#### Client Platform Engineering – PCCG



# **Laptop Cooling Basics**

Ketan R. Shah Principal Engineer Intel Corporation Q1, 2011

## Laptop Cooling Basics - Agenda

- Laptop Cooling Challenges
- Laptop System Cooling
  - Heat transfer modes
  - System & motherboard layout Airflow & venting
  - System analysis & design Component interactions
- CPU Cooling
  - Heat transfer modes
  - Heatpipe basics
  - Heatpipe heat exchanger
- Summary



#### Laptop Cooling is a System Level Problem.

Client Platform Engineering – PCCG



## Laptop Cooling Challenge – I: Thermodynamic Limit: What goes in must come out!



## Laptop Cooling Challenge - II: Skin Temperature



Cline System power capability is constrained by skin temperature needs. Slide 4

# Laptop Cooling Challenge: III: Acoustics

- Manufacturers spec fan noise:
  - Bare fan  $\rightarrow$  different from in-system!
  - Free flow → different from insystem!
- The notebook-relevant test methodology





Plenum Tests Fans Under Load

Client Platform Engineering – PCCG

Simulating Notebook Geometry



# **Acoustics - Optimization**

- Combining Intel metrology with DOE analysis
- Installed fan acoustic optimization
  - 5 dB improvement shown!
- CFD analysis of fan aeroacoustics



#### Client Platform Engineering – PCCG

#### Measured Fan Noise



# **Acoustics – Jury Study**

- Binaural recordings made
  of notebook noise
  - 22 Systems, 14 manufacturers
- Jurors
  - Geography: USA, Sweden, Japan
- An Annoyance Model was developed.
  - Includes sound pressure (loudness) AND sound quality





# **Laptop Cooling Challenges - Summary**

- Thermodynamic limit: Exhaust temperature
- Skin Temperature
- Acoustics
- Maximum system ambient temperature (@ inlet): 35°C

In addition to the

- Component temperatures
  - CPU, GMCH, memory, COMMs, VRs, etc., etc.





#### Client Platform Engineering – PCCG



## Heat Transfer 101 – 3 Modes of Heat Transfer





#### Client Platform Engineering – PCCG



## **Convection – Air Flow and Venting**





- All roads lead to Rome (the fan)
- Good to distribute flow paths azimuthally

#### Client Platform Engineering – PCCG



## **Component Interactions**

- Many components at Tj\_max simultaneously
  - Component to component influence:
    - Conduction
    - Convection
  - Each component has `local ambient':  $T_{local} = T_{ambient} + T_{sys}$
- Determining T<sub>sys</sub> requires detailed platform level thermal simulations
  - Accuracy challenges

**Client Pl** 

- Significant benchmarking/calibration required
- Intel presents seminars on modeling methodologies to OEMs/ODMs

 $Power_{component} = (T_i - T_{local})/\Theta$ 







## **Conduction – The Motherboard**

- Motherboard is warm around all key components
  - provides bottom side cooling
- Proximity aggravates thermal problem (T<sub>sys</sub>)
  - HDI
  - Smaller FFs



#### Client Platform Engineering – PCCG



## **Getting Heat Out of CPU**

•Bare die thermal attach

- Density Factor (power map) critical
- •Thermal Interface Material (TIM)
- •Solid copper attach block



#### Client Platform Engineering – PCCG



# **Thermal Interface Materials (TIMs)**

- Fills air gaps
- Improves thermal contact
- Various materials used:
  - Compliant
  - High thermal conductivity

**Copper Attach Surface** Lidiger @ iumacitizan HPP 

Available Heat Flow Path

#### Microscopic view

#### Client Platform Engineering – PCCG

Slide 14



• Key issues:

- Pressure required
- Long term reliability

# **Heat Pipes**

- Your notebook uses liquid cooling
- High 'effective' thermal conductivity along length
- Key issues:
  - Max heat throughput (dry out)
  - Minimum thickness



#### Heat pipe thermal cycle

- 1) Working fluid evaporates to vapour absorbing thermal energy.
- 2) Vapour migrates along cavity to lower temperature end.
- 3) Vapour condenses back to fluid and is absorbed by the wick, releasing thermal energy
- 4) Working fluid flows back to higher temperature end.

#### Client Platform Engineering – PCCG





## **Fan and Heat Exchanger**



Client





## **FANS**

#### Basic centrifugal blower used in most systems

### **Heat Exchangers**

• Nearly all systems use uniformly spaced vertical copper fins

Acoustics and Air Flow are king!

•Fan air flow defines system power envelope





## **Laptop Cooling Basics - Summary**

#### Summary

- Laptop system cooling is designed to work with constraints of component temperatures, exhaust and skin temperatures, as well as acoustics.
- CPU cooling relies on multiple technologies of TIM, heatpipe, centrifugal blower, and heat exchanger.

Laptop Cooling Requires an Integrated Approach.

Client Platform Engineering – PCCG

