline{S}_{11}} \qquad \eta_{xx,xy} = \frac{\gamma_{xy}}{\varepsilon_{xx}} = \frac{S_{16}}{\overline{S}_{11}}$$

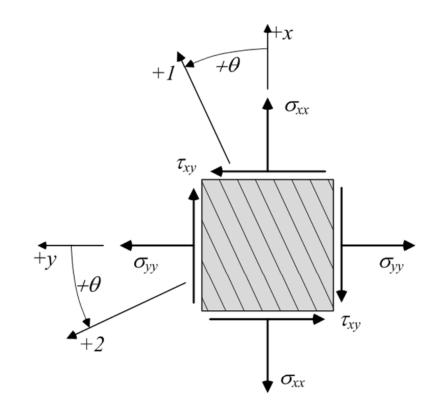
Sec 5.4: Effective properties of unidirectional laminates

Similarly:

$$E_{yy} = \frac{1}{\overline{S}_{22}} \qquad v_{yx} = \frac{-\overline{S}_{12}}{\overline{S}_{22}} \qquad \eta_{yy,xy} = \frac{\overline{S}_{26}}{\overline{S}_{22}}$$

$$G_{xy} = \frac{1}{\overline{S}_{66}}$$
 $\eta_{xy,xx} = \frac{S_{16}}{\overline{S}_{66}}$ $\eta_{xy,yy} = \frac{S_{26}}{\overline{S}_{66}}$

Sec 5.5, 5.6: Macroscopic Failure Theories

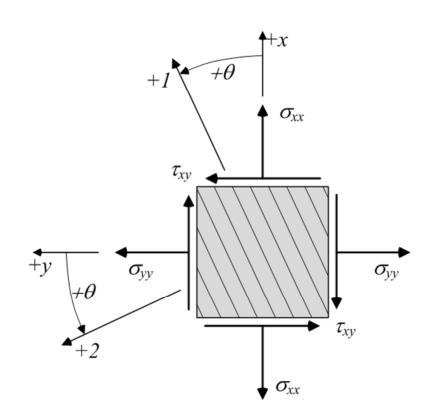

- Dozens of failure theories have been proposed...none are universally accepted
- Three common failure criterion described in textbook:
 - Maximum stress failure criterion
 - Tsai-Hill failure criterion
 - Tsai-Wu failure criterion

Maximum Stress Failure Criterion

(Plane stress form)

Failure does not occur if:

$$-1*\sigma_{11}^{fC} < \sigma_{11} < \sigma_{11}^{fT}$$
(and)
$$-1*\sigma_{22}^{fC} < \sigma_{22} < \sigma_{22}^{fT}$$
(and)
$$|\tau_{12}| < \tau_{12}^{f}$$

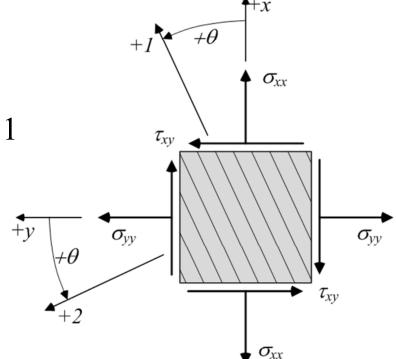


Tsai-Hill Failure Criterion

(Plane stress form)

Failure does not occur if:

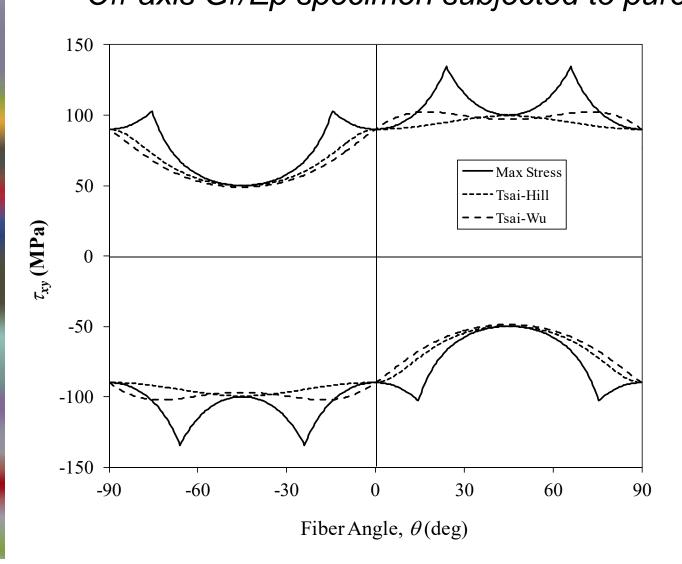
$$\frac{(\sigma_{11})^{2}}{(\sigma_{11}^{fT})^{2}} + \frac{(\sigma_{22})^{2}}{(\sigma_{22}^{fT})^{2}} + \frac{(\sigma_{11})^{2}}{(\sigma_{11}^{fT})^{2}} + \frac{(\sigma_{11})^{2}}{(\sigma_{11}^{f})^{2}} - \frac{\sigma_{11}\sigma_{22}}{(\sigma_{11}^{fT})^{2}} < 1$$

