Homework #2, ME/MSE 485, due on Jan. 27, 2011

- 1. Consider the thermal composite composed of two kinds of conductors, $K_{f1}=100W/(Km)$ and $K_{f2}=50W/(Km)$, and one insulator, $K_m=0.2W/(Km)$, see the following figure. Under applied heat at the top, Q=100W, we would like to calculate the temperature at top, T_1 , and the temperature at mid-points, T_2 - T_4 , where the temperature at the bottom, T_5 is set to $T_5=0$. Answer the following questions. Please note that you do not need to solve for all unknowns.
 - (a) Calculate all thermal resistances, R_{ij} defined in the figure, assuming the thickness perpendicular to this paper sheet is 1mm.
 - (b) Set the algebraic equations at nodal points (1-5) by using Kirchoff Current Law: all currents (or thermal flow in this problem) coming to i-th nodal point if they are summed up, it is equal to zero.
 - (c) Solve for temperatures, T_1 , T_2 , T_3 and T_4

