ME 477 Embedded Computing Add a string The prototype of the function for adding a

Saving myRIO C data to a MATLAB file

The following C functions' write data of types double or
char to a MATLAB “mat” file. They are included in the
MEA477Library.

Note: Add #include "matlabfiles.h" to your code.

Use the following functions to open a named file on the
myRIO, and successively add any number of data arrays,
variables, and strings to the file. Finally, close the file.

Open a .mat file The prototype for the open function is

MATFILE *openmatfile(char *fname, int *err);

string to the MATLAB file is

int

matfile_addstring(MATFILE *mf,
char *name,
char *str);

where mf is the MATLAB file pointer from the open
statement, name is a char string containing the name
that the matrix will be given in MATLAB, and str is
the string.

For example, to add a string the call might be

matfile_addstring(mf, "myName", "Bob Smith");

Close the file After all data have been added, the file

where fname is the filename, and err receives any er-
ror code. The function returns a structure for con-
taining the MATLAB file pointer.

A typical call might be:

mf = openmatfile("Lab.mat", &err);
if (!mf) printf("Can't open mat file %d\n", err);

For ME 477, always use the file name: “Lab.mat”.
Notice the use of pointers.

Add a matrix The prototype of the function for adding
a matrix to the MATLAB file is

int

matfile_addmatrix(MATFILE *mf,
char *name,
double *data,
int m,
int n,
int transpose);

where mf is the MATLAB file pointer from the open L.

statement, name is a char string containing the name
that the matrix will be given in MATLAB (must be a
legal MATLAB variable name), data is a C data array
of type (double), m and n are the array dimensions,
transpose takes value of 0 or 1 to indicate where the
matrix is to be transposed.

For example, to add a 1-D matrix the call might be
matfile_addmatrix(mf, "vel", buffer, IMAX, 1, 0);
Or, to add a single variable the call might be

double Npar;
Npar = (double)N;
matfile_addmatrix(mf, "N", &Npar, 1, 1, 0);

Again, notice the use of pointers, and the cast to
double.

Thttp://www.malcolmmclean.sitel1l.com/www/MatlabFiles/matfiles.html

2.

must be closed. The prototype of the function for
closing the MATLARB file is

int matfile_close(MATFILE #*mf);

where mf is the MATLAB file pointer from the open
statement.

For example, to close the file: matfile_close(mf);

Example Code Putting these ideas together:

mf = openmatfile("Lab.mat", &err);

if('mf) printf("Can't open mat file %d\n", err);
matfile_addstring(mf, "myName", "Bob Smith");
matfile_addmatrix(mf, "N", &Npar, 1, 1, 0);
matfile_addmatrix(mf, "M", &Mpar, 1, 1, 0);
matfile_addmatrix(mf, "vel", buffer, IMAX, 1, 0);
matfile_close(mf);

Transfer file to MATLAB After the Lab.mat file has been

created, it can be transferred directly to MATLAB.

In the left pane of the Remote Systems Explorer perspec-
tive, select 172.22.11.2, and press [F5] to refresh the files.
Expand 172.22.11.2 to show 172.22.11.2/Sftp Files/My
Home/Lab.mat. Select ‘Lab.mat‘ and copy with Ctrl-c.
In the same pane of the Remote System Explorer, expand
‘Local‘ to show Local Files/Drives. Paste the data file
by selecting ‘Z:‘ and pressing Ctrl-v. This drive is special
because it is shared between the guest and host operating
systems.

On the host, navigate to the folder where you ran ‘va-
grant up. This folder should have the same contents as
the ‘Z:* drive in the VM. Now double-click the ‘lab.mat’
file to open it in MATLAB. Use MATLAB’s ‘whos()‘ com-
mand to list all the named variables in the workspace. The
file can later be opened from a MATLAB script using the
command ‘load(’Lab.mat’), for plotting or analysis.

Note: If you double-click the ‘Lab.mat‘ file in the Remote
Systems Explorer perspective, it will also appear in the Re-
moteSystemsTempFiles directory within your ‘workspace’.