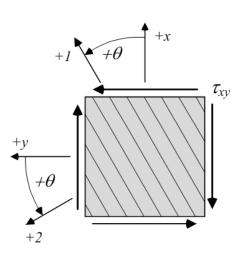


Tsai-Wu Failure Criterion

(Plane stress form)

Failure does not occur if:

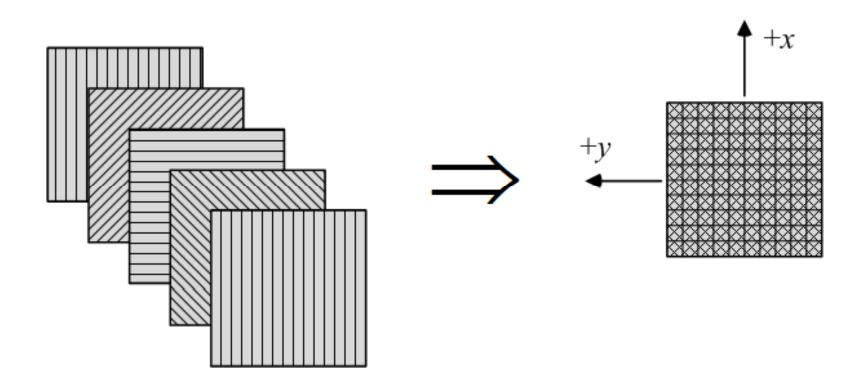

$$\begin{split} &X_{1}\sigma_{11} + X_{2}\sigma_{22} + X_{11}\sigma_{11}^{2} \\ &+ X_{22}\sigma_{22}^{2} + X_{66}\tau_{12}^{2} + 2X_{12}\sigma_{11}\sigma_{22} < 1 \end{split}$$

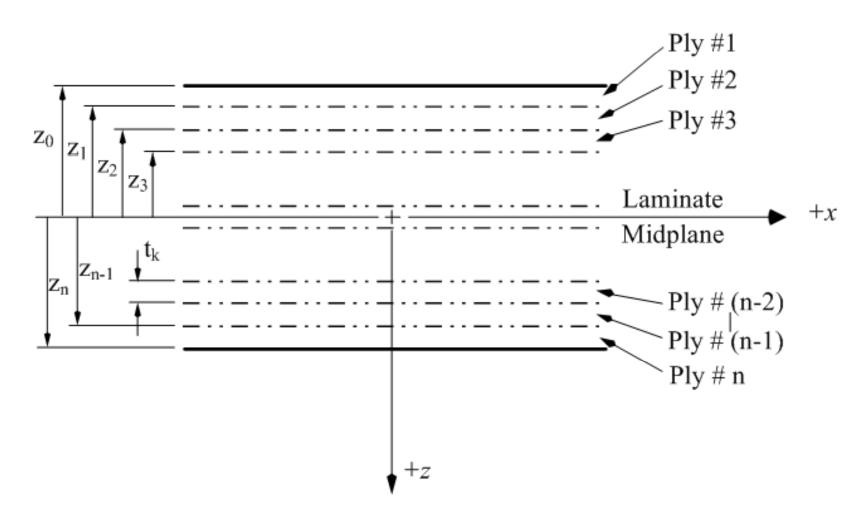


Macroscopic Failure Theories: Comparisons Off-axis Gr/Ep specimen subject to uniaxial stress

2000 1500 $+\theta$ Max Stress Tsai-Hill 1000 σ_{xx} - Tsai-Wu 500 σ_{xx} (MPa) 0 -500 $+\theta$ -1000 -1500 -2000 -30 -90 -60 30 60 0 90 Fiber Angle, θ (deg)

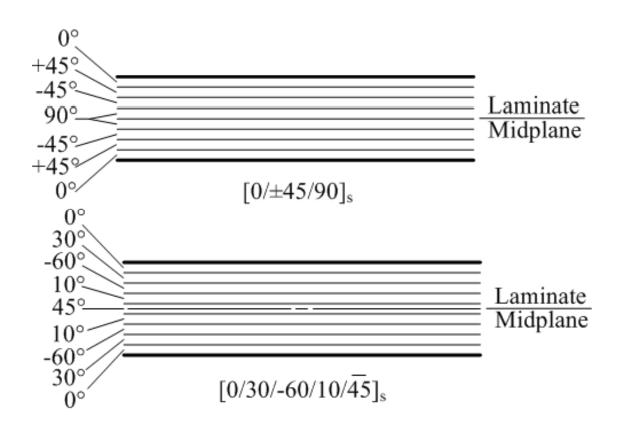
Macroscopic Failure Theories: Comparisons Off-axis Gr/Ep specimen subjected to pure shear stress



