SUMMARY OF COMBINATIONAL LOGIC

I. Logic Variables

Logic variables take on only two states. The two states are represented by a 1 (logic one) or a 0 (logic zero), although TRUE and FALSE, ON and OFF, HIGH and LOW, are also names given to the two states. The states are exclusive. That is:

If $A \neq 0$, then A = 1If $A \neq 1$, then A = 0

II. Three Basic Boolean Operations

A. "OR"

Expression: F = A + B **Read:** "*F* is equal to *A* or *B*"

Meaning: F is true (1) if either A or B is true.

Truth Table: Logic Symbol:

\boldsymbol{A}	В
0	0
0	1
1	0
1	1
	0

B. "AND"

Expression: $F = A \cdot B = AB$ **Read:** "*F* is equal to *A* and *B*""

Meaning: *F* is true (1) if *A* and *B* are true.

Truth Table: Logic Symbol:

F	\boldsymbol{A}	B
0	0	0
0	0	1
0	1	0
1	1	1

C. "NOT"

Expression: $F = \overline{A}$

Read: "F is equal to not A"

Meaning: F is true (1) if A is *not* true.

Truth Table: Logic Symbol:

$$\begin{array}{c|cc}
F & A \\
\hline
1 & 0 \\
0 & 1
\end{array}$$

III. Derived Logic Operations

A. "NOR"

Expression: $F = \overline{A + B}$

Read: "F is equal to A nor B"

Meaning: Combined OR and NOT operations. F is true (1) if the quantity A + B is not

true.

Truth Table: Logic Symbol:

<u>F</u>	\boldsymbol{A}	B	Α
1	0	0	В
0	0	1	
0 0 0	1	0	A
0	1	1	В

B. "NAND"

Expression: $F = \overline{AB}$

Meaning: Combined AND and NOT operations. F is true (1) is the quantity AB is not true.

Truth Table: Logic Symbol:

F	A	В	A
1	0 0 1 1	0	B F
1	0	1	В
1	1	0	Α
0	1	1	~ F
	,		В

IV. Basic Theorems

1 + A = 1

With the basic logic operations it is possible to deduce a set of basic theorems.

0A = 0

$$0 + A = A$$

$$A + A = A$$

$$A + A = 1$$

$$A = A$$

$$A + B = B + A$$

$$A + (B + C) = A + B) + C$$

$$A(B + C) = AB + AC$$

$$1A = A$$

$$A = A$$

$$A = A$$

$$A = B$$

$$A(BC) = (AB)C$$

$$(A+B)(A+C) = A + BC$$

V. DeMorgan's Theorem's

$$\frac{\overline{A+B}}{\overline{AB}} = \frac{\overline{A}}{\overline{A}} \frac{\overline{B}}{\overline{B}}$$

Once expressions or logic symbol diagrams are written for a logic system, they can be manipulated (simplified) using the above rules.