
The Table Editor for myRIO
ctable2()

V 4.0

The following describes ctable2(), a utility program that
displays values that are stored in memory, and allows the
user to change selected values. The values, with appropri-
ate labels, appear on the LCD display. The user enters
values on the keypad.

When ctable2() is called, it then runs continually, re-
turning to the calling program only when ← is entered.
However, other threads may use and cause to be displayed
the information stored by ctable2().

A table “title” is displayed on the first line of the LCD
display. The table can have as many as nine numbered
entries. Three of these entries are always displayed below
the title. The user can scroll the entries up and down using
the UP and DWN keys. Alternately, the user can cause any
entry to become the top entry by entering its number.

For example, a three-entry table, shown with the third
entry scrolled to the top, might look like:

Flow Control Table

3 BTI: ms 3.0

1 Qref: (cc/s) 450.

2 Qact: (cc/s) 453.

The user may alter an entry by scrolling it to the top of the
list, and pressing ENTR. The display prompts for a new
value of the parameter. For the example above, pressing
ENTR would cause the prompt: Enter: BTI: ms to
be displayed. The user could then enter a new value
(followed by ENTR), causing the new value to be placed in
memory and displayed.

“Edit” values and “Show” values
There are two kinds of values, called “edit” values and

“show” values. Edit values are those that the user may
change at will. Each edit value is presumed not to have
changed since the last time it was changed (edited) by the
user.

Show values are those that the user may observe more
or less continually. A separate thread periodically updates
the table to reflect the current show values. Show values
may not be edited; each show value is presumed perhaps
to have changed since the last time the table was updated.
(The changes would generally be made by another thread,
which would determine a new show value and place it in
memory; the new value would then be displayed when the
table is updated.)

Typically, edit values are system parameters set by the
user, while show values are computed and change with
time.

Calling ctable2()
The prototype of ctable2() is:

int ctable2(char *title, struct table *entries, int nval);

The ctable2() function is automatically linked with
your code from the ME477Library. The statement:
#include "ctable2.h" must appear in main.c.

When calling ctable2(), your program must supply ap-
propriate values for the following arguments:

title is a string array for the table title.
Less than 20 characters.

entries is an array of structures of type table defined as:

typedef struct {

char *e_label; // entry label label

int e_type; // entry type (0-show; 1-edit)

double value; // value

} table;

Each element of the array corresponds to an entry in
the table, and specifies the entry label, type (edit or
show), and value of the entry. A good practice is to
make the length of the labels 12 characters or less.

nval specifies the number of table entries. Again, the total
number of edit and show entries must be no greater
than 9.

Entering ← while the table is displayed causes ctable2()
to terminate, returning 0 for a normal exit.

For example,
In this table entitled: Flow Control Table, there are

two edit values that can be changed by the user (qref and
bti), and one show value (qact).

In the main thread, the variables for the table title, and
the table structure array are declared and initialized.

char *Table_Title ="Flow Control Table";

table my_table[] = {

{"Qref: (cc/s)", 1, 0. },

{"Qact: (cc/s)", 0, 0.0 },

{"BTI: ms ", 1, 5.0 }

};

Notice that the each element of the array my_table is a struct

of type table containing the entry label, type, and initial value.

Finally, the table editor is called.

ctable2(Table_Title, my_table, 3);

Within the thread that uses the table values, pointers
corresponding to convenient names of the table values can
be declared.

double *qref = &((threadResource->a_table+0)->value);

double *qact = &((threadResource->a_table+1)->value);

double *bti = &((threadResource->a_table+2)->value);

Then, variables may be referred to by their named point-
ers. For example,

T = *bti/1000.;

Note the dereferencing of the bti pointer.

1