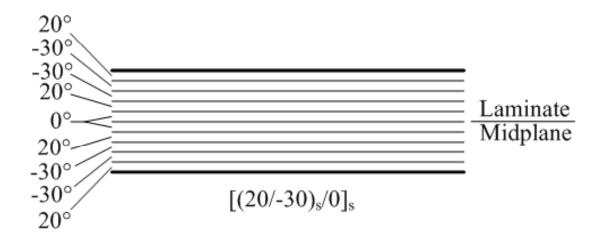

Mechanical Engineering

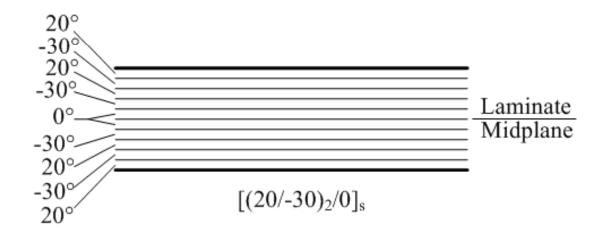
Chapter 6: Thermomechanical Behavior of Multiangle Composite Laminates


(CLT = Classical Lamination Theory)



Defining Ply Interface Positions




Describing Stacking Sequences

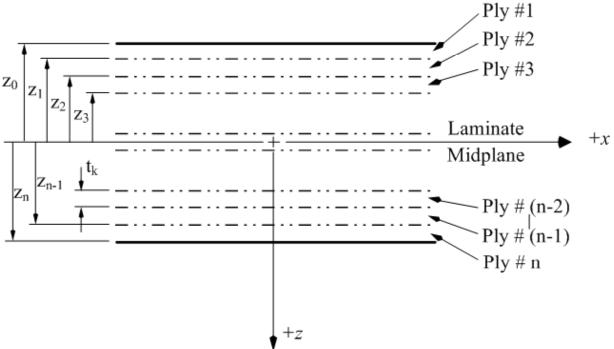
Describing Stacking Sequences

Kirchhoff Hypothesis

"a straight line which is initially perpendicular to the midplane of a thin plate remains straight and perpendicular to the midplane after deformation"

 Ultimately allows us to calculate the strain at any through-thickness position z:

$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{cases} = \begin{cases}
\varepsilon_{xx}^{o} \\
\varepsilon_{yy}^{o} \\
\gamma_{xy}^{o}
\end{cases} + z \begin{cases}
\kappa_{xx} \\
\kappa_{yy} \\
\kappa_{xy}
\end{cases}$$


where:

$$\varepsilon_{xx}^{o}, \varepsilon_{yy}^{o}, \gamma_{xy}^{o} = \text{midplane strains}$$

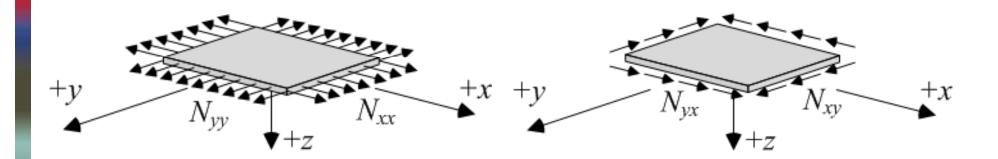
 $\kappa_{xx}, \kappa_{yy}, \kappa_{xy} = \text{midplane curvatures}$

Ply Strains

• Strains at ply interfaces are usually of greatest interest:

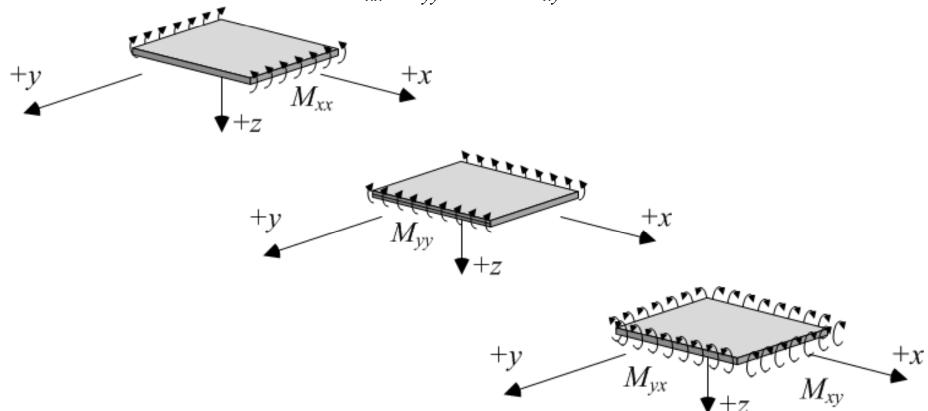
$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{cases} = \begin{cases}
\varepsilon_{xx}^{o} \\
\varepsilon_{yy}^{o} \\
\gamma_{xy}^{o}
\end{cases} + z \begin{cases}
\kappa_{xx} \\
\kappa_{yy} \\
\kappa_{xy}
\end{cases}$$

Ply Stresses


Ply stresses can be calculated using Hooke's law:

