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Transient on TL for ME485     1/25/11 
Important Subjects in Time-Domain Responses 
 
(1) Unit step function responses  
(2) Delta-I noise  
(3) Finite rise-time pulse and Laplace transform technique  
(4) Pulse on lossy transmission lines and dispersion  
(5) Forward and backward coupled noise (To be covered in the coupled line) 
(6) Time-domain measurement techniques  
 
Ref: HP application note 1304-2 (Web page) 
 
 
 
 
 
Time-domain Experiments 
 
-Requires a very fast unit step function generator 
 
-Requires a very fast oscilloscope 
 
Lab Equipment: 
TEK11801A TDR with SD24 (TDR head) and SD22 (Sampling head) 

   
 Experimental Setup for the Time Domain Analysis of Devices 
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Pictures of devices under test (DUT) 
 

Duroid 5870  r=2.33, d=1.57mm
Zo=50 , W=4.75mm, eff=1.98 Zo=100 , W=1.36mm, eff=1.85

20cm15cm5cm 10cm0
 

 

        
Test PCB         Unknown device 1  
 

                   
    Unknown device 2      Unknown device 3 
 
 
Expected responses  (different TDR is  used for these case) 
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 a) Unmatched Transmission Line                            (b) Unknown1  
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 (c) Unknown 2                                                        (d) Unknown 3  
 
 

(1 data point = 10ps)
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1. Unit Step Function Response from a Resistive Load 
 
A digital signal on PCB (microstrip or stripline TL) is not a continuous wave.  Rather it 
is a square (or pseudo square) pulse train which contains many frequency components.   
In this section, we will study the responses of matched and unmatched TL in time-
domain.  This is called “Transient Response”. 
 
Applications: 
 
-TDR is an instrument which combines a high speed step function generator and fast 
oscilloscope scope.  The reflection from an unmatched impedance can be detected.  
Example: Computer network. 
 
-Optical TDR is similar to TDR but it uses a short pulse to find a faulty optical fiber 
cable. 
 
 
Rectangular Pulse: 
 
Assume the input signal is a pulse of duration  which can be expressed as a sum of two 
unit step functions as shown below. Therefore, once we find the circuit response to a unit 
step function, we can obtain the circuit response to a rectangular pulse. 

time

Vo

V(t)



V1(t)=Vo u(t)

V2(t)=-Vo u(t-)

V(t)=V1(t)+V2(t)

 
The unit step function can be created by closing and opening a switch at the source side 
as shown below. 
 

t = 0

Rg

RLZoVg

lossless transmission line

l
z = 0 z=l

SW

V(t)

Timet=0

1V
Unit step function

 
Rg: source impedance 
SW is closed at t=0 
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TL Response to a Unit Step Function 
 
Initial Condition 
Let us assume the SW is closed at t=0. First, we need to find a initial voltage and current 
which propagate into the TL from the source.  When the rise-time (voltage step) arrives 
at a TL, it does not see the load (RL).  Instead, it sees the TL which has a characteristic 
impedance of Zo.  Therefore, the voltage going into the TL is given by a voltage divider 
between the source impedance and Zo. 

t = 0

Rg

ZoVg

SW

I1

V1

+

+
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Vg=1V 
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Final Condition 
We also need to take a look at a final condition.  If the SW is ON for a long time, this 
corresponds to the DC voltage. The TL has no effect.  The voltage on the load is given 
by   

Rg

ZLVg VL

+

_

VVg
ZR

ZV
Lg

L 33.0











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Initial:
1/5 Vg

Final:
1/3 Vg

transienct   region

Time

V(z=0) at z=0

 
The transient response is, therefore, a time response from the initial condition to the final 
condition. 
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Between Initial and Final Conditions (Transient) 
 
