
ME 477 Embedded Computing
Notes on Discrete-Time Dynamic Systems

J. L. Garbini

Suppose that we wish to implement an embedded com-
puter system that behaves analogously to a continuous
linear single-input-single-output dynamic system. The in-
put and output for the continuous system are continuous
functions of time. The corresponding input and output
for the embedded system are data, sampled with period
T , that form two discrete-time sequences as shown.

x(t) y(t)

Input Output

t t
Continuous

System

x(nT) y(nT)

Input Output

t t
Discrete
System

T

x(n) y(n)

n nSequences

0
3T 4T 5T 6T1T 2T

0
3T 4T 5T 6T1T 2T

0
3 4 5 61 2

0
3 4 5 61 2

The continuous system can be described by a linear,
constant-coefficient differential equation:

dny

dtn
+ cn−1

dn−1y

dtn−1
+ . . .+ c1

dy

dt
+ c0y =

= dm
dmx

dtm
+ dm−1

dm−1x

dtm−1
+ . . .+ d1

dx

dt
+ d0x

where ck and dk are constants. The equivalent transfer
function is

G(s) =
Y (s)

X(s)
=
dms

m + dm−1s
m−1 + . . .+ d1s

1
+d0

sn + cn−1sn−1 + . . .+ c1s1+c0

The corresponding discrete system is described by a
difference equation that operates on the sequence of input
values x(n) to produce the output sequence y(n).

The difference equation has the form

a0y(n) + a1y(n− 1) + . . .+ aNy(n−N) =

= b0x(n) + b1x(n− 1) + . . .+ bMx(n−M) (1)

for n = 0, 1, 2, . . ., and where x(n) is a sequence of
periodically digitized values of the analog input signal,
y(n) is a sequence of values that determine the output
signal, and ak, k = 0, 1, . . . N and bk, k = 0, 1, . . .M are
constants.

This equation can also be written in summation form:

N∑
k=0

aky(n− k) =

M∑
k=0

bkx(n− k) (2)

or, solving (2) for the current output sample y(n),

y(n) =
1

a0

[
M∑
k=0

bkx(n− k)−
N∑

k=1

aky(n− k)

]
(3)

Notice that the most recent output value y(n) depends
on previous values of y and on the previous and current
values of the input x.

The values of the constants in the difference equation
can be determined from the constants in the differential
equation and from the sample period T . To see the rela-
tionship between the differential and difference equations
consider the following.

The z-transform – In the analysis of continuous sys-
tems, we use the Laplace transform, defined by

L {f(t)} = F (s) =

∫ ∞
0

f(t)e−stdt

which leads directly to the familiar property that the
Laplace transform of the derivative of a function f(t)
(with zero initial conditions) is s times the transform of
the function F (s):

L

{
df(t)

dt

}
= sF (s), (4)

which enables us to find easily the transfer function of a
linear continuous system, given its differential equation.

For discrete systems a very similar procedure is avail-
able. The z-transform of a sequence is defined by

Z {f(n)} = F (z) =

∞∑
n=0

f(n)z−n

where f(n) is the sampled version of f(t), as shown above.
This leads directly to a property analogous to (4) for dis-
crete systems: The z-transform of a function delayed by
one sample period is z−1 times the transform of the func-
tion F (z):

Z {f(n− 1)} = z−1F (z), (5)

We can easily find the transfer function of a discrete sys-
tem given its difference equation. For example, the z-
transform of the second order difference equation

y(n) + a1y(n− 1) + a2y(n− 2) =

= b0x(n) + b1x(n− 1) + b2x(n− 2) (6)

is determined by successively applying (5) to arrive at(
1 + a1z

−1 + a2z
−2)Y (z) =

(
b0 + b1z

−1 + b2z
−2)X(z)

(7)
Rearranging, the discrete transfer function is

G(z) =
Y (z)

X(z)
=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(8)

1

Notice that the transfer function (8) and the difference
equation (6), can be derived from each other by inspec-
tion. Notice also that the transfer function of a discrete
system is the ratio of two polynomials in z, just as the
transfer function of a continuous system is the ratio of
two polynomials in s.

There are several ways to derive an approximate dis-
crete model from a corresponding continuous model. We
will use a popular technique called Tustin’s method that
approximates a continuous function of time by straight
lines connecting the sampled points (trapezoidal integra-
tion.)

The discrete transfer function is found using Tustin’s
method by making the following substitution in the con-
tinuous transfer function

s =
2

T

(
1− z−1

1 + z−1

)
(9)

and rewriting the transfer function in the form of equation
(8). Here, T is the sample period.

Example – Consider a continuous first order system
described by the transfer function:

G(s) =
Y (s)

X(s)
=

1

τs+ 1
, where τ is the time constant.

We want to find the corresponding discrete-time trans-
fer function and difference equation. Substituting equa-
tion (9) into G(s) we have:

G(z) =
Y (z)

X(z)
=

α+ αz−1

1− (1− 2α)z−1
, (10)

where α is a constant:

α =
T

2τ + T

from which the difference equation can be inferred (see
equations (6), (7), and (8) above):

y(n) = (1− 2α)y(n− 1) + αx(n) + αx(n− 1) (11)

Notice again that the current value of the output y(n)
depends on the previous output, y(n − 1), and on the
current and previous inputs, x(n) and x(n− 1).