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{cases} \varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\ \varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\ \gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy} \end{cases}$$

$$\downarrow^{\text{Ply } \# 1} \\ \downarrow^{\text{Ply } \# 2} \\ \downarrow^{\text{Ply } \# 3} \\ \downarrow^{\text{Ply } \# (n-2)} \\ \downarrow^{\text{Ply } \# (n-1)} \\ \downarrow^$$


Laminate Loading

- Loads considered are restricted to those that lead to plane stress conditions...two types:
 - Stress resultants, N_{xx} , N_{yy} , and N_{xy}units = force/length

Laminate Loading

- Loads considered are restricted to those that lead to plane stress conditions...two types:
 - Moment resultants, M_{xx}, M_{yy} , and M_{xy} units = force-length/length

It can be shown:

$$N_{xx} = \int_{-t/2}^{t/2} \sigma_{xx} dz$$

Hooke's law:

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} =
\begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\
\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66}
\end{bmatrix}
\begin{cases}
\varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\
\varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\
\gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy}
\end{cases}$$

• Substituting for σ_{xx} and integrating in piece-wise fashion:

$$N_{xx} = A_{11}\varepsilon_{xx}^{o} + A_{12}\varepsilon_{yy}^{o} + A_{16}\gamma_{xy}^{o} + B_{11}\kappa_{xx} + B_{12}\kappa_{yy} + B_{16}\kappa_{xy} - N_{xx}^{T} - N_{xx}^{M}$$

• Where:

$$\begin{split} A_{11} &= \left\{\!\!\left[\!\overline{Q}_{11}\right]_{\!1}\!\left[z_{1} - z_{0}\right] + \left(\!\overline{Q}_{11}\right)_{\!2}\!\left[z_{2} - z_{1}\right] + \left(\!\overline{Q}_{11}\right)_{\!3}\!\left[z_{3} - z_{2}\right] + \dots + \left(\!\overline{Q}_{11}\right)_{\!n}\!\left[z_{n} - z_{n-1}\right]\!\right\} \\ A_{12} &= \left\{\!\!\left[\!\overline{Q}_{12}\right]_{\!1}\!\left[z_{1} - z_{0}\right] + \left(\!\overline{Q}_{12}\right)_{\!2}\!\left[z_{2} - z_{1}\right] + \left(\!\overline{Q}_{12}\right)_{\!3}\!\left[z_{3} - z_{2}\right] + \dots + \left(\!\overline{Q}_{12}\right)_{\!n}\!\left[z_{n} - z_{n-1}\right]\!\right\} \\ A_{16} &= \left\{\!\!\left[\!\overline{Q}_{16}\right]_{\!1}\!\left[z_{1} - z_{0}\right] + \left(\!\overline{Q}_{16}\right)_{\!2}\!\left[z_{2} - z_{1}\right] + \left(\!\overline{Q}_{16}\right)_{\!3}\!\left[z_{3} - z_{2}\right] + \dots + \left(\!\overline{Q}_{16}\right)_{\!n}\!\left[z_{n} - z_{n-1}\right]\!\right\} \end{split}$$

$$\begin{split} B_{11} &= \frac{1}{2} \left\{ \left[\overline{Q}_{11} \right]_{1} [z_{1}^{2} - z_{0}^{2}] + \left[\overline{Q}_{11} \right]_{2} [z_{2}^{2} - z_{1}^{2}] + \left[\overline{Q}_{11} \right]_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left[\overline{Q}_{11} \right]_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\} \\ B_{12} &= \frac{1}{2} \left\{ \left[\overline{Q}_{12} \right]_{1} [z_{1}^{2} - z_{0}^{2}] + \left[\overline{Q}_{12} \right]_{2} [z_{2}^{2} - z_{1}^{2}] + \left[\overline{Q}_{12} \right]_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left[\overline{Q}_{12} \right]_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\} \\ B_{16} &= \frac{1}{2} \left\{ \left[\overline{Q}_{16} \right]_{1} [z_{1}^{2} - z_{0}^{2}] + \left[\overline{Q}_{16} \right]_{2} [z_{2}^{2} - z_{1}^{2}] + \left[\overline{Q}_{16} \right]_{3} [z_{3}^{2} - z_{2}^{2}] + \dots + \left[\overline{Q}_{16} \right]_{n} [z_{n}^{2} - z_{n-1}^{2}] \right\} \end{split}$$

$$N_{xx}^T \equiv \Delta T \sum_{k=1}^n \left\{ \left[\overline{Q}_{11} \alpha_{xx} + \overline{Q}_{12} \alpha_{yy} + \overline{Q}_{16} \alpha_{xy} \right]_k \left[z_k - z_{k-1} \right] \right\}$$

$$N_{xx}^{M} \equiv \Delta M \sum_{k=1}^{n} \left[\overline{Q}_{11} \beta_{xx} + \overline{Q}_{12} \beta_{yy} + \overline{Q}_{16} \beta_{xy} \right]_{k} \left[z_{k} - z_{k-1} \right]$$