The incident voltage reaches the load ZL at t=T=l/Up where Up is the phase velocity on a 
TL.  If the load impedance is not matched to the TL characteristic impedance, part of the 
incident voltage will be reflected.  The polarity (positive or negative) of the reflected 
voltage depends on the load ZL.   It is positive for ZL>Zo and negative for ZL<Zo .  
Although we calculate the reflected voltage using the reflection coefficient, what we can 
observe is the total voltage. The total voltage on a TL is the sum of all incident and 
reflected voltages which occur up to the observation time.   
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If the source impedance Rg is matched to a TL  (Rg=Zo), the reflected voltage will be 
absorbed by the source impedance and no signal will be reflected back to the TL when 
the reflected voltage arrives to the source.  However, the reflected voltage which arrives 
to the source may also see an unmatched impedance (Rg<>Zo).  This will create a 
secondary reflection from the source side which becomes a new incident voltage. 
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This multiple reflection can be shown using the bounce diagrams. 
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Useful formula for a infinite series 
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Another Reference Material 
Modeling signal propagation between ICs using transmission line 
 
Modern ICs are usually mounted on PCB and interconnected by conducting line 
of very high conductivity (loss characteristics can be therefore neglected). We 
start our study with the following example: two ICs are connected in series, with 
one being master (the driving IC  IC1) and the other slave (the driven IC  IC2). 
This typical configuration can be modeled using this transmission line model: 

IC2
IC1

t = 0

RG

RloadZo,vSOURCE

lossless transmission line

L
x = 0 x = xo  

  
Example 1: An open–circuited transmission line (Zload  ) 

t = 0

RG=100 ohms

20 V

L = 4 m

Zo = 100 ohm, v = 2x108 m/s

lossless transmission line

x = 0 +x direction  
Describe in words and space-diagrams what happens as signal propagates 
from voltage source to the far-end of the transmission line. 

 
Solution: 
 

Consider the case of a 20 V battery with RG = 100 ohms connected to an 
open–circuited, lossless transmission line. This situation, with specific 
values of L, v and Zo, is shown in the figure above. With the initially open 
switch closed at t = 0, the voltage at the input to the line immediately 
becomes 10 V. This occurs because at the first instant, the dc source has 
no indication that the line is not infinite in length and hence “sees” an 
input impedance Zo = 100 ohms. Thus at t = 0+ (that is, immediately 
after closing the switch), the current and voltage at the input to the line 
are 20/(RG + Zo) = 0.10 A and 10 V, respectively. These values remain 
constant until the battery has some indication (via a reflected wave) that 
the line is not infinite in length. With the velocity given as 2 x 108 m/s, it 
takes 10 ns for V and I to travel halfway down the 4 m line. This situation 
is shown in part (a) of Fig. 1. Part (b) shows the waves at t = 20– ns (that 
is, slightly less than 20 ns). When the waves arrive at the open circuit, 
something must happen since two contradictory impedance requirements 
exist. First, the VI ratio for the traveling wave must be Zo = 100 ohms. 
On the other hand, Ohm’s law at the open–circuited end of the line 
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requires an infinite impedance since current must be zero. The creation of 
reflected waves (V–, I–) allows both of these requirements to be satisfied. 
Thus at the load end (x = 4 m, corresponding t = 20 ns), 
 

Vload = V+ + V– 
 

Iload = I+  I– 
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(a) At t = 10 ns (b) At t = 20- ns
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V(V)
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2 40
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(c) At t = 30 ns (d) At t = 40 ns  
Fig. 1 

 
The condition Iload = 0 requires I and I+ = 0.10 A. Also, with V+ = I+Zo 
and V = IZo, V = V+ = 10 V. Therefore, Iload = 0 A and Vload = 20 V 
at the load end. 
 
The opencircuit condition at the load end creates reflected voltage and 
current waes of 10 V and 0.10 A, respectively. These waves travel in the 
negative x direction with the same velocity as the incident (transmitted) 
waves. Part  (c) and (d) of Fig. 1 show the resultant voltage and current  
(due to the sum of + and  waves) at t = 30 ns and 40 ns. As the 
wavefront of the 10 V, 0.10 A reflected waves moves to the left, it leaves 
behind a net voltage of 20 V and a net current of zero. Since RG = 100 
ohms, both Ohm’s law and the condition that VI = 100 ohms are 
satisfied at t = 40 ns, and hence no reflections are required at the 
generator end. The process thus ends and a steady state is achieved with 
V = 20 V and I = 0 A everywhere on the transmission line. The timeflow 
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plots of these incident and reflected signals as a function of distance and 
time are shown on the next page. 
 