Notice also that the coefficients depend on the time
constant τ in the original continuous system and on the
sample period T .

During each sample period, the value of the current
value of the input x(n) is measured and the current value
of the output y(n) is computed. Suppose that the time
constant τ = 2, the sample period T = 1, and that the
input is a unit step (x(n) = 1 for all n > 0), and the
initial condition y(0) = 0.

Then from equation (11):

y(n) = 0.6y(n− 1) + 0.4

and we can compute the output sequence:

y(0) = 0

y(1) = 0.6× 0 + 0.4 = 0.4

y(2) = 0.6× 0.4 + 0.4 = 0.64

y(3) = 0.6× 0.64 + 0.4 = 0.784

y(4) = 0.6× 0.784 + 0.4 = 0.870 etc.

Here are plots of the input and output sequences.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

n

x(
n)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

n

y(
n)

The dotted line is the exact solution y(t/T) of the orig-
inal continuous differential equation. As you can see, in
this example, Tustin’s method is very close to the exact
solution at the sample points.

The Biquad Cascade – Although we could imple-
ment equation (3) as shown, the sensitivity of the output
to the coefficients leads to numerical inaccuracies as the
order of the system N becomes large. We will solve this
problem by breaking the Nth order system it into a series
of ns 2nd order systems.

The technique is called a Biquad Cascade:

...

x(nT) y(nT)

x(nT) y(nT)

Input

Input

Output

Output

Nth Order
System

2nd
Order

2nd
Order

2nd
Order

2nd
Order

1 2 ns-1 ns

Notice that the output of each 2nd order section
(biquad)1 is the input to the subsequent section. Each
biquad implements the same 2nd order difference equa-
tion, but with different coefficients, inputs, outputs, and
internal states.

1“biquad” is short for “biquadratic.” The biquad transfer func-
tion has 2nd order polynomials in both numerator and denominator.

2

For example, the current output yi(n) from the ith sec-
tion would be:

yi(n) = [b0ixi(n) +

+b1ixi(n− 1) + b2ixi(n− 2) +

−a1iyi(n− 1)− a2iyi(n− 2)]/a0i (12)

Of course, a first or second order transfer function
would require only one biquad. Depending on the value of
N , some of the coefficients of at least one biquad may be
zero. We will implement a function to handle any value
of N .

There are a variety of algorithms for breaking a transfer
function into the 2nd order sections. MATLAB contains
a built-in function ”tf2sos” (transfer function to second
order sections) for this purpose.

Discrete-Time Controllers – For reference, here are
the Tustin equivalents for some common continuous-time
controllers:

Phase Lead/Lag
continuous discrete
transfer function transfer function

T (s) = Y (s)
X(s) = k s+z

s+p T (z) = Y (z)
X(z) = k b0+b1z

−1

a0+a1z−1

differential equation difference equation

dy
dt + py = k

(
dx
dt + zx

)
y(n) = −a1

a0
y(n− 1)+

+ b0
a0
x(n) + b1

a0
x(n− 1)

a0 = 1, b0 = k zT+2
pT+2

a1 = pT−2
pT+2 , b1 = k zT−2

pT+2

PI
continuous discrete
transfer function transfer function

T (s) = Y (s)
X(s) T (z) = Y (z)

X(z) = b0+b1z
−1

a0+a1z−1

= Kp + Ki

s

differential equation difference equation

y(t) = Kpx(t)+ y(n) = −a1

a0
y(n− 1)+

+Ki

∫ t

0
x(t)dt + b0

a0
x(n) + b1

a0
x(n− 1)

a0 = 1, b0 = Kp + 1
2KiT

a1 = −1, b1 = −Kp + 1
2KiT

PID
continuous discrete
transfer function transfer function

T (s) = Y (s)
X(s) T (z) = Y (z)

X(z)

= Kp + Ki

s +Kds = b0+b1z
−1+b2z

−2

a0+a1z−1+a2z−2

differential equation difference equation

y(t) = Kpx(t)+ y(n) =

+Ki

∫ t

0
x(t)dt+ −a1

a0
y(n− 1)− a2

a0
y(n− 2)+

+Kd
dx
dt + b0

a0
x(n) + b1

a0
x(n− 1)+

+ b2
a0
x(n− 2)

a0 = 1, b0 =
2KpT+KiT

2+4Kd

2T

a1 = 0, b1 = 2KiT
2−8Kd

2T

a2 = −1, b2 =
−2KpT+KiT

2+4Kd

2T

P.S. There are many more uses for z-transforms. For
reference, see Digital Control of Dynamic Systems, by
Franklin, Powell, and Workman. p. 189. 1997

By the way, the MATLAB Control Toolbox contains a
function “c2d” that computes the Tustin equivalent dis-
crete system, SYSD, from the continuous system, SYS:

SYSD = c2d(SYS, T, ’tustin’)

3