It can be shown:

$$M_{xx} = \int_{-t/2}^{t/2} \sigma_{xx} z dz$$

Hooke's law:

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} =
\begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\
\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66}
\end{bmatrix}
\begin{cases}
\varepsilon_{xx} - \Delta T \alpha_{xx} - \Delta M \beta_{xx} \\
\varepsilon_{yy} - \Delta T \alpha_{yy} - \Delta M \beta_{yy} \\
\gamma_{xy} - \Delta T \alpha_{xy} - \Delta M \beta_{xy}
\end{cases}$$

• Substituting for σ_{xx} and integrating in piece-wise fashion:

$$M_{xx} = B_{11}\varepsilon_{xx}^{o} + B_{12}\varepsilon_{yy}^{o} + B_{16}\gamma_{xy}^{o} + D_{11}\kappa_{xx} + D_{12}\kappa_{yy} + D_{16}\kappa_{xy} - M_{xx}^{T} - M_{xx}^{M}$$

• Where:

$$\begin{split} B_{11} &= \frac{1}{2} \left\{ \left[\overline{Q}_{11} \right]_{1} \left[z_{1}^{2} - z_{0}^{2} \right] + \left[\overline{Q}_{11} \right]_{2} \left[z_{2}^{2} - z_{1}^{2} \right] + \left[\overline{Q}_{11} \right]_{3} \left[z_{3}^{2} - z_{2}^{2} \right] + \dots + \left[\overline{Q}_{11} \right]_{n} \left[z_{n}^{2} - z_{n-1}^{2} \right] \right\} \\ B_{12} &= \frac{1}{2} \left\{ \left[\overline{Q}_{12} \right]_{1} \left[z_{1}^{2} - z_{0}^{2} \right] + \left[\overline{Q}_{12} \right]_{2} \left[z_{2}^{2} - z_{1}^{2} \right] + \left[\overline{Q}_{12} \right]_{3} \left[z_{3}^{2} - z_{2}^{2} \right] + \dots + \left[\overline{Q}_{12} \right]_{n} \left[z_{n}^{2} - z_{n-1}^{2} \right] \right\} \\ B_{16} &= \frac{1}{2} \left\{ \left[\overline{Q}_{16} \right]_{1} \left[z_{1}^{2} - z_{0}^{2} \right] + \left[\overline{Q}_{16} \right]_{2} \left[z_{2}^{2} - z_{1}^{2} \right] + \left[\overline{Q}_{16} \right]_{3} \left[z_{3}^{2} - z_{2}^{2} \right] + \dots + \left[\overline{Q}_{16} \right]_{n} \left[z_{n}^{2} - z_{n-1}^{2} \right] \right\} \\ D_{11} &= \frac{1}{3} \left\{ \left[\overline{Q}_{11} \right]_{1} \left[z_{1}^{3} - z_{0}^{3} \right] + \left[\overline{Q}_{11} \right]_{2} \left[z_{2}^{3} - z_{1}^{3} \right] + \left[\overline{Q}_{11} \right]_{3} \left[z_{3}^{3} - z_{2}^{3} \right] + \dots + \left[\overline{Q}_{11} \right]_{n} \left[z_{n}^{3} - z_{n-1}^{3} \right] \right\} \\ D_{12} &= \frac{1}{3} \left\{ \left[\overline{Q}_{12} \right]_{1} \left[z_{1}^{3} - z_{0}^{3} \right] + \left[\overline{Q}_{12} \right]_{2} \left[z_{2}^{3} - z_{1}^{3} \right] + \left[\overline{Q}_{12} \right]_{3} \left[z_{3}^{3} - z_{2}^{3} \right] + \dots + \left[\overline{Q}_{16} \right]_{n} \left[z_{n}^{3} - z_{n-1}^{3} \right] \right\} \\ D_{16} &= \frac{1}{3} \left\{ \left[\overline{Q}_{16} \right]_{1} \left[z_{1}^{3} - z_{0}^{3} \right] + \left[\overline{Q}_{16} \right]_{2} \left[z_{2}^{3} - z_{1}^{3} \right] + \left[\overline{Q}_{16} \right]_{3} \left[z_{3}^{3} - z_{2}^{3} \right] + \dots + \left[\overline{Q}_{16} \right]_{n} \left[z_{n}^{3} - z_{n-1}^{3} \right] \right\} \\ M_{xx}^{T} &= \frac{\Delta T}{2} \sum_{k=1}^{n} \left[\overline{Q}_{11} \alpha_{xx} + \overline{Q}_{12} \alpha_{yy} + \overline{Q}_{16} \alpha_{xy} \right]_{k} \left[z_{k}^{2} - z_{k-1}^{2} \right] \right\} \end{aligned}$$

 $M_{xx}^{M} = \frac{\Delta M}{2} \sum_{k=1}^{n} \left\{ \overline{Q}_{11} \beta_{xx} + \overline{Q}_{12} \beta_{yy} + \overline{Q}_{16} \beta_{xy} \right\}_{k} \left[z_{k}^{2} - z_{k-1}^{2} \right]$