 

Example 2: A resistively terminated transmission line (Zload : real 
number) 

t = 0

RG=100 ohms

20 V

L = 4 m

Zo = 100 ohm, v = 2x108 m/s

lossless transmission line

x = 0 +x direction

Rload=150 ohms

 
 

Describe in words and space-diagrams what happens as signal propagates 
from voltage source to the far-end of the transmission line. 

 
Solution: 
 

Consider now the case of a finite length transmission line terminated with 
a pure resistance. This situation is shown above, where Rload (= 150 
ohms) is the terminating or load resistance. As before, closing the switch 
initiates a 10 V, 0,10 A forward traveling wave. At t = 20 ns, the wave 
arrives at the load end. Since Rload  Zo, Ohm’s law can only be satisfied 
by assuming reflected waves. Thus at z = 4 m, Vload = V+ + V and Iload 
= I+  I = (V+  V)/Zo. Ohm’s law requires Vload/Iload = Rload and 
hence 
 

Rload = Zo(V+ + V) / (V+  V) = Zo[ 1 + (V/V+) ] / [ 1  
(V/V+) ] 
                   = Zo(1 + load) / (1  load) 
 
Solving for the load reflection coefficient yields 
 

load = (Rload – Zo) / (Rload + Zo) 
 
(compare this with load = ( Zload – Zo )  ( Zload + Zo ) = V–(x=0)  
V+(x=0) 
on page 3 of this handout). 
 
For resistively terminations, load is real and can take on any value 
between –1 and +1. If Rload = 0 (short circuit), load = –1, while if Rload = 
 (open circuit, the previous case), load = +1. 
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In the present case for Rload = 150 ohms, load = 0.2. With the forward 
wave equal to 10 V and 0.10 A, the reflected voltage and current are 10 V 
 0.2 = 2 V and 0.10 A  0.2 = 0.02 A, respectively. Parts (a) and (b) of 
Fig. 2 shows the voltage and current along the line at t = 10 ns and 30 
ns. At t = 10 ns, only the forward traveling waves exist, having arrived 
only at the halfway point of the 4 m line. At t = 30 ns, the reflected waves 
have been generated and have traveled halfway back toward the 
generator end of the line. At t = 40 ns (not shown), the reflected waves 
arrive at the input and the resultant voltage and current everywhere along 
the line become 12 V and 0.08 A. Since RG = Zo, no reflection is required 
at the generator end and the steady state is achieved after 40 ns. Note 
that the final values (12 V and 0.08 A) are those expected from a dc 
analysis of the circuit. 
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x(m)
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2 40
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x(m)

0.20

0.10

2 40

I(A)

x(m)

(a) At t = 10 ns (b) At t = 30 ns

15 15 12 V

0.10
0.050.05

 
 Fig. 2 

 
Example 3: Multiple reflections on a transmission line 
 

From the above cases, it is clear that when RG = Zo, the steady state is 
achieved after one round trip (40 ns, in our example). On the other hand, 
if Rload = Zo, the steady state occurs after an one-way trip (20 ns, in our 
example). Let us now explore the situation when neither RG nor Rload is 
equal to the characteristic impedance Zo. The analysis will show that 
reflections occur at both ends of the line and the steady start values are 
approached only as t becomes infinite! 

 
Describe in words and space-diagrams what happens as signal propagates 
from voltage source to the far-end of the transmission line. 

 
Solution: 
 

As a specific example, consider the circuit above, where RG = 200 ohms, 
Rload = 25 ohms, and Zo = 100 ohms. When the switch is closed at t = 0, 
the 90 V source sees 200 ohms in series with the characteristic impedance 
of the line. Therefore, the current and voltage at the input end of the line 
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(x = 0) are initially I+ = 90/300 = 0.3 A and V+ = I+Zo = 30 V. After 20 
ns, the V+ and I+ waves arrive at the load end where the reflection 
coefficient load = (25  100)/(25 + 100) = 75/125 = 0.6 and hence V 
= load  V+ = 18 V and I = load  I+ = 0.18 A. At the end of 3o ns, 
the voltage between x = 2 m and x = 4 m is reduced to 30  18 = 12 V, 
while the current has increased to 0.3 + 0.18 = 0.48 A. The progress of 
the voltage wave along the line is shown in Fig. 3 for t = 30, 50, 70, and 
90 ns. 
 
