SUMMARY OF COMBINATIONAL LOGIC

I. Logic Variables

Logic variables take on only two states. The two states are represented by a 1 (logic one) or a 0 (logic zero), although TRUE and FALSE, ON and OFF, HIGH and LOW, are also names given to the two states. The states are exclusive. That is:

If $A \neq 0$, then $A=1$
If $A \neq 1$, then $A=0$

II. Three Basic Boolean Operations

A. "OR"

Expression: $\quad F=A+B$
Read: " F is equal to A or B "
Meaning: $\quad F$ is true (1) if either A or B is true.

Truth Table: Logic Symbol:

\boldsymbol{F}	\boldsymbol{A}	\boldsymbol{B}
0	0	0
1	0	1
1	1	0
1	1	1

B. "AND"

Expression: $\quad F=A \bullet B=A B$
Read: " F is equal to A and B ""
Meaning: $\quad F$ is true (1) if A and B are true.

Truth Table: Logic Symbol:

\boldsymbol{F}	\boldsymbol{A}	\boldsymbol{B}
0	0	0
0	0	1
0	1	0
1	1	1

A
B

C. "NOT"

Expression: $F=\bar{A}$
Read: " F is equal to not A "
Meaning: $\quad F$ is true (1) if A is not true.

Truth Table: Logic Symbol:

\boldsymbol{F}	\boldsymbol{A}
1	0
0	1

III. Derived Logic Operations

A. "NOR"

Expression: $\quad F=\overline{A+B}$
Read: \quad " F is equal to A nor B "
Meaning: Combined OR and NOT operations.
F is true (1) if the quantity $A+B$ is not true.

Truth Table: Logic Symbol:

\boldsymbol{F}	\boldsymbol{A}	\boldsymbol{B}
1	0	0
0	0	1
0	1	0
0	1	1

B. "NAND"

Expression: $\quad F=\overline{A B}$
Meaning: Combined AND and NOT operations. F is true (1) is the quantity $A B$ is not true.

Truth Table: Logic Symbol:

\boldsymbol{F}	\boldsymbol{A}	\boldsymbol{B}
1	0	0
1	0	1
1	1	0
0	1	1

IV. Basic Theorems

With the basic logic operations it is possible to deduce a set of basic theorems.

$$
\begin{array}{rlr}
1+A=1 & 0 \mathrm{~A}=0 \\
0+A=A & 1 \mathrm{~A}=\mathrm{A} \\
A+A=A & \mathrm{AA}=\mathrm{A} \\
A+\bar{A}=1 & A \bar{A}=0 \\
\overline{\bar{A}}=A & \\
A+B=B+A & A B=B A \\
A+(B+C)=A+B)+C & A(B C)=(A B) C \\
A(B+C)=A B+A C & (A+B)(A+C)=A+B C
\end{array}
$$

V. DeMorgan's Theorem's

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

Once expressions or logic symbol diagrams are written for a logic system, they can be manipulated (simplified) using the above rules.