 Process repeated for all stress and moment resultants, finally resulting in:

$$\begin{bmatrix} N_{xx} \\ N_{yy} \\ N_{xy} \\ M_{xx} \\ M_{yy} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx}^{o} \\ \varepsilon_{xy}^{o} \\ \varepsilon_{yy}^{o} \\ \varepsilon_{xy}^{o} \\ \kappa_{xx} \\ \kappa_{yy} \\ \kappa_{xy} \end{bmatrix} - \begin{bmatrix} N_{xx}^{M} \\ N_{xx}^{M} \\ N_{yy}^{M} \\ N_{xy}^{M} \\ N_{xy}^{M} \\ M_{xx}^{M} \\ M_{yy}^{M} \\ M_{xy}^{M} \end{bmatrix}$$

Inverting:

$$\begin{cases} \varepsilon_{xx}^{o} \\ \varepsilon_{yy}^{o} \\ \gamma_{xy}^{o} \\ \kappa_{xx} \\ \kappa_{yy} \\ \kappa_{xy} \end{cases} = \begin{bmatrix} a_{11} & a_{12} & a_{16} & b_{11} & b_{12} & b_{16} \\ a_{12} & a_{22} & a_{26} & b_{21} & b_{22} & b_{26} \\ a_{16} & a_{26} & a_{66} & b_{61} & b_{62} & b_{66} \\ b_{11} & b_{21} & b_{61} & d_{11} & d_{12} & d_{16} \\ b_{12} & b_{22} & b_{62} & d_{12} & d_{22} & d_{26} \\ b_{16} & b_{26} & b_{66} & d_{16} & d_{26} & d_{66} \end{bmatrix} \begin{cases} N_{xx} + N_{xx}^{T} + N_{xx}^{M} \\ N_{yy} + N_{yy}^{T} + N_{yy}^{M} \\ N_{xy} + N_{xy}^{T} + N_{xy}^{M} \\ M_{xx} + M_{xx}^{T} + M_{xx}^{M} \\ M_{yy} + M_{yy}^{T} + M_{yy}^{M} \\ M_{xy} + M_{xy}^{T} + M_{xy}^{M} \end{cases}$$

Simplifications Due to Stacking Sequence

- Various terms within the [ABD] and [abd] matrices are always zero for certain stacking sequences (see Section 6.7)
- The most important simplification occurs for *symmetric* laminates...in this case:

$$\begin{cases} N_{xx} \\ N_{yy} \\ N_{xy} \\ M_{xx} \\ M_{yy} \\ M_{xy} \end{cases} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & 0 & 0 & 0 \\ A_{12} & A_{22} & A_{26} & 0 & 0 & 0 \\ A_{16} & A_{26} & A_{66} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{11} & D_{12} & D_{16} \\ 0 & 0 & 0 & D_{12} & D_{22} & D_{26} \\ 0 & 0 & 0 & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx}^{o} \\ \varepsilon_{yy}^{o} \\ \varepsilon_{yy}^{o} \\ \kappa_{xx} \\ \kappa_{yy} \\ \kappa_{xy} \end{bmatrix} - \begin{bmatrix} N_{xx}^{M} \\ N_{xx}^{M} \\ N_{yy}^{M} \\ N_{xy}^{M} \\$$

Simplifications Due to Stacking Sequence

- Various terms within the [ABD] and [abd] matrices are always zero for certain stacking sequences (see Section 6.7)
- The most important simplification occurs for *symmetric* laminates...in this case:

$$\begin{cases} \mathcal{E}_{xx}^{o} \\ \mathcal{E}_{yy}^{o} \\ \gamma_{xy}^{o} \\ \kappa_{xx} \\ \kappa_{yy} \\ \kappa_{xy} \end{cases} = \begin{bmatrix} a_{11} & a_{12} & a_{16} & 0 & 0 & 0 \\ a_{12} & a_{22} & a_{26} & 0 & 0 & 0 \\ a_{16} & a_{26} & a_{66} & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{11} & d_{12} & d_{16} \\ 0 & 0 & 0 & d_{12} & d_{22} & d_{26} \\ 0 & 0 & 0 & d_{16} & d_{26} & d_{66} \end{bmatrix} \begin{cases} N_{xx} + N_{xx}^{T} + N_{xx}^{M} \\ N_{yy} + N_{xy}^{T} + N_{yy}^{M} \\ N_{xy} + N_{xy}^{T} + N_{xy}^{M} \\ M_{xx} \\ M_{yy} \\ M_{xy} \end{cases}$$

Effective Laminate Properties

- Effective elastic properties of a laminate can be determined by applying the "normal" definitions:
- Extensional (in-plane):

