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Numerical Parameters for the Turbulent Wake

In class it was assumed that, in the ‘far wake’, the mean velocity deficit is of similarity form,
i.e.,

�U(x, y)
Us(x)

= f


y

`(x)

�
, (1)

where �U(x, y) is the mean velocity deficit, Us(x) is the local maximum of �U , `(x) is a lateral
length scale characterizing the flow, and f(⌘) is a function describing the shape of the velocity
deficit profile. For consistency with the similarity assumption, and with the conservation of the
momentum flux M, it was further shown that Us(x) and `(x) behave in x as

`(x) = Ax

1/2
, and Us(x) = Bx

�1/2
, (2)

where A and B are constants determined below. Finally, making a turbulent di↵usivity assumption
with constant turbulent viscosity, it was found that f(⌘) satisfies

f

00 + ↵(f + ⌘f

0) = 0 , (3)

where ↵ =
U0A
2B RT , with U0 the free stream speed, and RT a turbulent Reynolds number defined

by

RT =
Us`

⌫T
, (4)

with ⌫T the (constant) turbulent viscosity. The exact solution of Equation (3) for f is

f(⌘) = f(0) exp(�1
2
↵⌘

2) . (5)

Assuming the maximum of �U is at y = 0, then f(0) = 1.

In order to specify the length scale `, the parameter ↵ is chosen to be 1, i.e.,

↵ =
U0A
2B RT = 1 . (6)

Therefore, with ⌘ = y/`, when y = `, then ⌘ = 1 and

f(1) = exp
✓
�1

2

◆
⇡ 0.61 , (7)

that is, ` is defined as the y-value where �U has dropped to 0.61 of its peak value Us.

Furthermore, using the definitions of the momentum flux M and the momentum thickness ⇥,
then

M = ⇢ U

2
0 ⇥ = ⇢

Z 1

�1
U0(U0 � U(x, y)) dy = ⇢ U0Us`(x)

Z 1

�1
f(⌘) d⌘ = ⇢ U0AB

p
2⇡ , (8)

using Equation (2) for Us and `, and since
Z 1

�1
f(⌘) d⌘ =

p
2⇡ . (9)
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Therefore
U0⇥ = AB

p
2⇡ . (10)

From Equation (6),

B =
1
2
U0ART . (11)

Plugging this into Equation (10) gives

U0⇥ =
p

2⇡

RT

2
U0A2

, or

A =

s
2

RT

1p
2⇡

| {z }
C1

⇥1/2
. (12)

Therefore, from Equation (2), `(x) = C1⇥1/2
x

1/2, or

`(x)
⇥

= C1

✓
x

⇥

◆1/2

. (13)

From laboratory data, it is found that the turbulent Reynolds number, which should be a
constant for this problem since the product Us` is constant, and since ⌫T has been assumed to be
constant, has the approximate value

RT ⇡ 12.5 .

Therefore, from Equation (12),

C1 ⇡
⇢

2
12.5

1p
2⇡

�
= 0.2526 , and so

`(x)
⇥

= 0.2526
✓

x

⇥

◆1/2

. (14)

Again using Equation (6),

A =
2B

U0RT
; (15)

plugging this into Equation (10) gives

U0⇥ =
p

2⇡

2B
U0RT

B =
p

2⇡

U0

2
RT
B2

, or

B = U0⇥1/2

s
RT

2
p

2⇡

| {z }
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. (16)

With C2 =

s
RT

2
p

2⇡

= 1.579, then

Us(x)
U0

= 1.579
✓

x

⇥

◆�1/2

. (17)
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Solution to the Wake Equation

Consider the equation for f(⌘), the similarity solution to the wake equation:

f 00 + ↵(f + ⌘f 0) = 0 ,

where (·)0 denotes di↵erentiation with respect to ⌘. Note that this can be written in the form

(f 0 + ↵⌘f)0 = 0 .

Integrating this over ⌘ from 0 to ⌘ gives:
Z ⌘

0

d

d⌘

✓
df

d⌘
+ ↵⌘f

◆
d⌘ = 0 , or

✓
df

d⌘
+ ↵⌘f

◆����
⌘

0
= 0 ,

df

d⌘
+ ↵⌘f � f 0(0) = 0 , so, finally

df

d⌘
+ ↵⌘f = f 0(0) .

(Note that, due to the symmetry expected in the wake problem, it is expected that f 0(0) = 0. But
this will not be assumed here.) This last equation can be rewritten as


f exp(

1
2
↵⌘2)

�0
exp(�1

2
↵⌘2) = f 0(0) , or


f exp(

1
2
↵⌘2)

�0
= f 0(0) exp(

1
2
↵⌘2) .

Integrating this over ⌘ from 0 to ⌘ gives

f exp(
1
2
↵⌘2)

����
⌘

0
= f 0(0)

Z ⌘

0
exp(

1
2
↵⌘02) d⌘0 , or

f exp(
1
2
↵⌘2)� f(0) = f 0(0)

Z ⌘

0
exp(

1
2
↵⌘02) d⌘0 , so, finally

f(⌘) = f(0) exp(�1
2
↵⌘2) + f 0(0) exp(�1

2
↵⌘2)

Z ⌘

0
exp(

1
2
↵⌘02) d⌘0 .

The second term on the right-hand-side is zero in the cylindrical wake case, leaving

f(⌘) = f(0) exp(�1
2
↵⌘2) .
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