
ME 477 Embedded Computing
The Eclipse Integrated Development System

The development system is a powerful and convenient
tool for embedded computing applications. As shown be-
low, the development system consists of a personal com-
puter,connected via a USB cable to target computer. There
are six identical systems in MEB 115. You may use any of
the systems at any time.

LCD Display

External
Devices

myRIO
Target
Computer

dual-core ARM
Cortex-A9 processor,
with Xilinx FPGA

Keypad

ApplicationDevelopment System

During the development of an embedded computing appli-
cation, the development system communicates with real-time
Linux operating system of the myRIO target computer.

The development environment includes an integrated set
of hardware and software tools that help to debug a micro-
computer design by allowing you to watch your program ex-
ecute, as well as to stop it and inspect system variables. As
you will see, it allows you to monitor and control the target
computer, without interfering with its timing.

Once the hardware and software of the application are
completed, the development system is disconnected from the
target system. In the final application, the target program
resides in ROM on the target computer.

Final Application ...

LCD Display

External
Devices

myRIO
Target
Computer

dual-core ARM
Cortex-A9 processor,
with Xilinx FPGA

Keypad

Getting Started with CDT

Eclipse is an integrated development environment (IDE). We
will use Eclipse through its C Development Tool (CDT) to
create, edit, build, deploy, and debug C language projects
for the myRIO target computer. Within Eclipse all of your
projects are organized into a single workspace on your com-
puter. Each project, along with all of its necessary resources,
are stored in a named project folder.

The outline below describes the basic functions of the IDE
in preparing a C program for subsequent loading and execu-
tion on the myRIO remote system. Additional features are
described in the Help menu.

The outline below describes the basic functions of the IDE
in preparing a C program for subsequent loading and execu-
tion on the myRIO. Additional features are described in the
Help menu.

Begin by starting the Eclipse IDE application.

C/C++ Perspective

Enter the C/C++ Perspective by selecting that button in
the upper right.

The Project – The ME 477 C Support for myRIO archive
that you imported into your Eclipse workspace when
you set up the CDT contains a template project for
each of the nine laboratory exercises this quarter. They
are listed in the right pane of the C/C++ perspective.
Open a project by double clicking on its folder.

Each C program consists of a collection of functions, one
of which must be called main{}, and is executed first.
For large projects, additional functions are often in sep-
arate files. However, the organization of the assignments
in this class is such that all of the functions for a single
assignment can be conveniently stored in main.c along
with main{}.

Run and Debug Configurations – Among other things,
Run and Debug Configurations specify how the project
will be stored on the remote target. Configurations for
all ME 477 laboratory exercises were loaded into your
workspace in steps 4 and 5 of Part 1 of C Development
Tool Setup document.

Building the Project – Building the project consists of
compiling your C source code into object modules, and
linking them with other resources. Many coding errors
can be found during the building process. Since building
does not require that the development system be con-
nected to the target, time spent in the lab is minimized.

Before building, save any edit changes in the source code
(ctrl-s). Either right click the project and use Build
Project, or select and use Build Project from the Project
pull down menu. Errors and warnings are displayed in
the console menu in the bottom pane.

During each build, the CDT automatically re-compiles
any file that has been edited (and saved). The build op-
eration creates an output file in project’s Debug folder.

Running the Project – The project must build without
errors before it can be run. The first time a project is
run, pull down the Run menu and select Run Config-
urations. . . . In the Run Configurations window, select
the Run Configuration of your project. Then click Run.

The first run after a connection, you may be asked to
login. Use User ID: admin and Password: me477.

Recently run projects may be conveniently run from the

pull down menu under the run icon .

A project will not run if a project is already running.

Barring execution problems, the project runs until
main{} terminates.

Debug Perspective

Enter the Debug Perspective by selecting that button in the
upper right. The Debug perspective lets you manage the
debugging or running of a program. You can control the ex-
ecution of your program by setting breakpoints, suspending
launched programs, stepping through your code, and exam-
ining the contents of variables.

Debugging the Project – The project must build with-
out errors before it can be debugged. The first time a
project is debugged, pull down the Run menu and select
Debug Configurations. . . . In the Debug Configurations
window, select the configuration of your project. Then
click Debug.

After the first debug, the project may be conveniently
selected for debugging by pulling down menu under the

debug icon .

A project may not be debugged if a project is already
running.

Breakpoints – A breakpoint suspends the execution of a
program at the location where the breakpoint is set. To
set a line breakpoint, right-click in the marker bar area
on the left side of an editor beside the line where you
want the program to be suspended, then choose Toggle
Breakpoint. You can also double-click on the marker
bar next to the source code line.

A new breakpoint marker appears on the marker bar,
directly to the left of the line where you added the
breakpoint. Also, the new breakpoint appears in the
Breakpoints view list.

Once set, a breakpoint can be enabled and disabled by
right-clicking on its icon or by right-clicking on its de-
scription in the Breakpoints view.

• When a breakpoint is enabled, it causes the pro-
gram to suspend whenever it is hit. Enabled break-
points are indicated with a blue enabled breakpoint
circle.

• Enabled breakpoints that are successfully installed
are indicated with a checkmark overlay.

• When a breakpoint is disabled, it will not affect the
execution of the program. Disabled breakpoints
are indicated with a white disabled breakpoint cir-
cle.

Debug view toolbar commands

The Debug perspective also drives the C/C++ Editor. As
you step through your program, the C/C++ Editor high-
lights the location of the execution pointer.

resume – Select the Resume command to resume exe-
cution of the currently suspended debug target.

Suspend – Select the Suspend command to halt execu-
tion of the currently selected thread in a debug target.

Terminate – Ends the selected debug session and/or
process. The impact of this action depends on the type
of the item selected in the Debug view.

Step Over – Select to execute the current line, includ-
ing any routines, and proceed to the next statement.

Step Into – Select to execute the current line, following
execution inside a routine.

Step Return – Select to continue execution to the end
of the current routine, then follow execution to the rou-
tine’s caller.

Debug information

Variables – You can view information about the variables
in a selected stack frame in the Variables view. When
execution stops, the changed values are by default high-
lighted in red. Like the other debug-related views, the
Variables view does not refresh as you run your exe-
cutable. A refresh occurs when execution stops.

Expressions – An expression is a snippet of code that can
be evaluated to produce a result. The context for an ex-
pression depends on the particular debug model. Some
expressions may need to be evaluated at a specific loca-
tion in the program so that the variables can be refer-
enced. You can view information about expressions in
the Expressions view.

Registers – You can view information about the registers
in a selected stack frame. Values that have changed
are highlighted in the Registers view when the program
stops.

Memory – You can inspect and change memory.

Disassembly – You can view disassembled code mixed
with source information.

2

Figure 1: myRIO-1900 Hardware Block Diagram

3

