INTERFACE NOTES

Analog Initialization

In labs 6, 7, and 8 we will use analog input and out-
put channels to quantify and create analog signals. Each
analog channel must be initialized before it can be read
or written. Two functions are provided to initialize the
analog input channel 0 and analog output channel 0 on
connector C. The prototypes of these functions are

void Aio_InitCIO(MyRio_Aio *AICO); // Input O
void Aio_InitCO0(MyRio_Aio *AOCO); // Output O

where AICO, and AOCO, are structures of type MyRio_Aio.
These structures are populated by the initialization functions,
and will be referenced in the analog channel read and write
functions described the following sections.

In lab 6, analog input AICO and analog output AOCO will be
used. The code to initialize these channels would be

MyRio_Aio AICO; // Connector C analog input O
MyRio_Aio AOCO; // Connector C analog output O
Aio_InitCIO(&AICO); // Initialize input O
Aio_InitCO0(&AOCO); // Initialize output O

The initialization functions are included in the T1 library.

Analog-to-Digital Converter

The single-channel 12-bit analog-to-digital converter
(ADC) measures the current value of the applied voltage
in the range [-10.000, +9.995] V. Voltages outside that
range “saturate” the conversion as shown.

Converted

Value A |
0V ! ADC
I i Input
-10vV +10V Voltage
-10V

The ADC has a resolution of 4.883 mV, with absolute
accuracy of 200 mV. Each channel has input impedance
> 500 k2. Overload protection: +16 V.

Our library contains a function that reads a specified
channel of the ADC, and returns the converted value. Its
prototype is:

double Aio_Read(MyRio_Aio* channel);

where channel is the pointer to the channel structure
defined above: &AICO.

Digital-to-Analog Converter

The single-channel 12-bit digital-to-analog converter
(DAC) produces a voltage at the output terminal in the
range [-10.000, +9.995] V. Again, specified voltages out-
side that range “saturate” the conversion as shown. The

Converted . .|
Output Valuér 1oV [
1 Specified
| ov i DAC
10V +10V Voltage
Value
-10 V-

DAC has a resolution of 4.883 mV, with absolute accuracy
of +£200 mV. Each channel has a maximum drive current
of 3 mA, and a maximum slew rate of 2V /us. Overload
protection: +16 V.

Our library contains a function that accepts a specified
channel for the DAC, and returns the converted value. Its
prototype is:

void Aio_Write(MyRio_Aio* channel, double value);

where channel is the pointer to the channel structure
defined above: &AOCO, and value is the specified value of
the analog output voltage.

Interface Notes

Timer IRQ
Main Thread: Background

Initializing the Timer interrupt is similar to initializing
the Digital Input interrupt.

We will use a separate thread to produce interrupts
at periodic intervals. Within main.c we will configure
the Timer interrupt, and create a new thread to respond
when the interrupt occurs. The two threads communicate
through a globally defined thread resource structure:

typedef struct {
NiFpga_IrqContext irqContext; // IRQ context reserved
NiFpga_Bool irqThreadRdy; // IRQ thread ready flag
} ThreadResource;

National Instruments provides C functions to set up the
Timer interrupt request (IRQ).

1) Register the Timer IRQ — The first of these functions

reserves the interrupt from FPGA and configures the

Timer and IRQ. Its prototype is:

int32_t Irq_RegisterTimerIrq(MyRio_IrqTimer* irqChannel,
NiFpga_IrqContext* irqContext,
uint32_t timeout);

where the five input arguments are:

1. irqChannel- A pointer to a structure containing the registers
and settings for the IRQ I/O to modify; defined in TimerIRQ.h
as:

typedef struct {
uint32_t timerWrite;
uint32_t timerSet;
Irq_Channel timerChannel; // Timer IRQ supported I/0
} MyRio_IrqTimer;

2. irqContext - a pointer to a context variable identifying the
interrupt to be reserved. It is the first component of the thread
resources structure.

3. timeout - The timeout interval in us.

The returned value is 0 for success.

2) Create the interrupt thread — A new thread must be

configured to service the Timer interrupt. In main.c we
will use pthread_create() to set up that thread. Its
prototype is:

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(kstart_routine) (void *),
void *arg);

where the four input arguments are:
1. thread - A pointer to a thread identifier.

2. attr - A pointer to thread attributes. In our case, use NULL
to apply the default attributes.