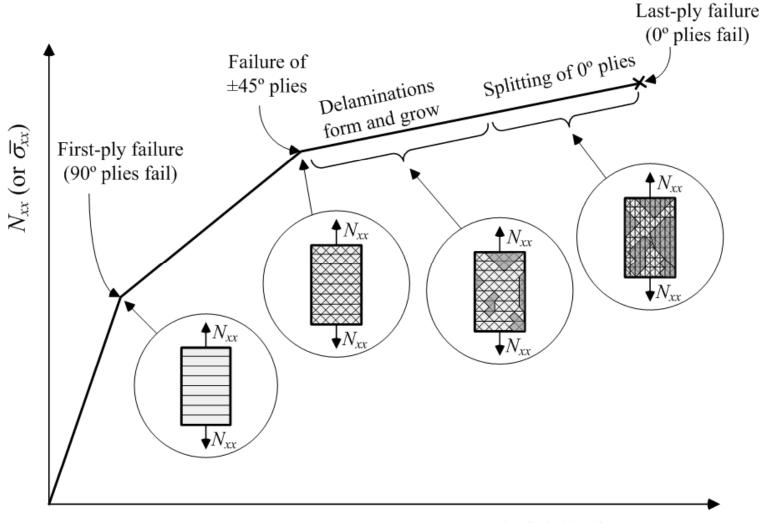
$$\overline{E}_{xx}^{ex} = \frac{1}{ta_{11}} \qquad \overline{v}_{xy}^{ex} = \frac{-a_{12}}{a_{11}} \qquad \overline{\eta}_{xx,xy}^{ex} = \frac{a_{16}}{a_{11}}$$

$$\overline{E}_{yy}^{ex} = \frac{1}{ta_{22}} \qquad \overline{v}_{yx}^{ex} = \frac{-a_{12}}{a_{22}} \qquad \overline{\eta}_{yy,xy}^{ex} = \frac{a_{26}}{a_{22}}$$

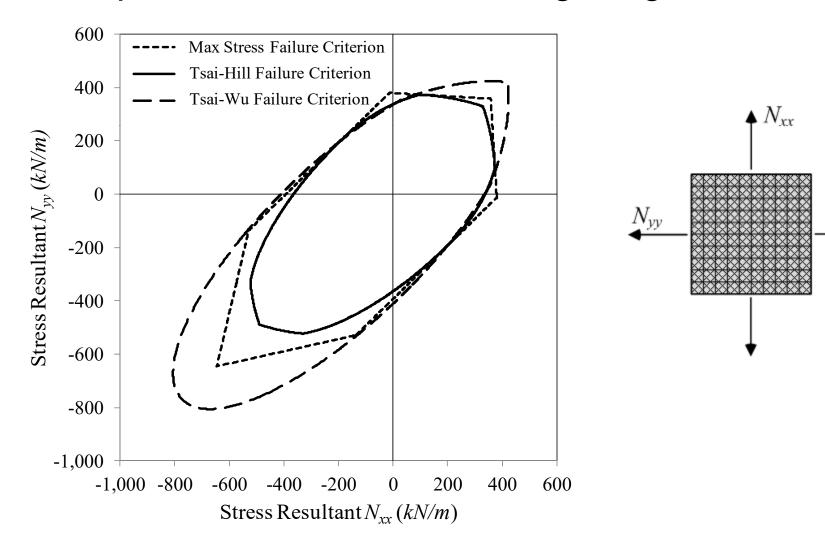
$$\overline{G}_{xy} = \frac{1}{ta_{66}} \qquad \overline{\eta}_{xy,xx} = \frac{a_{16}}{a_{66}} \qquad \overline{\eta}_{xy,yy} = \frac{a_{26}}{a_{66}}$$

Effective Laminate Properties

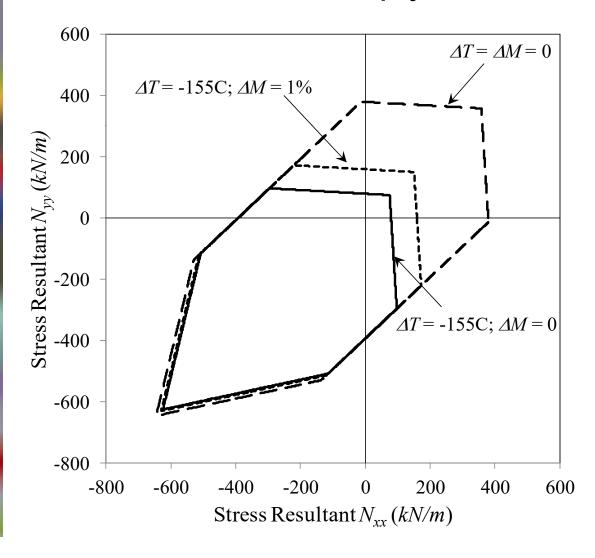
- Effective elastic properties of a laminate can be determined by applying the "normal" definitions
- Flexural (bending):