Let us observe the voltage wave as time marches on. At the end of 40 ns, 
the 18 V wave arrives at the input where it sees an impedance RG = 200 
ohms. Since RG  Zo, a reflection occurs at the generator end. By analogy 
with load, the generator reflection coefficient G is given by 
 

G = (RG – Zo) / (RG + Zo) 
 
For RG = 200 ohms, G = 1/3 and hence a –6 V wave is reflected towards 
the load end. At t = 50 ns, it has progressed halfway down the line, 
leaving behind it a voltage of (30 – 18 – 6) = 6 V. This is shown in part 
(b) of the figure. At t = 60 ns, the –6V wave arrives at the load which 
generates a reflected wave of value (–6)  load = +3.6 V. The situations 
at 70 and 90 ns are also shown in the figure. Note that at t = 90 ns, 
another forward traveling wave exists having a value (+3.6)  G = 
+1.2V. This process continues indefinitely with the amplitude of the re-
reflected waves getting smaller and smaller (due to energy dissipation of 
the resistors). A plot of voltage versus time at any fixed point on the line 
would show that, in the limit, the voltage becomes the expected dc value 
(namely, 90Rload/(RG + Rload) = 10 V). Such a plot at x = 0, the input, is 
shown in Fig. 4. Every step in voltage represents the arrival and 
generation of the reflected waves at the input. After five round-trip (200 
ns), the voltage is within 0.10 percent of the steady-state value. 
 
It is interesting to note that the voltage shown in Fig. 4 is oscillatory as it 
approaches its final value. The period of this ringing effect is 80 ns (twice 
the round-trip time) and hence its reciprocal is the natural resonant 
frequency of the circuit, namely, 12.5 MHz. Since v = 2  108 m/s, this 
means that the line is /4 long at the resonant frequency. Thus we see 
that by connecting a dc source to a transmission line, high frequency 
oscillations are possible. In a PCB system, the emitted power from these 
high-frequency oscillations, if left unchecked, will result in interference to 
other devices, impairing the performance of the overall system. 
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2. Space-Time Representation of Signals 
 
The space-time diagram is a graphical aid in determining the voltage and current 
as a function of either time or position along the line. Fig. 5 shows the diagram 
for the circuit in Example 3. The abscissa indicates position along the line and 
the ordinate represents the time scale, t = 0 being the moment that the switch is 
closed. For reference, the values of G and load are given at the top of the 
diagram. The lines sloping downward and to the right represent forward 
traveling waves, while those sloping down and to the left represent reverse 
waves. The voltage and current values for the particular wave are shown above 
and below the sloping line. As explained, the load end creates reflections equal 
to load of the arriving wave. Generator reflections are equal to G times the 
value of the wave arriving at the generator end. 
 
To illustrate, Fig. 5 will be used to determine the voltage and current at x = 2 m. 
Each intersection of a sloping line with the interval x = 2 m line represents the 
arrival of a wavefront. For t < 10 ns, no intersection exists and hence both V 
and I are zero. For 10 < t < 30 ns, there is one intersection which means V = 
30 V and I = 0.30 A. For t > 30 ns, the voltage is the sum of all the forward and 
reverse waves that have passed the x = 2 m location. For example, at t = 80 ns, 
V = 30  18  6 + 3.6 = 9.6 V. The current may be determined in a similar 
manner except that current values associated with reverse waves must be 
subtracted from those associated with the forward waves. For example, at t = 
80 ns, I = 0.30  (0.18) + (0.06) + (0.06)  (+0.036) = 0.384 A. The 
diagram may also be used to determined voltage and current versus x for a fixed 
time by drawing a horizontal line corresponding to the particular value of time. 
The sum of voltages above the line corresponds to the voltage at that point on 
the line. The same applies to the current except that, as before, 
reversetraveling current waves must be subtracted from forwardtraveling 
current waves.  
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Expected responses  (different TDR is  used for these case) 
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 a) Unmatched Transmission Line                            (b) Unknown1  
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 (c) Unknown 2                                                        (d) Unknown 3  
 
