
Finite State Machines
in Embedded Applications

J. L. Garbini

A program that sequences a series of actions, or handles
inputs differently depending on what mode its in, is of-
ten implemented as a finite state machine. A state is a
condition that defines a prescribed relationship between
inputs and outputs, and between inputs and subsequent
states. A finite state machine is an algorithm that can
be in a finite number of different states.

For example, consider the control algorithm for an ele-
vator operating between two floors. The elevator has four
possible states: Stopped on floor-1, Stopped on floor-2,
Moving up, and Moving down. Inputs include: 1) the
buttons that are pushed in the elevator car and on each
floor and 2) limit switches indicating that the car has
reached either floor. The outputs are the commands to
the lift motor, to the elevator doors, and to the indicator
displays in the car and on the floors. The outputs and
the transition from one state to another depend on the
current state and inputs.

Technically, a state machine for which the outputs are
functions of both the current state and the inputs is called
a Mealy machine. A state machine for which the outputs
are functions of only the current state is called a Moore
machine.

An advantage of using state machines is that the neces-
sary logic can be represented graphically in a state tran-
sition diagram. A state transition diagram shows the in-
put/output relationships and the conditions for transi-
tions between states. A skeleton of code that implements
any state transition diagram can be standardized.

Let’s examine the state transition diagram for a simple
example, and see how it might be coded. This system
contains three states (A, B, and C). Its only input is
the sequential count of a clock (0, 1, 2, . . .). And, its
outputs are a variable called out, and the clock (which
the algorithm may reset to 0). The clock increments at
a fixed rate. Potential state transitions are evaluated at
each clock count.

The state machine operates as follows: The system
stays in state-A until clock=2, then it makes out =
1, and changes to state-B. It stays in state-B until
clock=5, then makes out = 2, and changes to state-C.
Finally, it stays in state-C until clock=9, then makes
out = 0, resets the clock (clock=0), and changes back
to state-A. The process repeats indefinitely, producing
a periodic output of 9 clock counts. A plot of the output
would look like this:

1 2 3 4 5 2 3 4 56 79 88 9 1

...

...
...

0 0

Clock

out = 2
out = 1
out = 0

state-A state-B state-C state-A state-B

This complicated natural language specification of the
system operation can be represented very simply in the
following state transition diagram.

state-A state-B

state-C

Clock = 2 / out = 1

Clock = 5 / out = 2 Clock = 9 / out = 0;
 clock = 0

The arrows between states are commonly labeled as:〈 Event that caused
the transition

〉 /〈
Output(s) as a result

of the transition

〉
Often the information in the state transition diagram

is described the form of a state transition table:

Current
State

Inputs Outputs Next
State

Clock Out Clock

state-A 2 1 nc state-B
state-B 5 2 nc state-C
state-C 9 0 0 state-A

nc = no change

As shown, the table lists all possible transitions be-
tween states, the conditions that cause the state transi-
tions, and the corresponding outputs.

Now, how can this be efficiently coded? The listing
on the following page illustrates one possibility.1 You
will need to study this code carefully. Be sure that you
understand all of the C constructs. Some of them are
tricky!

Each state is implemented as a separate C function.
The heart of the program is the “Main State Transition
Loop” (Note: just three lines of code!) This infinite loop
calls the function corresponding to the current state. The
variable curr state keeps track of which state is current.
The loop also causes a wait for one clock period, incre-
ments Clock, and then repeats.

The primary task of each state function is to determine
if the current state should be changed. If no change is
needed, the function does nothing. If the state is to be
changed, the function sets curr state to the new state,
and alters the outputs appropriately.

A function, initializeSM(), is included to initialize the
state machine.

At first, this may appear to be unnecessarily compli-
cated for this simple example. However, the same code
can be expanded easily (by adding more state functions)
to implement a state machine of any complexity, with an
unlimited number of states, inputs, and outputs.

1See also: Gomez, M., “Embedded State Machine Implementa-
tion”, Embedded Systems Programming December 2000, p. 40-50.

1

/* State Machine Example */

#include <stdio.h>

/* Prototypes */
void stateA(void);
void stateB(void);
void stateC(void);
void initializeSM(void);
void wait(void);

/* Define an enumerated type for states */
typedef enum {STATE_A=0, STATE_B, STATE_C} State_Type;

/* Define a table of pointers to the functions for each state */
static void (*state_table[])(void)={stateA, stateB, stateC};

/* Global Declaration */
static State_Type curr_state; /* The "current state" */
static int Clock;
static int out;

void main(void)
{
/* Initialize the State Machine*/
 initializeSM();

/* The is the main state transition loop */
 while (1) {
 state_table[curr_state]();
 wait();
 Clock++;
 }
}

void stateA(void)
{
 if(Clock == 2) { /* Change State? */
 curr_state = STATE_B; /* Next State */
 out = 1; /* New output */
 }
}

void stateB(void)
{
 if(Clock == 5) { /* Change State? */
 curr_state = STATE_C; /* Next State */
 out = 2; /* New output */
 }
}

void stateC(void)
{
 if(Clock == 9) { /* Change State? */
 Clock = 0;
 curr_state = STATE_A; /* Next State */
 out = 0; /* New output */
 }
}

void initializeSM(void)
{
 curr_state = STATE_A;
 out = 0;
 Clock = 1;
}

Main State Transition
Loop (loop forever)

Global variables, including the
current state, clock, and output

State- A Function

State- B Function

State- C Function

State Machine
Initialization Function

Call the current state
Wait a fixed time interval
Keep track of clock count

Initialize State Machine (once)

An array of pointers to named functions!

Define a new data type

2

