Finite State Machines in Embedded Applications

J. L. Garbini

A program that sequences a series of actions, or handles inputs differently depending on what mode its in, is often implemented as a finite state machine. A state is a condition that defines a prescribed relationship between inputs and outputs, and between inputs and subsequent states. A finite state machine is an algorithm that can be in a finite number of different states.

For example, consider the control algorithm for an elevator operating between two floors. The elevator has four possible states: Stopped on floor-1, Stopped on floor-2, Moving up, and Moving down. Inputs include: 1) the buttons that are pushed in the elevator car and on each floor and 2) limit switches indicating that the car has reached either floor. The outputs are the commands to the lift motor, to the elevator doors, and to the indicator displays in the car and on the floors. The outputs and the transition from one state to another depend on the current state and inputs.

Technically, a state machine for which the outputs are functions of both the current state and the inputs is called a Mealy machine. A state machine for which the outputs are functions of only the current state is called a Moore machine.

An advantage of using state machines is that the necessary logic can be represented graphically in a state transition diagram. A state transition diagram shows the input/output relationships and the conditions for transitions between states. A skeleton of code that implements any state transition diagram can be standardized.

Let's examine the state transition diagram for a simple example, and see how it might be coded. This system contains three states (A, B, and C). Its only input is the sequential count of a clock $(0,1,2, \ldots)$. And, its outputs are a variable called out, and the clock (which the algorithm may reset to 0). The clock increments at a fixed rate. Potential state transitions are evaluated at each clock count.

The state machine operates as follows: The system stays in state-A until clock=2, then it makes out $=$ $\mathbf{1}$, and changes to state-B. It stays in state-B until $\boldsymbol{c l o c k}=5$, then makes out $=\mathbf{2}$, and changes to state-C. Finally, it stays in state-C until clock=9, then makes out $=\mathbf{0}$, resets the clock (clock=0), and changes back to state-A. The process repeats indefinitely, producing a periodic output of 9 clock counts. A plot of the output would look like this:

This complicated natural language specification of the system operation can be represented very simply in the following state transition diagram.

The arrows between states are commonly labeled as:
$\left\langle\begin{array}{c}\text { Event that caused } \\ \text { the transition }\end{array}\right\rangle /\left\langle\begin{array}{c}\text { Output(s) as a result } \\ \text { of the transition }\end{array}\right\rangle$

Often the information in the state transition diagram is described the form of a state transition table:

Current State	Inputs	Outputs		Next State
	Clock	Out	Clock	
state-A	2	1	nc	state-B
state-B	5	2	nc	state-C
state-C	9	0	0	state-A

$\mathrm{nc}=$ no change

As shown, the table lists all possible transitions between states, the conditions that cause the state transitions, and the corresponding outputs.

Now, how can this be efficiently coded? The listing on the following page illustrates one possibility. ${ }^{1}$ You will need to study this code carefully. Be sure that you understand all of the C constructs. Some of them are tricky!

Each state is implemented as a separate C function. The heart of the program is the "Main State Transition Loop" (Note: just three lines of code!) This infinite loop calls the function corresponding to the current state. The variable curr_state keeps track of which state is current. The loop also causes a wait for one clock period, increments Clock, and then repeats.

The primary task of each state function is to determine if the current state should be changed. If no change is needed, the function does nothing. If the state is to be changed, the function sets curr_state to the new state, and alters the outputs appropriately.

A function, initializeSM(), is included to initialize the state machine.

At first, this may appear to be unnecessarily complicated for this simple example. However, the same code can be expanded easily (by adding more state functions) to implement a state machine of any complexity, with an unlimited number of states, inputs, and outputs.

[^0]```
/* State Machine Example */
#include <stdio.h>
/* Prototypes */
void stateA(void);
void stateB(void)
void stateC(void);
void initializeSM(void);
void wait(void);
/* Define an enumerated type for states */
typedef enum {STATE_A=0, STATE_B, STATE_C} State_Type; « Define a new data type
/* Define a table of pointers to the functions for each state */
static void (*state_table[]) (void)={stateA, stateB, statec}; «An array of pointers to named functions!
/* Global Declaration */
static int Clock; < current state, clock, and output
static int out;
void main(void)
{
/* Initialize the State Machine*/
 initializeSM();
 Initialize State Machine (once)
/* The is the main state transition loop */
 while (1) {}\mathrm{ Call the current state
 state_table[curr_state](); « Wait a fixed time interval } Main State Transition
 clock++; « Keep track of clock count
 }
}
void stateA(void)
{
 if(Clock == 2) { /* Change State? */
 curr_state = STATE_B; /* Next State */
 out = 1; /* New output */
 }
}
void stateB(void)
{
 if(Clock == 5) { /* Change State? */
 curr_state = STATE_C; /* Next State */
 out = 2; /* New output */
}
void stateC(void)
{
 if(Clock == 9) { /* Change State? */
 Clock = 0;
 curr_state = STATE_A; /* Next State */
 out = 0; /* New output */
 }
void initializeSM(void)
{
 curr_state = STATE_A;
 out = 0;
 Clock = 1;
}
```


## State- A Function

## State- B Function

## State- C Function

State Machine
Initialization Function


[^0]:    ${ }^{1}$ See also: Gomez, M., "Embedded State Machine Implementation", Embedded Systems Programming December 2000, p. 40-50.