 
Pictures of devices 
 

Duroid 5870  r=2.33, d=1.57mm
Zo=50 , W=4.75mm, eff=1.98 Zo=100 , W=1.36mm, eff=1.85
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Test PCB         Unknown device 1  
 

                   
    Unknown device 2      Unknown device 3

(1 data point = 10ps)
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5. Laplace transform analysis of a TL terminated with a 
complex load impedance      10/27/10 
 
In the previous section, we studied the reflection of a unit step function from the 
unmatched load which is purely resistive.  The rise-time (waveform) of the reflected 
signal does not change if the unmatched load is resistive.  In reality, however, the 
input/load impedances of the digital circuit contain a reactive element such as a parasitic 
capacitance and inductance.  In this section, therefore, we will study the time-domain 
analysis of reflected signal from a complex load impedance.  The analysis is based on  
Laplace transform .  We express the input waveform and complex load impedance using 
Laplace transform and calculate the reflected voltage.  By taking the inverse Laplace 
transform, we can derive the time-domain response.  The waveform of the reflected 
signal shows the distinctive characteristics depending on the load type.  This can be used 
for inferring the load type.  In addition, we will show how to obtain the values of each 
element using different techniques. 
 
5-1. Unit step function as an input (Reflection case) 
 
We have a L-R series load attached to a lossless TL which does not distort the 
waveform.   The input signal is a unit step function.   To simplify the analysis, we will 
neglect the delay due to a TL. 

iE

L

LR

 tErefl

 tei L

 
Using the Laplace transform, the load impedance is given by sLRZ LL  . 
 
The reflection coefficient at the load can be expressed as  

 

L
ZR

s

L
ZR

s

ZZ
ZZ

s
L

L

L

L
L

0

0

0

0











  

The input voltage is the unit step function and is given by 
   ie t u t  

 
The Laplace transform of this is 

  1
iE s

s
  
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  where Laplace transform of   1[ ]u t
s

  

   
The reflected voltage from the load is given by  

           
0

0

1
L

refl i L
L

R Zs
LE s E s s R Zs s
L



          
 

 

 
Now we use the inverse Laplace transform to get the time-domain response  tErefl  
 
We need to separate the above equation into simple terms which represent each response 
such as a unit step function u(t). We can write the term as 

   
 

 
1 21 2 C s B C ss A C C

s s B s s B s s B
 

  
  

 

Therefore        
1 2

1

1C C
C B A

 


 

 

 

0
1

0

0
2 1

0

21

L

L

L

A R ZC
B R Z

ZC C
R Z


 



  


  

 
Now we take the inverse Laplace transform and obtain  
 

   
 

0

0 0

0 0

2 LR Z t
LL

L L

R Z Z e u t
R Z R Z

  
 

 
 

   
 

   

  where Bte
BS



1  

 
The final expression of the reflected signal is 

 
   

 
0

0 0

0 0

2 LR Z t
LL

re fl
L L

R Z ZE t e u t
R Z R Z

   
 

 
  

   
 

 
The total voltage is the sum of incident and reflected at the load.  Therefore, we have the 
load voltage of 

 
   

 
0

0 0

0 0

21
LR Z t

LL
to ta l in c re f

L L

R Z ZE t E E e u t
R Z R Z

   
 

 
     

   
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It is easy to see the peak voltage occurs at t=0 and the value is given by 

  
 

0

0

2 20 2L
to ta l

L

R ZE t
R Z

 
   

  
 

 
This is expected because the inductance is an open circuit at t=0 and the total voltage 
becomes twice the incident voltage.   
 
The final voltage is given by setting t  .  The value is 

 
 0

2 L
to ta l

L

RE t
R Z

 
    

  
 

The transient region is given by the exponential decay 
0LR Z t

Le
  

  .   
If we take a natural log of this response, we get a line as a function of time. 

