Numerical Parameters for the Turbulent Wake

In class it was assumed that, in the 'far wake', the mean velocity deficit is of similarity form, i.e.,

$$\frac{\Delta U(x,y)}{U_s(x)} = f\left[\frac{y}{\ell(x)}\right],\tag{1}$$

where $\Delta U(x,y)$ is the mean velocity deficit, $U_s(x)$ is the local maximum of ΔU , $\ell(x)$ is a lateral length scale characterizing the flow, and $f(\eta)$ is a function describing the shape of the velocity deficit profile. For consistency with the similarity assumption, and with the conservation of the momentum flux \mathcal{M} , it was further shown that $U_s(x)$ and $\ell(x)$ behave in x as

$$\ell(x) = Ax^{1/2}$$
, and $U_s(x) = Bx^{-1/2}$, (2)

where \mathcal{A} and \mathcal{B} are constants determined below. Finally, making a turbulent diffusivity assumption with constant turbulent viscosity, it was found that $f(\eta)$ satisfies

$$f'' + \alpha(f + \eta f') = 0, \qquad (3)$$

where $\alpha = \frac{U_0 \mathcal{A}}{2 \mathcal{B}} R_T$, with U_0 the free stream speed, and R_T a turbulent Reynolds number defined by

$$R_T = \frac{U_s \ell}{\nu_T} \,, \tag{4}$$

with ν_T the (constant) turbulent viscosity. The exact solution of Equation (3) for f is

$$f(\eta) = f(0) \exp(-\frac{1}{2}\alpha\eta^2). \tag{5}$$

Assuming the maximum of ΔU is at y=0, then f(0)=1.

In order to specify the length scale ℓ , the parameter α is chosen to be 1, i.e.,

$$\alpha = \frac{U_0 \mathcal{A}}{2 \mathcal{B}} R_T = 1. \tag{6}$$

Therefore, with $\eta = y/\ell$, when $y = \ell$, then $\eta = 1$ and

$$f(1) = \exp\left(-\frac{1}{2}\right) \approx 0.61\,,\tag{7}$$

that is, ℓ is defined as the y-value where ΔU has dropped to 0.61 of its peak value U_s .

Furthermore, using the definitions of the momentum flux \mathcal{M} and the momentum thickness Θ , then

$$\mathcal{M} = \rho U_0^2 \Theta = \rho \int_{-\infty}^{\infty} U_0(U_0 - U(x, y)) dy = \rho U_0 U_s \ell(x) \int_{-\infty}^{\infty} f(\eta) d\eta = \rho U_0 \mathcal{A} \mathcal{B} \sqrt{2\pi}, \qquad (8)$$

using Equation (2) for U_s and ℓ , and since

$$\int_{-\infty}^{\infty} f(\eta) \, d\eta = \sqrt{2\pi} \,. \tag{9}$$

Therefore

$$U_0\Theta = \mathcal{A}\mathcal{B}\sqrt{2\pi} \,. \tag{10}$$

From Equation (6),

$$\mathcal{B} = \frac{1}{2} U_0 \mathcal{A} R_T \,. \tag{11}$$

Plugging this into Equation (10) gives

$$U_0\Theta = \sqrt{2\pi} \frac{R_T}{2} U_0 A^2, \text{ or}$$

$$A = \sqrt{\frac{2}{R_T} \frac{1}{\sqrt{2\pi}}} \Theta^{1/2}.$$
(12)

Therefore, from Equation (2), $\ell(x) = C_1 \Theta^{1/2} x^{1/2}$, or

$$\frac{\ell(x)}{\Theta} = C_1 \left(\frac{x}{\Theta}\right)^{1/2}.\tag{13}$$

From laboratory data, it is found that the turbulent Reynolds number, which should be a constant for this problem since the product $U_s\ell$ is constant, and since ν_T has been assumed to be constant, has the approximate value

$$R_T \approx 12.5$$
.

Therefore, from Equation (12),

$$C_1 \approx \left\{ \frac{2}{12.5} \frac{1}{\sqrt{2\pi}} \right\} = 0.2526$$
, and so

$$\frac{\ell(x)}{\Theta} = 0.2526 \left(\frac{x}{\Theta}\right)^{1/2}.\tag{14}$$

Again using Equation (6),

$$\mathcal{A} = \frac{2\mathcal{B}}{U_0 R_T}; \tag{15}$$

plugging this into Equation (10) gives

$$U_0\Theta = \sqrt{2\pi} \frac{2\mathcal{B}}{U_0 R_T} \mathcal{B} = \frac{\sqrt{2\pi}}{U_0} \frac{2}{R_T} \mathcal{B}^2, \text{ or}$$

$$\mathcal{B} = U_0 \Theta^{1/2} \underbrace{\sqrt{\frac{R_T}{2\sqrt{2\pi}}}}_{G}. \tag{16}$$

With
$$C_2 = \sqrt{\frac{R_T}{2\sqrt{2\pi}}} = 1.579$$
, then

$$\frac{U_s(x)}{U_0} = 1.579 \left(\frac{x}{\Theta}\right)^{-1/2}.$$
 (17)

Solution to the Wake Equation

Consider the equation for $f(\eta)$, the similarity solution to the wake equation:

$$f'' + \alpha(f + \eta f') = 0,$$

where $(\cdot)'$ denotes differentiation with respect to η . Note that this can be written in the form

$$(f' + \alpha \eta f)' = 0.$$

Integrating this over η from 0 to η gives:

$$\int_0^{\eta} \frac{d}{d\eta} \left(\frac{df}{d\eta} + \alpha \eta f \right) d\eta = 0, \text{ or}$$

$$\left(\frac{df}{d\eta} + \alpha \eta f \right) \Big|_0^{\eta} = 0,$$

$$\frac{df}{d\eta} + \alpha \eta f - f'(0) = 0, \text{ so, finally}$$

$$\frac{df}{d\eta} + \alpha \eta f = f'(0).$$

(Note that, due to the symmetry expected in the wake problem, it is expected that f'(0) = 0. But this will not be assumed here.) This last equation can be rewritten as

$$\left[f \exp(\frac{1}{2}\alpha\eta^2) \right]' \exp(-\frac{1}{2}\alpha\eta^2) = f'(0), \text{ or}$$
$$\left[f \exp(\frac{1}{2}\alpha\eta^2) \right]' = f'(0) \exp(\frac{1}{2}\alpha\eta^2).$$

Integrating this over η from 0 to η gives

$$f \exp(\frac{1}{2}\alpha\eta^2) \Big|_0^{\eta} = f'(0) \int_0^{\eta} \exp(\frac{1}{2}\alpha\eta'^2) \, d\eta' \,, \text{ or}$$

$$f \exp(\frac{1}{2}\alpha\eta^2) - f(0) = f'(0) \int_0^{\eta} \exp(\frac{1}{2}\alpha\eta'^2) \, d\eta' \,, \text{ so, finally}$$

$$f(\eta) = f(0) \exp(-\frac{1}{2}\alpha\eta^2) + f'(0) \exp(-\frac{1}{2}\alpha\eta^2) \int_0^{\eta} \exp(\frac{1}{2}\alpha\eta'^2) \, d\eta' \,.$$

The second term on the right-hand-side is zero in the cylindrical wake case, leaving

$$f(\eta) = f(0) \exp(-\frac{1}{2}\alpha\eta^2) \,.$$