3. start_routine - Name of starting function in the new thread.

4. arg - The sole argument to be passed to the new thread.
In our case, it will be a pointer to the thread resource
structure defined above and used in the second argument of
Irq_RegisterTimerIrq().

This function also returns 0 for success.

// Timer IRQ interval register Othe
// Timer IRQ setting register o

Main Thread: Our Case

We can combine these ideas into a portion of the main.c
code needed to initialize the timer IRQ.! For interrupts
triggered by the timer in the FPGA, we have:

int32_t status;
MyRio_IrqTimer irqTimerO;
ThreadResource irqThreadO;
pthread_t thread;

// Registers corresponding to the IRQ channel
irqTimerO.timerWrite = IRQTIMERWRITE;
irqTimerO.timerSet = IRQTIMERSETTIME;
timeoutValue = 5;

status = Irq_RegisterTimerIrq(&irqTimerO,
&irqThreadO.irqContext,
timeoutValue) ;

// Set the indicator to allow the new thread.
irqThread0.irqThreadRdy = NiFpga_True;

// Create new thread to catch the IRQ.
status = pthread_create(&thread,
NULL,
Timer_Irq_Thread,
&irqThread0) ;

rmain() tasks go here.

After the tasks of main.c are completed, it should signal
the new thread to terminate by setting the irqThreadRdy
flag in the ThreadResource structure. Then wait for the
thread to terminate. For example,

irqThread0.irqThreadRdy = NiFpga_False;
status = pthread_join(thread, NULL);

Finally, the timer interrupt must be unregistered:

status = Irq_UnregisterTimerIrq(&irqTimerO,
irqThread0.irqContext) ;

using the same above arguments.

IThe IRQ settings symbols associated with the timer interrupt,
are defined in the header file: TimerIRQ.h.

Interface Notes

3) The interrupt thread — This is the separate thread that 2. Because the Irq_Wait() times out after 100 ms, we
was named and started by the pthread_create() func- must check the irgAssert flag to see if the Timer
tion. Its overall task is to perform any necessary function TRQ has been asserted.

in response to the interrupt. This thread will run until In addition, after the interrupt is serviced, it must
signaled to stop by main.c. be acknowledged to the scheduler. For example,

The new thread is the starting routine specified in the

. . if (irgAssert) {
pthread_create() function called in main.c. In our

case: void *Timer_Irq_Thread(void* resource). % Your interrupt service code here

The first step in Timer_Irq_Thread() is to cast its in-

i/ . . . Irq_Acknowledge(irgAssert);

put argument (passed as void *) into appropriate form. }
In our case, we cast the resource argument back to a
ThreadResource structure. For example, declare In the third step (after the end of the loop) we terminate
ThreadResource* threadResource = (ThreadResource*) resource; the new thread, and return from the function:

The second step is to enter a while loop. Two functions pthread_exit (NULL) ;
are performed each time through the loop: return NULL;

- while the main thread does not signal this thread to stop {
1. Wait for the occurrence (or timeout) of the IRQ.
- if it has, "schedule" the next interrupt.
2. if the Timer IRQ has been asserted {
- Perform operations to service the interrupt.
- Acknowledge the interrupt.
}

The while loop should continue until the irqThreadRdy
flag (set in main.c) indicates that the thread should end.
For example,

1. Use the Irq_Wait () function to pause the loop while
waiting for the interrupt. For our case the call might
be:

uint32_t irgAssert = 0;
Irq_Wait(threadResource->irqgContext,
TIMERIRQNO,
&irgAssert,
(NiFpga_Bool*) &(threadResource->irqThreadRdy));

Notice that it receives the ThreadResource context
and Timer ITRQ number information, and returns
the irqThreadRdy flag set in the main.c thread.

Schedule the next interrupt by writing the time in-
terval into the IRQTIMERWRITE register, and setting the
IRQTIMERSETTIME ﬂag.rrhati&

NiFpga_WriteU32(myrio_session,
IRQTIMERWRITE,
timeoutValue);

NiFpga_WriteBool(myrio_session,
IRQTIMERSETTIME,
NiFpga_True) ;

The timeoutValue is the number of microsec-
onds (uint32_t) until the next interrupt. The
myrio_session used in these functions should be
declared within this timer thread. That is,

extern NiFpga_Session myrio_session;

This variable was defined when you -called
MyRio_Open() in the main thread.