0

0log[ ]
LR Z t

L LR Ze t mt
L

  
       

 
 

The above expression shows the slope of this line m is proportional to L.  Because we 
can find RL from the t   data, we should be able to obtain the value of L from the 
slope m. This process can be used with the TDR response to obtain the values of L and 
RL.  
If the load is given by the other combinations of L, C and R, we need to replace ZL by  
 

Parallel L and R 
// /( )L L L LZ R sL sR L R sL    

Series C and R 
(1/ )L LZ R sC   

Parallel C and R 
  // /(1 )L L L LZ R sC R sCR    
 
The expected waveforms and responses are shown below.  In all cases, the values of L 
and C can be estimated by taking a natural log of the time-domain responses.  However, 
it is also clear that neither the initial peak voltage nor the final voltage can be used for 
estimating L and C. This limitation is due to the use of a ideal unit step function.  
 In the next section, we will study the finite rise-time case and show that the peak voltage 
value can be used for estimating the value of L when the inductance is present. 
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Expected TDR responses from different complex loads  
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Estimation of complex load values for the unit step function excitation   
Assume we have a series L and R circuit and we get 

 
   

 
0

0 0
1

0 0

21
LR Z t

LL
to ta l

L L

R Z ZE t C e u t
R Z R Z

   
 

 
   

   
 

where C1 is a constant related to the initial peak voltage of TDR. 
We can assume Etotal is also our measured data.  We can find RL from either the initial or 
final condition.  To find L, we set 

   
 0

00
1 2

0 0

[( / ) (1 )]
2

LR Z t
LL L

to ta l
L

R ZR Ze E t C C
R Z Z

   
   

      
 

0

0
2ln ( ) ln ( )

LR Z
t

L LR Ze t m t C
L

   
        

 
 

where m is a slope of y=-mt line of the experimental data.  C2 must be positive.  C2 has a 
linear section and you can find the slope as m=(A-B)/(t2-t1).  Although Etotal is your 
measured data, the constant term in C2 is not important.  You can use your experimental 
data as C2 in the analysis as shown below.   

Linear section of C2 is shown. 
When we have R and C, we have (1-exp(-mt)) response. In this case you cannot take 
ln(experimental data) to get a slope.  You need to change the data to get the form  
exp(-mt)=Cx equation. 
Assume we have a parallel R and C load. 

      0
1

0

(1 )(1 )m tL
to ta l

L

R ZE t C e u t
R Z

 
   

  
 

    
0

1 3
0

1 /[ (1 ) ]m t L
to ta l

L

R Ze E t C C
R Z

  
    

  
 

where C1 is a constant related to the initial peak voltage of TDR.  In this expression Etotal 
is your measured data.  Also C3 must be positive to use ln() function. 
 
Another approach is the "trial and error" or "supervised parameter estimation".  Assume 
you already know C1 and RL in the following equation and the only unknown is L. 

  
   

 
0

0 0
1

0 0

21
LR Z t

LL
to ta l

L L

R Z ZE t C e u t
R Z R Z

   
 

 
   

   
 

Set L to be a certain value then calculate Etotal() and compare it with experimental data. 
Time t=0 corresponds to the start of the reflected voltage.  The initial voltage exists for 
t<0, shown as Ei. If the tail is too long, L is too large.  If the tail is too short, L is too 
small.  You may use the "binary search" method to find the optimum value of L. 
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5-2. Finite rise-time input (Reflection case)  (This is more realistic model.) 
 
In 5-1, we studied the simple unit step function responses.  The practical digital circuits, 
however, have a finite rise-time signal and complex load.  In this section, we will use the 
Laplace transform technique to analyze both finite rise-time signal and reflection from a 
complex load.   We assume the TL is lossless.  The lossy TL case which will create 
dispersion (distortion of the waveform) will be analyzed later.   

1T

iE

L

LR

 tErefl

 tei L

 
  
Let assume the input pulse rise-time (10-90%) is specified as rt  =80ps. Using the 
straight line approximation, the total transient time is given by 

 pstT r 100
8.01   

 

The slope of the input signal (rise) is then 
1T

E
m i . 