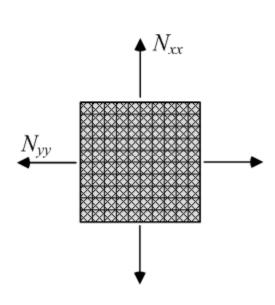

$$\overline{E}_{xx}^{fl} = \frac{12}{t^3 d_{11}} \qquad \overline{v}_{xy}^{fl} = \frac{-d_{12}}{d_{11}} \qquad \overline{\eta}_{xx,xy}^{fl} = \frac{d_{16}}{d_{11}}$$

$$\overline{E}_{yy}^{fl} = \frac{12}{t^3 d_{22}} \qquad \overline{v}_{yx}^{fl} = \frac{-d_{12}}{d_{22}} \qquad \overline{\eta}_{yy,xy}^{fl} = \frac{d_{26}}{d_{22}}$$

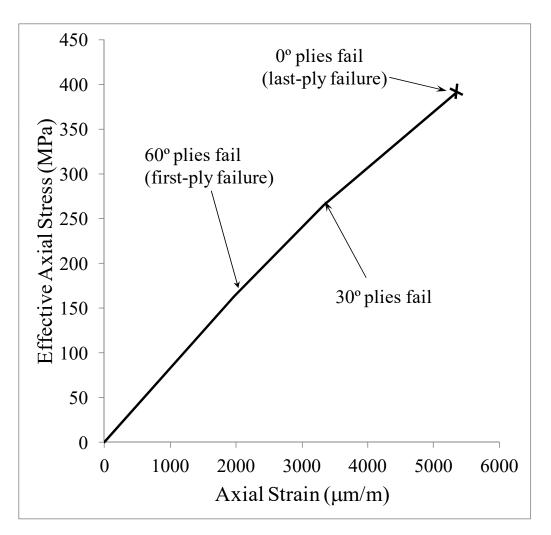

Program CLT

 Most of the topics included in this review are implemented in the program CLT (<u>Classical Lamination Theory</u>)

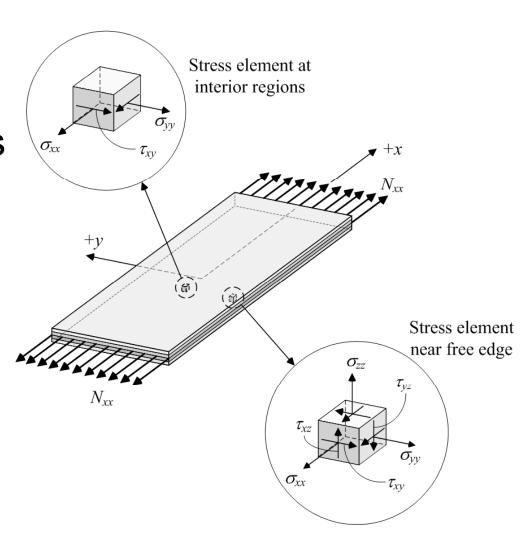

Chapter 7: Failure of Multiangle Laminates



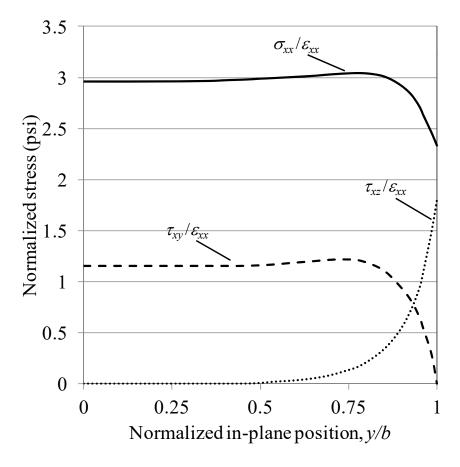
First-ply Failure Loads and/or First-ply Failure Envelopes can be Predicted Using Program LAMFAIL

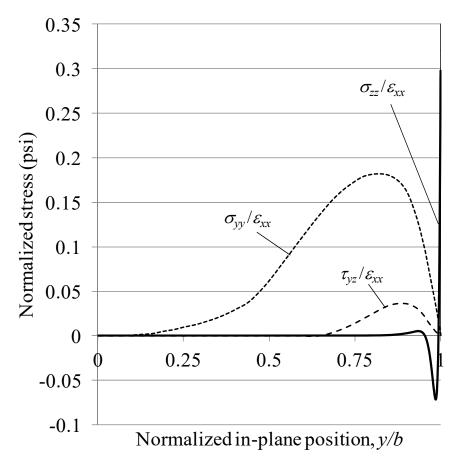


Environmental Effects Dramatically Affect Predicted First-ply Failure Loads


Last-Ply Failure Loads Can be Predicted Using the Ply-Discount Scheme (Program LAMFAIL)

Predicted stress-strain curve for a [0/30/60]_s laminate


Mechanical Engineering


3-D Stress-State Exists
Near a Free-edge and
Complicate Failure
Predictions
(see Section 6.13)

3-D Stress-State Exists Near a Free-edge and Complicate Failure Predictions (see Section 6.13)

(Typical results for a [45/-45]_s laminate subject to uniaxial loading)

Good luck on all your finals, and have a great spring break!