We use the same complex load given by sLRZ LL   
 
The reflection coefficient at the load can be expressed as  

 

L
ZR

s

L
ZR

s

ZZ
ZZ

s
L

L

L

L
L

0

0

0

0











  

The input voltage can be decomposed into two terms is given by 
 
       11 TtuTtmtutmtei   

Time

Ei

 
We take Laplace transform of ei(t) and obtain 

   sT
i e

s
msE 112

  

  sTe 1  : delay 
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  where   
s

tu 1
  

     2

1
s

ttu   

 
The reflected voltage from the load is given by  

             






























 

L
ZR

s

L
ZR

s
e

s
mssEsE

L

L

sT
Lirefl

0

0

2
11  

 
Now we use an inverse Laplace transform to get the time-domain response  tErefl  

  sErefl 







2s
m

























L
ZR

s

L
ZR

s

L

L

0

0

- 







2s
m sTe 1

























L
ZR

s

L
ZR

s

L

L

0

0

 

 
We need to separate the above equation into simple terms which represent each response 
such as a unit step function u(t). We can write the first term as 

   
   

 Bss
sCBsCBssC

Bs
C

s
C

s
C

Bss
As











2

2
3213

2
21

2  

Therefore        

ABC
CBC
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




2
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1
0

 

 

 
 
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2
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0

0
2
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CC
ZR
LZ

B
CC

ZR
ZR

B
AC

L

L

L














  

 
Take an inverse Laplace transform and obtain  
 
1st term  

   
 tue

ZR
LZt

ZR
ZR

ZR
LZ t

L
ZR

LL

L

L

L




































 
 0

2
0

0

0

0
2

0

0 22  

   

   Bte
BS



1  
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We can obtain the 2nd term using the same method. 
 
Then the final expression of the reflected voltage is 

 
   

 

 
 

 
 

 12
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0
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0
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0

0

2
0

0

0

0
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0

0

1
0

0
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L
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
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
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



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



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

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
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
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
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The total voltage is the sum of incident and reflected at the load.  Therefore, we have the 
load voltage of 

 to ta l in c re fE t E E   
 
This should provide the complete voltage response.   
 
It is often important to estimate the maximum reflected voltage. As we found in 5-1, the 
maximum value is 2Einc if the input is a unit step function.   
 
**** This is not correct 
To obtain the maximum reflected voltage, we take a derivative of  tErefl  with respect to 
t and set it to zero.  This gives us the condition that the maximum voltage occurs at 

1Tt  .  ***** 
To simplify, assume 0ZRL   and plot  tErefl .  We can show the peak occurs at 1Tt  . 

  
 Therefore 
  max 1refl reflE E t T   
For a special case of 0ZRL  , the maximum voltage becomes 

   




















 1
02

0
1 1

2

T
L
Z

refl e
Z

mLTtE  

Although L is contained in two places, this expression can be used for estimating the 
inductance L. 
 
If we approximate exp() as ex~1+x+x2/2  (ex~1+x does not work in this case), we get 
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  20 0 0
1 1 1 1 1

0

2 21 [1 [ ] / 2 1
2refl

Z Z ZmLE t T T T mT T
Z L L L

                              
 

 
Then the approximate value of L is 
  0 1 1 1/[1 / ]reflL Z T E t T mT    
 
Another approach is to calculate the area of the reflected voltage which is the same as 
integration over the reflected voltage. If 0ZRL  , the final value is the same as the 
incident voltage and the effect of the incident voltage can be neglected.  However, if 

0LR Z , the integration over the initial and final values must be carefully done.  
 
Assume 0ZRL  .  The integration of the reflected voltage is given by 

     
0 0

1

1

2 2 ( )
1

0 0 00 0

1 1
2 2 2

Z Zt t T
L L

re fl
T

m L Tm L m LE t d t e d t e d t
Z Z Z

          
   

   
       

      
  
 
  
This should be set equal to the measured area under the reflected voltage.  Then L can be 
estimated as 

  0
_

1 0

2
re fl m easu red

ZL E t d t
m T



   

 
5.3 Estimation of the inductance L (Examples using the next figure) 
 
(a) Based on the peak value  

 pstT r 100
8.01    rt : 10 to 90%, :1T total risetime 

 We want to find the parasitic inductance of the load. 
 The peak reflected voltage is given by  = 0.44V 

 
ps

m
100

94.0
   0.94V: initial voltage 

 From  






























 1

02

0

1
2

44.0
T

L

Z

e
Z

mL ,  500Z  

 We can find L to be   
 
  nHL 6  
If we use the approximation  0 1 1 1/[1 / ]reflL Z T E t T mT   , we get 10L nH  which is 
substantially different from the previous estimate.  In this case the argument of the exp() 
is close to -1 and the approximation based on the 3 terms is not sufficient. 
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(b) Based on e-1 value. If the time-domain response is close to the exponential function 
and the inductance can also be estimated from the decay time as shown below. 
   

 
02Z

L
   where  

t

e
 

5

1e

 

   02ZL   
 If the decay time is ns3.0~5  , then  
      nHpsL 610060   
 This value is close to an estimate based on the peak value. 

  
These two methods to estimate L have serious problems.  For example, the max value of 

reflE  depends on the rise-time rt  in the first approach.  If the rise time is close to 1ns, 
then the peak voltage will be reduced to 
 
  mVErefl 56~

max
 

This is much less than 0.44V for pstr 80 and a small amount of noise will introduce an 
error in estimation.  Similarly, it can be shown that the voltage waveform becomes far 
from an ideal exponential decay when the rise-time is increased. 
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5.4 Estimation of L based on the area (Transmission case) 
 
Unlike a small capacitance, the small inductance measurement is much more difficult.  
The time-domain approach shown here can be used.  In many cases it is difficult to find 
the accurate exp(-1) time or slope m from the measured data due to a slow rise-time.  
Also these techniques are sensitive to measurement errors.  In the following section, we 
will show the area under the reflected voltage can be used for estimating L.    
 
The right figure shows the voltage observed at the unknown inductor. If there is no 
resistor, the final voltage is 0 (or the final current is V /Rs).  The initial current I(t=0) = 
0.  We can express the area under the voltage waveform is  

 

              Vinductor L
dI

dt
inductor

 

             V t dt L
dI t

dt
dtinductor

inductor
( )

( )




 00
 

             V t dt L I Iinductor( ) [ ( ) ( )]  


0 0  

              area = L[I() - I(0)] 

              L = 
( )area

I
 = 

( )( )area R
V

s


 

 
                   Rs : Source impedance  
 
 
 
 
 
 
 
Rs=equivalent source impedance due to source  

V  is the open circuit voltage. 
 

 time

area

e-1 

V : open circuit voltage 
+ 

- 

DUT  
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Example of Small Inductance Measurement. 
  
The following figures show how to find the unknown inductance from the measured 
time-domain data. Unlike a small capacitor, measuring a small inductor with TDR is a 
challenging task. The time constant of series or parallel RL circuits has exp(-tL/R).  If 
the value of L is small, R cannot to too large to observe a time-domain response within a 
reasonable time. 
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Based on the time constant 
 
Find e-1 time 

   nHRL 3.101036.16.7 9    
R: must be small to get a large value of =L/R. 
 

System response without L: 0.8ns (rise time of the system)  
System response with L: 1.36ns (inductor decay time)   

 
 
L estimation from the area 
 
 

 
 

      dt
dt
dILdttVinductor 










00
 

                       
IL

IIL


 0  

 
 

      AreadttVinductor 


0
 

        
V

RArea
I

AreaL s







  

        V  : open circuit voltage 
        Rs = 7.6Ω 
 

           nHL 9
418.0

6.7495
  

 
  

 
 
 
 
 
 
Rs=(50+39)//10//50=7.6 ohm 

50+39:   toward source (pulse generator and series resistor) 
10:  to ground 

             50:   toward scope (input impedance of the scope) 
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5.5 Small Capacitance Measurements 
Unlike a small inductor, measuring a small capacitor with TDR is relatively easy. The 
time constant of series or parallel RC circuits has exp(-t/RC) which can be significantly 
increased by choosing a large R value.   

 

 32

 
 
 
   
 
  
 



 33

Laplace Transform Theorem 
 

   

    dsesXtx

dtetxsX

stj

j

st




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







2
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0
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